Efecto de los sistemas silvopastoriles en la producción forrajera, consumo y comportamiento ingestivo bovino en ganaderías colombianas

dc.contributor.advisorBarahona Rosales, Rolando
dc.contributor.advisorCorrea Londoño, Guillermo Antonio
dc.contributor.authorMontoya Uribe, Sebastián
dc.contributor.orcidBarahona Rosales, Rolando [0000-0002-4246-7835]spa
dc.contributor.orcidCorrea Londoño, Guillermo Antonio [0000-0001-7020-2546]spa
dc.contributor.researchgroupBiotecnología Animalspa
dc.coverage.countryColombia
dc.date.accessioned2023-08-30T15:24:57Z
dc.date.available2023-08-30T15:24:57Z
dc.date.issued2023-08-29
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractLa alta demanda de alimentos para satisfacer el acelerado crecimiento poblacional crea un gran reto para los agricultores, al tener que incrementar la producción de sus explotaciones sin expandir la frontera agropecuaria y sin incrementar los efectos adversos de estas producciones en el ambiente. A pesar de que se conoce el papel de la ganadería como motor económico para las comunidades rurales y de fomentar el desarrollo de pequeñas empresas en el sector agrícola y así contribuir al crecimiento económico nacional, el ineficiente uso de los recursos y la falta de planeación y programación empresarial deja en el panorama, sistemas de producción bovina en esquemas de pastoreo extensivo, praderas de monocultivos y emprendimientos ganaderos con alta capacidad extractiva de los recurso, alto potencial de detrimento ambiental en el territorio y con un productor ganadero sin conciencia colectiva para detener el deterioro ambiental causado. la integración del sector forestal con el ganadero, como sucede con los sistemas silvopastoriles (SSP), es una alternativa para diversificar la producción y mejorar la rentabilidad de los sistemas tradicionales de producción bovina en Latinoamérica, la inclusión de diversidad de forrajes a las dietas animales y los diferentes arreglos silvopastoriles han reportado confort térmico y mayor productividad animal, en contrate con aquellos sistemas de monocultivos mencionados anteriormente, sin embargo, las investigaciones realizadas sobre este tema siguen siendo insipientes para Colombia. Con el propósito de contribuir al conocimiento de las múltiples bondades que tienen los sistemas silvopastoriles, sobre el aumento de la productividad bovina, fue evaluado el efecto de los SSP en la oferta forrajera, el consumo en pastoreo y el comportamiento ingestivo de los hatos bovino en diferentes regiones de Colombia. Este estudio se llevó a cabo en dos etapas. El primer experimento (Capítulo 2) consistió en evaluar la oferta forrajera y el consumo bovino en 17 fincas demostrativas del “Proyecto Ganadería Colombiana Sostenible” distribuidas en 5 ecorregiones de Colombia, estos sistemas productivos ganaderos se caracterizaroncaracterizaron por tener 2 años de antigüedad de establecidos y de utilizar un manejo de pastoreos rotacionales con cargas animales ajustadas con la ayuda de técnicos de la Organización CIPAV y FEDEGAN, para las cuales se tuvieron en cuenta áreas cercadas no superiores a 5000 m2, periodos de descansos definidos por la curva de crecimiento observada de los forrajes en cada zona y de las conversaciones realizadas con los productores. Las zonas ganaderas estudiadas fueron: En la ecorregión Cafetera y el Valle Alto del Río Cauca se evaluaron sistemas con arbustos de Tithonia diversifolia (hemsl Gray) y Leucaena leucocephala. La pastura mejorada predominante fue Cynodon plectostachyus, siendo la producción de ganado de leche, la principal orientación económica. En la Región de ganadería tradicional del Valle del Río Cesar se evaluaron sistemas basados en los arbustos de L. leucocephala y bancos forrajeros de Gliricidia sepium; la pastura predominante fue Panicum maximum cv Mombaza en asocio con líneas de árboles de Eucalyptus melliodora y Samanea saman, dentro de un sistema orientado a la cría y el engorde de ganados cebuinos y sus cruces. En el Bajo Magdalena las praderas evaluadas estuvieron principalmente conformadas por Bothriochloa pertusa en asocio con P. máximum, el estrato secundario estuvo constituido por L. leucocephala y G. sepium y el nivel arquitectónico terciario de la pradera estuvo compuesto por árboles de S. saman. En el Piedemonte del Orinoco (departamento del Meta) se evaluaron ganaderías doble propósito, con sistemas forrajeros basados en Brachiaria decumbens y T. diversifolia, reconocidos por su tolerancia a la toxicidad por aluminio. Las Regiones lecheras de Boyacá y Santander fueron estudiados sistemas con la presencia de Cenchrus clandestinus en asocio a Trifolium repens y Sambucus peruviana en los territorios más altos de esta zona; en las secciones más bajas de la vertiente, el componente forrajero fue totalmente diferente y los forrajes de mayor presencia fueron B. decumbens y T. diversifolia. Se debe tener en cuenta, además, que las fincas estudiadas se encontraban en un proceso de reconversión productiva y ambiental, en donde no todas sus praderas estaban estructuradas como un SSP y no todas las fincas contaban con todos los sistemas de siembra que se mencionan a continuación: Sistema de monocultivo (SC), Arboles dispersos en praderas (AD), Setos forrajeros (SF) y Sistemas silvopastoriles intensivos (SSPi). Pero buscando ordenar la información de la mejor manera y realizando un bloqueo por el efecto propio del predio, se concibe la unidad experimental de este trabajo como la oferta y consumo diario encontrado en franjas o áreas asignadas por la rotación en potreros de los diversos sistemas de siembra, para de esta manera escalar la investigación de lo meramente descriptivo y proponer de manera humilde una comparación del desempeño productivo de los SSP. La oferta forrajera fue de 4.55 en SF sin diferencias con 4.12 del SSPi, pero mayor al 2.78 y 3.24 (kg/100 kg PV/día) de AD y SC respectivamente (P ˂ 0,05); los dos primeros sistemas ofertaron más de un 50% y un 45% de proteína cruda y cenizas respectivamente con relación a la oferta observada en los sistemas de AD y SC (P ˂ 0,05). Igual tendencia tuvo el consumo de proteína cruda, que fue de 352.30 en SF y 293.77 SSPi superiores a 141.36 y 151.99 (gr de PC/100 kg PV/día) de AD y SC respectivamente (P ˂ 0,05). El consumo de cenizas fue de 301.97 en SSPi y superior a 212.37, 206.24 y 258.11 (gr de Cenizas/100 kg PV/ día) en AD, SC y SF respectivamente (P ˂ 0,05). El consumo de grasa (gr de grasa /100 kg PV/día), tuvo una relación inversa con el consumo de proteína, siendo mayor en los AD y SC (P ˂ 0,05). El R2El coeficiente de determinación (0.0403) obtenido de la regresión encontrada entre el estimado de CMS por el aforo y el encontrado con Cornell Net Carbohydrate and Protein System (CNCPS) fue bajo y el cuadrado medio de error de predicción (CMEP=0.6849 (kg/100 kg PV/d)²) fue alto, surgiendo un enfoque diferente en la heurística de las metodologías, mutuamente complementarias para un rango de valores de máximos y mínimos en el consumo bovino de animales en pastoreo. El segundo experimento (Capítulo 3) consistió en estudiar el comportamiento ingestivo bovino encontrado en tres zonas ganaderas de importancia productiva para Colombia, en fincas donde se tienen consolidados SPP en casi toda la extensión de sus territorios. El primer sistema de producción evaluado fue la finca “Cien Años De Soledad” ubicada en el municipio de Rionegro, vereda el tablazo del departamento de Antioquia, el segundo sistema evaluado fue la “Hacienda Lucerna” ubicada en el norte de Valle Del Cauca, en el municipio de Bugalagrande y el tercer sistema fue la finca “Sinaí” ubicada en el municipio de Pailitas, en el departamento del Cesar. En esta evaluación del desempeño productivo de los hatos, se compararon animales estabulados y animales en pastoreo, estando los primeros en un modelo de evaluación individual del desempeño productivo de animales a los cuales se les suministró una dieta típica de un sistema silvopastoril y los segundos fueron animales pastoreando en las condiciones naturales y grupales propias de la especie. Se monitorearon las horas destinadas por los animales a las siguientes actividades (h/día) por 48 h consecutivas: consumo de forraje, rumia de pie, rumia estando acostados, descanso de pie y descanso estando acostados. Los datos registrados fueron analizados a través de un análisis de correspondencias. La actividad de consumo ocurrió generalmente en horas diurnas y fue a esta actividad a la que los animales dedicaron más tiempo (entre 7 a 10 h/día), representando el 35% su actividad diaria y registrando un consumo de 1.44, 0.713 y 0.490 Kg MS/animal/hora en los predios Cien años de soledad, Lucerna y Sinaí, respectivamente. Los animales tendieron a rumiar principalmente estando acostados durante las horas nocturnas con una consagración temporal promedio de 8 h, representado en el 30.5 % del tiempo. La rumia de pie se identifica como un mecanismo para acomodar el tamaño de partícula rápidamente, siendo este el patrón al que los animales dedicaron menos tiempo (1.3 h al día, que corresponden al 5.2% del tiempo). A la actividad de descanso de pie, los animales dedicaron 2 h/día, lo que corresponden al 9 % del tiempo total. El ritmo biológico del sueño bovino manifestado en el patrón de descanso estando acostados, se caracterizó por falta de respuesta a estimulo ambiental y a esta actividad los animales dedicaron 4.5 h o 19.5 % del tiempo diario. (Texto tomado de la fuente)spa
dc.description.abstractThe high demand for food to satisfy the accelerated population growth creates a great challenge for farmers, as they have to increase production on their farms without expanding the agricultural frontier and without increasing the adverse effects of these productions on the environment. Although the role of cattle ranching as an economic engine for rural communities is well known, and the development of small businesses in the agricultural sector is known to contribute to national economic growth, the inefficient use of resources and the lack of planning and business programming leaves in the panorama, cattle production systems in extensive grazing schemes, monoculture pastures and cattle ranching enterprises with high extractive capacity of the resources, high potential for environmental damage in the territory and with a cattle producer without collective conscience to stop the environmental deterioration caused. The integration of the forestry sector with the livestock sector, as is the case with silvopastoral systems (SSP), is an alternative to diversify production and improve the profitability of traditional cattle production systems in Latin America. The inclusion of forage diversity in animal diets and the different silvopastoral arrangements have reported thermal comfort and higher animal productivity, in contrast with those monoculture systems mentioned above; however, research on this subject is still insipient for Colombia. With the purpose of contributing to the knowledge of the multiple benefits that silvopastoral systems have on the increase of bovine productivity, the effect of SSP on forage supply, grazing consumption and ingestive behavior of bovine herds in different regions of Colombia was evaluated. This study was carried out in two stages. The first experiment (Chapter 2) consisted of evaluating the forage supply and cattle consumption in 17 demonstration farms of the "Sustainable Colombian Livestock Project" distributed in 5 ecoregions of Colombia. These cattle production systems were characterized by having been established for 2 years and using rotational grazing management with animal loads adjusted with the help of technicians from the CIPAV Organization and FEDEGAN, These were based on fenced areas of no more than 5,000 m2 , rest periods defined by the growth curve observed for forage in each zone and the conversations held with the producers. The livestock zones studied were: In the Coffee ecoregion and the Upper Cauca River Valley, systems with Tithonia diversifolia (hemsl Gray) and Leucaena leucocephala shrubs were evaluated. The predominant improved pasture was Cynodon plectostachyus, with dairy cattle production being the main economic orientation. In the traditional cattle raising region of the Cesar River Valley, systems based on L. leucocephala shrubs and Gliricidia sepium fodder banks were evaluated; the predominant pasture was Panicum maximum cv Mombaza in association with tree lines of Eucalyptus melliodora and Samanea saman, within a system oriented to the breeding and fattening of zebu cattle and their crossbreeds. In the Lower Magdalena, the grasslands evaluated were mainly composed of Bothriochloa pertusa in association with P. maxima, the secondary stratum was constituted by L. leucocephala and G. sepium and the tertiary architectural level of the grassland was composed of S. saman trees. In the Piedemonte del Orinoco (department of Meta), dual-purpose cattle ranches were evaluated, with forage systems based on Brachiaria decumbens and T. diversifolia, recognized for their tolerance to aluminum toxicity. In the dairy regions of Boyacá and Santander, systems were studied with the presence of Cenchrus clandestinus in association with Trifolium repens and Sambucus peruviana in the higher areas of this zone; in the lower sections of the slope, the forage component was totally different and the forages with the greatest presence were B. decumbens and T. diversifolia. It should also be taken into account that the farms studied were in a process of productive and environmental reconversion, where not all their pastures were structured as a SSP and not all the farms had all the planting systems mentioned below: Monoculture system (SC), Dispersed trees in pastures (AD), Forage hedges (SF) and Intensive silvopastoral systems (SSPi). However, in order to organize the information in the best way possible, and making a blockage due to the effect of the farm itself, the experimental unit of this work is conceived as the daily supply and consumption found in strips or areas assigned by the rotation in paddocks of the different sowing systems, in order to scale up the research from the merely descriptive and humbly propose a comparison of the productive performance of the SSP. The forage supply was 4.55 in SF without differences with 4.12 of SSPi, but higher than 2.78 and 3.24 (kg/100 kg PV/day) of AD and SC respectively (P ˂ 0.05); the first two systems offered more than 50% and 45% of crude protein and ash respectively in relation to the supply observed in the AD and SC systems (P ˂ 0.05). The same trend had the crude protein intake, which was 352.30 in SF and 293.77 SSPi higher than 141.36 and 151.99 (g CP/100 kg PV/day) of AD and SC respectively (P ˂ 0.05). Ash intake was 301.97 in SSPi and higher than 212.37, 206.24 and 258.11 (gr of Ash/100 kg BW/day) in AD, SC and SF respectively (P ˂ 0.05). Fat intake (gr of fat/100 kg PV/day), had an inverse relationship with protein intake, being higher in AD and SC (P ˂ 0.05). The R2The coefficient of determination (0.0403) obtained from the regression found between the CMS estimate by gauging and that found with Cornell Net Carbohydrate and Protein System (CNCPS) was low and the mean square of prediction error (CMEP=0.6849 (kg/100 kg BW/d)²) was high, emerging a different approach in the heuristics of the methodologies, mutually complementary for a range of values of maxima and minima in bovine consumption of grazing animals. The second experiment (Chapter 3) consisted of studying the bovine intake behavior found in three cattle raising zones of productive importance for Colombia, in farms where SPP are consolidated in almost all the extension of their territories. The first production system evaluated was the farm "Cien Años De Soledad" located in the municipality of Rionegro, vereda el tablazo in the department of Antioquia, the second system evaluated was the "Hacienda Lucerna" located in the north of Valle Del Cauca, in the municipality of Bugalagrande and the third system was the farm "Sinai" located in the municipality of Pailitas, in the department of Cesar. In this evaluation of the productive performance of the herds, stabled animals and grazing animals were compared, the former being in a model of individual evaluation of the productive performance of animals to which a typical diet of a silvopastoral system was provided and the latter were animals grazing in the natural and group conditions typical of the species. The hours spent by the animals in the following activities (h/day) were monitored for 48 consecutive hours: forage consumption, standing rumination, lying rumination, standing rest and lying rest. The recorded data were analyzed by correspondence analysis. Consumption activity generally occurred during daylight hours and it was to this activity that the animals dedicated more time (between 7 to 10 h/day), representing 35% of their daily activity and registering a consumption of 1.44, 0.713 and 0.490 kg DM/animal/hour in the farms Cien años de soledad, Lucerna and Sinai, respectively. The animals tended to ruminate mainly while lying down during the night hours with an average time commitment of 8 h, representing 30.5 % of the time. Standing rumination is identified as a mechanism to accommodate particle size quickly, being this the pattern to which the animals dedicated less time (1.3 h per day, corresponding to 5.2% of the time). To the standing resting activity, the animals dedicated 2 h/day, corresponding to 9 % of the total time. The biological rhythm of bovine sleep manifested in the pattern of resting while lying down, was characterized by lack of response to environmental stimuli and to this activity the animals dedicated 4.5 h or 19.5 % of the daily time.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.methodsAnálisis Descriptivo y Comparativospa
dc.description.researchareaSistemas silvopastorilesspa
dc.description.researchareaProducción Animal y Gestión Ambientalspa
dc.format.extent140 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84617
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlmeida, R.G. de, Barbosa, R.A., Zimmer, A.H., Kichel, A.N., et al., 2019. Forage in integrated cattle production systems. In: Bungenstab, D.J. (Ed.), ICLF: Innovation With Crop, Livestock and Forest Integration. Embrapa, Brasília, DF, p. 835.spa
dc.relation.referencesAlvarenga, C.A.F., Euclides, V.P.B., Montagner, D.B., Sbrissia, A.F., Barbosa, R.A., de Araújo, A.R., 2020. Animal performance and sward characteristics of Mombaça guine a grass pastures subjected to two grazing frequencies. Trop. Grassl. Forrajes Trop. 8, 1–10. https://doi.org/10.17138/tgft(8)1-10spa
dc.relation.referencesBarahona, R., Sánchez, S., 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Revista Corpoica. 6: 69 – 82.spa
dc.relation.referencesBarreto, C.D., Alves, F.V., Ramos, C.E.C de O., Leite, M.C. de P., Leite, L.C., Karvatte Junior, N., 2020. Infrared thermography for evaluation of the environmental thermal comfort for livestock. Int. J. Biometeorol. 64, 881–888.spa
dc.relation.referencesCalle, Z., Murgueitio, E., Chará, J. 2012 Integrating forestry, sustainable cattle-ranching and landscape restoration. In: Unasylva, The Power of Forests. Food and Agriculture Organization of the United Nations (FAO) Vol 63/239:31-40, Rome.spa
dc.relation.referencesChara J, Reyes E, Peri P, Otte J, Arce E, Schneider F (2019). Silvopastoral Systems and their Contribution to Improved Resource Use and Sustainable Development Goals. Evidence from Latin America. FAO, CIPAV. Editorial CIPAV. Cali. Columbia.spa
dc.relation.referencesGamarra, ´E.L., Morais, M.G., Almeida, R.G., Paludetto, N.A., Pereira, M., Oliveira, C.C., 2017. Beef cattle production in established integrated systems. Semin. Cienc. Agrar. 38 (5), 3241–3252.spa
dc.relation.referencesGiro, A., Pezzopane, J.R.M., Barioni Jr., W., et al., 2019. Behaviour and body Surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Sci. Total Environ. 684, 587–596.spa
dc.relation.referencesHuertas, S. M., Bobadilla, P. E., Bueno, H. J., Cesar, D., Piaggio, J. M., Gil, A. D. 2018. Environmental Conditions in a Temperate Weather Silvopastoral System vs. Natural Grassland and their Impact on Animal Beef Production. Biomed. J. Sci. Tech. Res. 3:1–2.spa
dc.relation.referencesKarvatte Junior, N., Myage, E.S., de Oliveira, C.C., Barreto, C.D., Mastelaro, A.P., Bungenstab, D.J., Alves, F.V., 2020. Infrared thermography for microclimate assessment in agroforestry systems. Sci. Total Environ. 731spa
dc.relation.referencesLopes, L.B., Eckstein, C., Pina, D.S., Carnevalli, R.A., 2016. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Trop. Anim. Health Prod. 48, 755–761.spa
dc.relation.referencesMorales, A. M. T., Ceballos, M. C., Londoño, G. C., Cardona, C. A. C., Ramírez, J. F. N., da Costa, M. J. R. P. 2017. Welfare of cattle kept in intensive silvopastoral systems: A case report. Rev. Bras. Zootec. 46:478–488.spa
dc.relation.referencesSouza, C.F., Tinˆoco, I.F.F., Baˆeta, F.C., et al., 2002. Evaluation of the alternative materials to make a globe thermometer. Ciˆenc. agrotec. 26 (1), 157–164. ISSN: 1413-7054.spa
dc.relation.referencesOliveira, C.C., Villela, S.D., de Almeida, R.G., Alves, F.V., Behling-Neto, A., Martins, P.G. M. de A., 2014. Performance of Nellore heifers, forage mass, and structural and nutritional characteristics of Brachiaria brizantha grass in integrated production systems. Trop. Anim. Health Prod. 46 (1), 167–172.spa
dc.relation.referencesUribe F., Zuluaga A.F., Valencia L., Murgueitio E., Zapata A., Solarte L., et al. Establecimiento y manejo de sistemas silvopastoriles. Manual 1, Proyecto Ganadería Colombiana Sostenible. GEF, BANCO MUNDIAL, FEDEGAN, CIPAV, FONDO ACCION, TNC. Bogotá, Colombia. 78p.spa
dc.relation.referencesVizzotto, E.F., Fischer, V., ThalerNeto, A., Abreu, A.S., Stumpf, M.T., Werncke, D., Schmidt, F.A., McManus, C.M., 2015. Access to shade changes behavioural and physiological attributes of dairy cows during the hot season in the subtropics. Animal 9, 1559–1566. https://doi.org/10.1017/S1751731115000877.spa
dc.relation.referencesAlbright, J. L., 1982. Dairy industry developments that improved the welfare of dairy cows and veal production. Feedstuffs 54(15):23.spa
dc.relation.referencesAlbright, J. L., 1987. Dairy Animal Welfare: Current and Needed Research. Journal of Dairy Science, 70(12). https://doi.org/10.3168/jds.S0022-0302(87)80345-4spa
dc.relation.referencesAlbright, J. L., 1993. Nutrition, feeding and calves. Feeding behavior of dairy cattle. Journal of Dairy Science, v.76, n.2, p.485-498.spa
dc.relation.referencesAlbright, J. L., Stricklin, W. R., 1989. Recent developments in the provision for cattle welfare. New Techniques in Cattle Production. C.J.C. Phillips, Ed. Butterworths, London, Engl., 149.spa
dc.relation.referencesAllden, W. G., McDWhittaker, I. A., 1970. The determinants of herbage intake by grazing sheep: The interrelationship of factors influencing herbage intake and availability. Australian Journal of Agricultural Research, 21(5). https://doi.org/10.1071/AR9700755spa
dc.relation.referencesAlmeida, R. G., Barbosa, R. A., Zimmer, A. H., Kichel, A. N., et al., 2019. Forage in integrated cattle production systems. In: Bungenstab, D.J. (Ed.), ICLF: Innovation With Crop, Livestock and Forest Integration. Embrapa, Brasília, DF, p. 835.spa
dc.relation.referencesAlvarenga, C. A. F., Euclides, V. P. B., Montagner, D. B., Sbrissia, A. F., Barbosa, R. A., Araújo, A. R. 2020. Animal performance and sward characteristics of Mombaça guine a grass pastures subjected to two grazing frequencies. Trop. Grassl. Forrajes Trop. 8, 1–10. https://doi.org/10.17138/tgft(8)1-10.spa
dc.relation.referencesAndrade, C., Carneiro, J., Valentim, J., 2002. Efeito do sombreamento sobre as taxas de acumulaçao de matéria seca de quartas gramíneas forrageiras. Anais Da Reuniao Annual Da Sociedade Brasileira de Zootecnia 39.spa
dc.relation.referencesAndrade, A.S., Santos, P.M., Pezzopane, J.R.M., De Araujo, L.C., Pedreira, B.C., Pedreira, C.G.S., Marin, F.R., Lara, A.S., 2015. Simulating tropical forage growth and biomass accumulation: an overview of model development application. Grass and Forage Science. 71(1): 54-65.spa
dc.relation.referencesAnsell, R. H., 1981. Extreme heat stress in dairy cattle and its alleviation: A case report. Environmental Aspects of Housing for Animal Protection. J. A. Clark, Ed. Butterworths, London, UK., 285–306.spa
dc.relation.referencesArave, C. W., Albright, J. L., 1976. Social Rank and Physiological Traits of Dairy Cows as Influenced by Changing Group Membership. Journal of Dairy Science, 59(5). https://doi.org/10.3168/jds.S0022-0302(76)84306-8spa
dc.relation.referencesArave, C. W., J. L. Albright., 1981. Cattle be-havior. J. Dairy Sci. 64:1318.spa
dc.relation.referencesArave, C. W., Albright, J. L., Armstrong, D. v., Foster, W. W., Larson, L. L., 1992. Effects of Isolation of Calves on Growth, Behavior, and First Lactation Milk Yield of Holstein Cows. Journal of Dairy Science, 75(12). https://doi.org/10.3168/jds.S0022-0302(92)78117-Xspa
dc.relation.referencesArmstrong, D. V., 1994. Heat Stress Interaction with Shade and Cooling. Journal of Dairy Science, 77(7). https://doi.org/10.3168/jds.S0022-0302(94)77149-6spa
dc.relation.referencesAryal, D. R., Gómez, R. R., Hernández, R., Morales D.E., 2019. Reservas de carbono y diversidad de árboles en sistemas silvopastoriles de árboles dispersos en Chiapas, México. Sistema Agrofor 93:213–227spa
dc.relation.referencesBaliscei, M. A., et al., 2012. Comportamiento del ganado vacuno y el microclima con y sin sombra. Acta Sci. 34 (4), 409-415.spa
dc.relation.referencesBalch, C. C., 1955. Sleep in ruminants. Nature (Lond.) 175:940.spa
dc.relation.referencesBareille, N., Beaudeau, F., Billon, S., Robert, A., Faverdin, P., 2003. Effects of health disorders on feed intake and milk production in dairy cows. Livestock Production Science, 83(1). https://doi.org/10.1016/S0301-6226(03)00040-Xspa
dc.relation.referencesBargo, F., Muller, L. D., Kolver, E. S., Delahoy, J. E., 2003. Invited review: Production and digestion of supplemented dairy cows on pasture. In Journal of Dairy Science (Vol. 86, Issue 1). https://doi.org/10.3168/jds.S0022-0302(03)73581-4spa
dc.relation.referencesBarreto, C. D., Alves, F. V., de Oliveira Ramos, C. E. C., De Paula Leite, M. C., Leite, L. C., Junior, N. K., 2020. Infrared thermography for evaluation of the environmental thermal comfort for livestock. International Journal of Biometeorology, 64(5). https://doi.org/10.1007/s00484-020-01878-0spa
dc.relation.referencesBassham, J. A., Benson, A. A., Calvin, M., 1950. The path of carbon in photosynthesis viii. the rôle of malic acid. The Path of Carbon in Photosynthesis VIII. The Role of MalicAcid, 185(2).spa
dc.relation.referencesBielharz, R. G., 1983. Social dominance: reply to G. 1. and L. A. Syme. Letter to the Editor. Appl. Anim. Ethol. 11:67.spa
dc.relation.referencesBond, T. E., Kelly, C. F., 1955. The globe thermometer in agricultural research. Agricultural Engineering, 36(4).spa
dc.relation.referencesBransby, D. I., Matches, A. G., Krause, G. F., 1977. Disk Meter for Rapid Estimation of Herbage Yield in Grazing Trials 1. Agronomy Journal, 69(3). https://doi.org/10.2134/agronj1977.00021962006900030016xspa
dc.relation.referencesBriske, D. D., 1991. Developmental morphology and physiology of grasses. Grazing Management: An Ecological Perspective.spa
dc.relation.referencesBrownlee, A., 1950. Studies on the behaviour of domestic cattle in Britain Bull. Anim. Behav., 1 (8), Pp. 11-20.spa
dc.relation.referencesCarvalho, P. C. F., Bremm, C., Bonnet, O. J. F., Savian, J. v., Schons, R. M. T., Szymczak, L. S., Baggio, T., Moojen, F. G., Silva, D. F. F., Marin, A., Gandara, L., Bolzan, A. M. S., Neto, G. F. S., Moraes, A., Monteiro, A. L. G., Santos, D. T., Laca, E. A., 2016. ¿Como a estrutura do pasto influencia o animal em pastejo? Exemplificando as interações planta-animal sob as bases e fundamentos do Pastoreio “Rotatínuo.” VIII Simpósio Sobre Manejo Estratégico Da Pastagem, October.spa
dc.relation.referencesCarvalho, P. C. F., Poli, C. H. E. C., Nabinger, C., Moraes, A., 2000. Comportamento ingestivo de bovinos em pastejo e sua relação com a estrutura da pastagem. . Ferraz, J.B.S. (Ed). Pecuária 2000: A Pecuária De Corte No Iii Milênio. Pirassununga, Anais... 2000.spa
dc.relation.referencesChacon, E., Stobbs, T., 1976. Influence of progressive defoliation of a grass sward on the eating behaviour of cattle. Australian Journal of Agricultural Research, 27(5). https://doi.org/10.1071/ar9760709spa
dc.relation.referencesChapman, D. F., Lemaire, G., 1993. Morphogenetic and structural determinats of plant regrowth after defoliation. Grassland for Our Wold. Baker MJ (Ed). Sir Publishing, Wellington.spa
dc.relation.referencesChávez, A., Pérez, A., Sánchez, E., 2000. Intensidad de pastoreo y esquema de utilización en la selección de la dieta del ganado bovino durante la sequía. Revista Técnica Pecuaria (México). 38(1): 19-34.spa
dc.relation.referencesCollier, R. J., Eley, R. M., Sharma, A. K., Pereira, R. M., Buffington, D. E., 1981. Shade Management in Subtropical Environment for Milk Yield and Composition in Holstein and Jersey Cows. Journal of Dairy Science, 64(5). https://doi.org/10.3168/jds.S0022-0302(81)82656-2spa
dc.relation.referencesCorrea C., H. J., Pabón R., M. L., Carulla F., J. E., 2009. Estimación del consumo de materia seca en vacas Holstein bajo pastoreo en el trópico alto de Antioquia. Livestock Research for Rural Development, 21(4).spa
dc.relation.referencesCuartas, C. A.; Naranjo, J. F.; Tarazona, A. M.; Barahona-Rosales, R.; Rivera, J. E.; Arenas, F. et al., 2015. Valor nutritivo y cinética de fermentación in vitro de mezclas forrajeras utilizadas en sistemas silvopastoriles intensivos. Zootecnia Trop. 33 (4):295-306,spa
dc.relation.referencesDe Oliveira, C. C., Villela, S. D. J., De Almeida, R. G., Alves, F. V., Behling-Neto, A., Martins, P. G. M., 2014. Performance of Nellore heifers, forage mass, and structural and nutritional characteristics of Brachiaria brizantha grass in integrated production systems. Tropical Animal Health and Production, 46(1). https://doi.org/10.1007/s11250-013-0469-1spa
dc.relation.referencesDe Rensis, F., Scaramuzzi, R. J., 2003. Heat stress and seasonal effects on reproduction in the dairy cow - A review. Theriogenology, 60(6). https://doi.org/10.1016/S0093-691X(03)00126-2spa
dc.relation.referencesDe Souza, E. C., Salman, A. K. D., Da Cruz, P. G., Veit, H. M., De Carvalho, G. A., Da Silva, F. R. F., Schmitt, E., 2019. Thermal comfort and grazing behavior of Girolando heifers in integrated crop-livestock (ICL) and crop-livestock-forest (ICLF) systems. Acta Scientiarum - Animal Sciences, 41(1). https://doi.org/10.4025/actascianimsci.v41i1.46483spa
dc.relation.referencesDeVries, T. J., von Keyserlingk, M. A. G., Beauchemin, K. A., 2005. Frequency of feed delivery affects the behavior of lactating dairy cows. Journal of Dairy Science, 88(10). https://doi.org/10.3168/jds.S0022-0302(05)73040-Xspa
dc.relation.referencesEuclides, V. P. B., Montagner, D. B., Barbosa, R. A., Nantes, N. N., 2014. Pasture and grazing management of Brachiaria brizantha (Hochst) Stapf and Panicum maximum Jacq (Portuguese). Revista Ceres, 61.spa
dc.relation.referencesEspinoza, F., Vergel, J., 1998. Efecto de la época sobre la selectividad de gramíneas yleguminosas por bovinos en pastoreo. PasturasTropicales20 (2): 24-28.spa
dc.relation.referencesFerreira, L. C. B., Machado Filho, L. C. P., Hotzel, M. J., Alves, A. A., Barcellos, A. O., 2014. Respostas fisiológicas e comportamentais de bovinos submetidos a diferentes ofertas de sombra. Cadernos de Agroecología, v. 9, n. 2.spa
dc.relation.referencesFischer, V., Deswysen, A. G., Dutilleul, P., De Boever, J., 2002. Padrões da distribuição nictemeral do comportamento ingestivo de vacas leiteiras, ao início e ao final da lactação, alimentadas com dieta à base de silagem de milho. Revista Brasileira de Zootecnia, 31(5). https://doi.org/10.1590/s1516-35982002000800029spa
dc.relation.referencesFletcher, J. E., Robinson, M. E., 1956. A Capacitance Meter for Estimating Forage Weight. Journal of Range Management, 9(2). https://doi.org/10.2307/3894559spa
dc.relation.referencesFrame J., 1981. Sward measurement handbook. Herbage mass. . Ed. HodgsonJ., R.D. Barker, A. Davies, A.S. Laidlaw, J.D. Leaver. Hurley, Great Britain.spa
dc.relation.referencesFraser, A. F., Broom, D. M., 1997. Farm Animal Behaviour and Welfare. Bailli`ere Tindall, London, 448.spa
dc.relation.referencesFriend, T. H., Polan, C. E., 1974. Social Rank, Feeding Behavior, and Free Stall Utilization by Dairy Cattle. Journal of Dairy Science, 57(10). https://doi.org/10.3168/jds.S0022-0302(74)85040-Xspa
dc.relation.referencesFriend, T. H., Polan, C. E., McGilliard, M. L., 1977. Free Stall and Feed Bunk Requirements Relative to Behavior, Production and Individual Feed Intake in Dairy Cows. Journal of Dairy Science, 60(1). https://doi.org/10.3168/jds.S0022-0302(77)83835-6spa
dc.relation.referencesFujihara, T., 1980. The eating and rumination behaviour in sheep fed only grass diets in either the fresh or dried fonn. 1. Agric. Sci. (Camb.) 95:729.spa
dc.relation.referencesFustini, M., Palmonari, A., Bucchi, E., Heinrichs, A. J., Formigoni, A., 2011. Chewing and ruminating with various forage qualities in non-lactating dairy cows.Prof. Anim. Sci. 27: 352-356spa
dc.relation.referencesFustini, M., Palmonari, A., Canestrari, G., Bonfante, E., Mammi, L., Pacchioli, M.T., et al., 2017.Effect of undigested neutral detergent fiber content of alfalfa hay on lactating dairy cows: feeding behavior, fiber digestibility, and lactation performance. J. Dairy Sci., 100 (6) (2017), pp. 4475-4483, 10.3168/jds.2016-12266spa
dc.relation.referencesGaviria, X., Bolivar, D., Barahora, R., 2013. Uso de la técnica de n- alcanos para estimar el consumo y selectividad de novillos pastoreando en un sistema silvopastoril intensivo (SSPi). Colombia Revista Colombiana De Ciencias Pecuarias., 459.spa
dc.relation.referencesGaviria, X., Naranjo, J. F., Barahona, R., 2015. Cinética de fermentación in vitro de Leucaena leucocephala y Megathyrsus maximus y sus mezclas, con o sin suplementación energética. Pastos y Forrajes. 38 (1):55-63.spa
dc.relation.referencesGiraldo, C., Chará, J., Uribe, F., Gómez, J., Gómez, M., Calle, Z., Valencia, L. M., Modesto, M., Murgueitio, E. 2019. Ganadería Colombiana Sostenible: Entre la producción y la conservación de la biodiversidad. In Ganadería Sustentable en el Golfo de México.spa
dc.relation.referencesGiraldo, N. V., Chará, J., 2022. Efecto de los sistemas silvopastoriles intensivos en la reducción de la degradación física y biológica del suelo. Livestock Research for Rural Development. Volume 34, Article #17. Retrieved February 18, 2023, fromspa
dc.relation.referencesGiro, A., Pezzopane, J. R. M., Barioni Junior, W., Pedroso, A. de F., Lemes, A. P., Botta, D., Romanello, N., Barreto, A. do N., Garcia, A. R. 2019. Behavior and body surface temperature of beef cattle in integrated crop-livestock systems with or without tree shading. Science of the Total Environment, 684. https://doi.org/10.1016/j.scitotenv.2019.05.377spa
dc.relation.referencesGrant, R. J., Colenbrander, V. F., Albright, J. L., 1990. Effect of Particle Size of Forage and Rumen Cannulation upon Chewing Activity and Laterality in Dairy Cows. Journal of Dairy Science, 73(11). https://doi.org/10.3168/jds.S0022-0302(90)79005-4spa
dc.relation.referencesHafez, E. S. E., Bouissou, M. F., 1975. The behaviour of cattle. Behaviour of Domestic, 209.spa
dc.relation.referencesHahn, G. L., 1999. Dynamic responses of cattle to thermal heat loads. In Journal of animal science: Vol. 77 Suppl 2. https://doi.org/10.2527/1997.77suppl_210xspa
dc.relation.referencesHancock, J., 1953. Grazing Behavior of Cattle. Animal Breed. Abstr., 21: 1. .spa
dc.relation.referencesHancock, J., 1954. Grazing behavior in studies in monozygotic cattle twins. N.Z. Dep. Agric. Anim. Res. Div. Publ. No. 63, Hamilton, N.Z.spa
dc.relation.referencesHarmoney, K. R., Moore, K. J., George, J. R., Brummer, E. C., & Russell, J. R. 1997. Determination of pasture biomass using four indirect methods. Agronomy Journal, 89(4). https://doi.org/10.2134/agronj1997.00021962008900040020xspa
dc.relation.referencesHaydock, K. P., Shaw, N. H., 1975. The comparative yiel method for estimating dry metter yield of pasture. Australian Journal of Experimental Agriculture and Animal Husbandry. 15, 663–670.spa
dc.relation.referencesHeady, H. F., 1957. The Measurement and Value of Plant Height in the Study of Herbaceous Vegetation. Ecology, 38(2). https://doi.org/10.2307/1931691spa
dc.relation.referencesHernandez, G., Sauer T. J., Chendev Y. G., Gennadiev A. N., 2021. Tasas de renovación no lineal del carbono del suelo después del cultivo de pastizales nativos y la posterior forestación de tierras de cultivo. Suelo 7(2):415–431.spa
dc.relation.referencesHerrera, R. S., 1985. Relación entre el clima y el rendimiento y calidad de los pastos. En: Régimen de riego en diferentes especies de pastos y forrajes en suelo ferralítico rojo. Informe Técnico, ICA. 47 pspa
dc.relation.referencesHerrero, M., Fawcett, R. H., Silveira, V., Busqué, J., Bernués, A., Dent, J. B., 2000. Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterisation. Agricultural Systems, 65(2). https://doi.org/10.1016/S0308-521X(00)00028-7spa
dc.relation.referencesHodgson, J., 1979. Nomenclature and definitions in grazing studies. Grass and Forage Science, 34(1). https://doi.org/10.1111/j.1365-2494.1979.tb01442.xspa
dc.relation.referencesHodgson, J., 1981. Variations in the surface characteristics of the sward and the short‐term rate of herbage intake by calves and lambs. Grass and Forage Science, 36(1). https://doi.org/10.1111/j.1365-2494.1981.tb01538.xspa
dc.relation.referencesHodgson, J., 1985. The control of herbage intake in the grazing ruminant. Proceedings of the Nutrition Society, 44(2). https://doi.org/10.1079/pns19850054spa
dc.relation.referencesHodgson, J., 1986. Grazing behaviour and herbage intake. British Grassland Society. Occasional Symposium No.19, 51–64.spa
dc.relation.referencesHodgson, J., Brookes, I., 1999. Nutrition of grazing animals. . In: J. White y J. Hodgson (Eds) New Zealand Pasture and Crop Science. Oxford University, 117–132.spa
dc.relation.referencesHoldridge, L.R., 1967. Life Zone Ecology. Tropical Science Centre, San Jose, California, USA.spa
dc.relation.referencesHolmes, W., 1980. Grazing Management. . In: W. Holmes (Ed) Grass Its Production and Utilization. The British Grassland Society. Blackwell Scientific Publications. Londres, Inglaterra, 125–173.spa
dc.relation.referencesHumphreys, L. R., 1981. Enviromental adaptation of tropical pasture. MacMillan. Londres. , 261.spa
dc.relation.referencesHutchings N. J., Phillips, A. H, Dobson, R. C., 1990. An ultrasonic rage finder for measuring the undisturbed surface height of continuously grazed grass swards. Grass Forage Sci.spa
dc.relation.referencesHutchinson, K. J., McLean, R. W., Hamilton, B. A., 1972. The Visual Estimation Of Pasture Availability Using Standard Pasture Cores. Grass and Forage Science, 27(1). https://doi.org/10.1111/j.1365-2494.1972.tb00682.xspa
dc.relation.referencesIsaac, L., Wood, C. W., Shannon D. A., 2003. Pruning management effects on soil carbon and nitrogen in contour hedgerow cropping with Leucaena leucocephala (Lam.) De Wit on sloping land in Haiti. Nutr Cycl Agroecosyst 65:253–263spa
dc.relation.referencesJones, C. A., 1985. C4 grasses and cereals: Growth, development and stress response. Wiley and Sons, Nueva York., 419.spa
dc.relation.referencesKarvatte, N., Miyagi, E. S., de Oliveira, C. C., Barreto, C. D., Mastelaro, A. P., Bungenstab, D. J., Alves, F. V., 2020. Infrared thermography for microclimate assessment in agroforestry systems. Science of the Total Environment, 731. https://doi.org/10.1016/j.scitotenv.2020.139252spa
dc.relation.referencesKendall, P. E., Nielsen, P. P., Webster, J. R., Verkerk, G. A., Littlejohn, R. P., Matthews, L. R., 2006. The effects of providing shade to lactating dairy cows in a temperate climate. Livestock Science, 103(1–2). https://doi.org/10.1016/j.livsci.2006.02.004spa
dc.relation.referencesKidwell, J. F., Bohman, V. R., Hunter, J. E., 1954. Individual and Group Feeding of Experimental Beef Cattle as Influenced by Hay Maturity. Journal of Animal Science, 13(3). https://doi.org/10.2527/jas1954.133543xspa
dc.relation.referencesLauzán, J. R., Vento, H., Herrera, R. S., Martínez, R. O., Cruz, R., 1991. A study of the green pigments and carotenoids in king grass (Pennisetum purpureum) somaclones. III. Rainy period. Cuban J. Agric. Sci. 25(2): 195-200.spa
dc.relation.referencesLemaire, G. E., Chapman, D., 1996. Tissue flows in grazed plant communities. In: The ecology and management of grazing system. . Hodgson J, Illius A W (Eds). CAB International.spa
dc.relation.referencesLin, C., Tu, S., Huang, J., Chen, Y., 2009. The effect of plant hedgerows on the spatial distribution of soil erosion and soil fertility on sloping farmland in the purple-soil area of China. Soil Tillage Res 105:307–312spa
dc.relation.referencesLopes, L. B., Eckstein, C., Pina, D. S., Carnevalli, R. A., 2016. The influence of trees on the thermal environment and behaviour of grazing heifers in Brazilian Midwest. Tropical Animal Health and Production, 48(4). https://doi.org/10.1007/s11250-016-1021-xspa
dc.relation.referencesMader, T. L., Fell, L. R., McPhee, M. J., 1997. Behavior response of non-Brahman cattle to shade in commercial feedlots. . . Livest. Environ. 5, 795–802.spa
dc.relation.referencesMahecha, L., Durán C.V., Rosales M., Molina C.H., Molina, E., 2000. Consumo de pasto estrella africana (Cynodon plectostachyus) y leucaena (Leucaena leucocephala) en un sistema silvopastoril. Nota de investigación. Pasturas Trop, 22: 26-30.spa
dc.relation.referencesMatta, S.L., 2005. Estrategias modernas para la conservación de forrajes en sistemas de producción bovina tropical. Corpoica. Cienc. Tecnol. Agropecu. 6(2):69-80.spa
dc.relation.referencesMayes, R. W., Dove, H., 2000. Measurement of dietary nutrient intake in free-ranging mammalian herbivores. Nutrition Research Reviews, 13(1). https://doi.org/10.1079/095442200108729025spa
dc.relation.referencesMayes, R. W., Lamb, C. S., Colgrove, P. M., 1986. The use of dosed and herbage n-alkanes as markers for the determination of herbage intake. The Journal of Agricultural Science, 107(1). https://doi.org/10.1017/S0021859600066910spa
dc.relation.referencesMcWilliam, J. R., 1978. Response of pasture plants to temperature. En: Wilson. J.R. (Ed). Plant Relations in Pasture. CSIRO, Melbourne, 17–36.spa
dc.relation.referencesMerrick, A. W., Scharp, D. W., 1971. Electroen-cephalography of resting behavior in cattle. With observations on the question of sleep. Am. 1. Vet. Res. 32:1893.spa
dc.relation.referencesMertens, D. R., 1985. Factors influencing feed intake in lactating cows: from theory to application using neutral detergent fiber. Georgia Nutr. Conf.spa
dc.relation.referencesMertens, D. R., 1997.Creación de un sistema para satisfacer los requerimientos de fibra de las vacas lecheras.J. Ciencia láctea.80:1463–1481. doi: 10.3168/jds.S0022-0302(97)76075-2 .spa
dc.relation.referencesMetz, J. H. M., 1975. Time patterns of feeding and rumination in domestic cattle. Meded. Landbouwhogeschool Wageningen, 75METZ1975.spa
dc.relation.referencesMezzalira, J. C., De Faccio Carvalho, P. C., Fonseca, L., Bremm, C., Cangiano, C., Gonda, H. L., Laca, E. A., 2014. Behavioural mechanisms of intake rate by heifers grazing swards of contrasting structures. Applied Animal Behaviour Science, 153. https://doi.org/10.1016/j.applanim.2013.12.014spa
dc.relation.referencesMinson, D. J., 1990. Intake of Forage by Housed Ruminants. In Forage in Ruminant Nutrition. https://doi.org/10.1016/b978-0-12-498310-6.50008-0spa
dc.relation.referencesMolina, I. C., Donney`s, G., Montoya, S., Rivera, J. E., Villegas, G., Chará, J., et al. La inclusión de Leucaena leucocephala reduce la producción de metano de terneras Lucerna alimentadas con Cynodon plectostachyus y Megathyrsus maximus. LRRD. 27 (5). http://www.lrrd.org/lrrd27/5/moli27096.html, 2015.spa
dc.relation.referencesMorales, D. E., Aryal, D. R., Pinto, R., Guevara, F., Casanova, F., Villanueva, G., 2021. Contenido de carbono y producción de raíces finas en sistemas silvopastoriles tropicales. Degradación de la tierra Dev 32(2):738–756spa
dc.relation.referencesMorris, C. D., Derry, J. F., Hardy, M. B., 1999. Effect of cattle and sheep grazing on the structure of Highland Sourveld swards in South Africa. Tropical Grasslands 33: 111-121.spa
dc.relation.referencesMurgueitio, E., Ibrahim, M., 2008. Ganadería y medio ambiente en América Latina. . En E. Murgueitio, C. Cuartas y J.F. Naranjo, Eds., Ganadería Del Futuro: Investigación Para El Desarrollo, Pp. 19-40. Cali, Colombia, CIPAV (Disponible También En: Www.Cipav. Org.Co/Pdf/Noticias/PaginasSSPCIPAV. Pdf).spa
dc.relation.referencesMurgueitio, E., Calle, Z., Uribe, F., Calle, A., Solorio, B., 2011. Árboles y arbustos nativos para la rehabilitación productiva de tierras ganaderas tropicales. Para Ecol Manag 261(10):1654–1663spa
dc.relation.referencesMurphy W.M., Silman J.P., Mena A.D., 1995. A Comparison Of Quadrate, Capacitance Meter, Sward Stick, And Rising Plate For Estimating Herbage Mass In A Smooth-Stalked, Meadow Grass-Dominant White Clover Sward. Grass Forage Sci 50, 452-455.spa
dc.relation.referencesNadin, L., Chopa, F. S., Agnelli, M. L., Trindade, J. K., Gonda, H., 2019. Effect of sward height on short-term intake by steers grazing winter oat pastures. Livestock Science, 225. https://doi.org/10.1016/j.livsci.2019.04.018spa
dc.relation.referencesOminski, K. H., Kennedy, A. D., Wittenberg, K. M., Moshtaghi Nia, S. A., 2002. Physiological and production responses to feeding schedule in lactating dairy cows exposed to short-term, moderate heat stress. Journal of Dairy Science, 85(4). https://doi.org/10.3168/jds.S0022-0302(02)74130-1spa
dc.relation.referencesOspina, S., 2005. Rasgos funcionales de las plantas herbáceas y arbustivas y su relación con el régimen de pastoreo y la fertilidad edáfica en Muy Muy, Nicaragua. Tesis Mag. Sc. CATIE, Turrialba, Costa Rica. 97 p.spa
dc.relation.referencesPeñuela, L., Fernández, A. P., Castro, F., Ocampo, A., 2011. Uso y Manejo de Forrajes Nativos en la Sabana Inundable de la Orinoquia; Convenio de Cooperación Interinstitucional; The Nature Conservancy, Fundación Horizonte Verde, Fundación Biodiversidad de España, Corporación Autónoma Regional de la Orinoquia; Universidad de los Llanos: Villavicencio, Colombia.spa
dc.relation.referencesPérez, B. R. A., Vargas, C. O. M., 2001. Características de la Sabana Nativa y su Potencial de Producción Bovina en la Llanura Inundable de Arauca, Boleín Técnico N° 25 ; Programa Regional de Investigación Pecuaria, Corpoica: Arauca, Colombia.spa
dc.relation.referencesPeyraud, J. L., Comeron, E. A., Wade, M., Lemaire, H. 1996. The effect of daily herbage allowance, herbage mass and animal factors upon herbage intake bygrazing dairy cows. Annales de Zootechnie.spa
dc.relation.referencesPollock, C. J.,1990. The response of plants to temperature change. In The Journal of Agricultural Science (Vol. 115, Issue 1). https://doi.org/10.1017/S0021859600073834spa
dc.relation.referencesPorfirio Da Silva, V., Medrado, M. J. S., Nicodemo, F. M. L., Dereti, R. M., 2009. Arborização de pastagens com espécies florestais madeireiras: implantação e manejo. Colombo: Embrapa Florestas, 49 p.spa
dc.relation.referencesRaymond, W. F., Minson, D. J. 1955. The Use Of Chromic Oxide For Estimating The Faecal Production Of Grazing Animals. Grass and Forage Science, 10(4). https://doi.org/10.1111/j.1365-2494.1955.tb00033.xspa
dc.relation.referencesRodrigues, R., Nunes, I., Giordano, G., Almeida, H., Ferreira, F., Silva, D., Santos, D., 2008. Efeito Da Utilização De Três Intervalos De Observações Sobre A Precisão Dos Resultados Obtidos No Estudo Do Comportamento Ingestivo De Vacas Leiteiras Em Pastejo. Ciência Animal Brasileira, 9(2).spa
dc.relation.referencesRoman Ponce, H., Thatcher, W. W., Buffington, D. E., Wilcox, C. J., Van Horn, H. H., 1977. Physiological and Production Responses of Dairy Cattle to a Shade Structure in a Subtropical Environment. Journal of Dairy Science, 60(3). https://doi.org/10.3168/jds.S0022-0302(77)83882-4spa
dc.relation.referencesRoncallo, F., Sierra, M., Castro, E., 2012. Rendimiento de forraje de gramíneas de corte y efecto sobre calidad composicional y producción de leche en el Caribe seco. Corpoica. Cienc. Tecnol. Agropecu. 13:71-78. doi:10.21930/rcta.vol13_num1_art:242.spa
dc.relation.referencesRosales, R. B., Pinzón, S. S., 2005. Limitaciones físicas y químicas de la digestibilidad de pastos tropicales y estrategias para aumentarla. Ciencia & Tecnología Agropecuaria, 6(1). https://doi.org/10.21930/rcta.vol6_num1_art:39spa
dc.relation.referencesRutter, S. M., 2000. Graze: A program to analyze recordings of the jaw movements of ruminants. Behavior Research Methods, Instruments, and Computers, 32(1). https://doi.org/10.3758/BF03200791spa
dc.relation.referencesRutter, S. M., Champion, R. A., Penning, P. D., 1997. An automatic system to record foraging behaviour in free-ranging ruminants. Applied Animal Behaviour Science, 54(2–3). https://doi.org/10.1016/S0168-1591(96)01191-4spa
dc.relation.referencesRuuska, S., Kajava, S., Mughal, M., Zehner, N., Mononen, J., 2016. Validation of a pressure sensor-based system for measuring eating, rumination and drinking behaviour of dairy cattle. Applied Animal Behaviour Science, 174. https://doi.org/10.1016/j.applanim.2015.11.005spa
dc.relation.referencesRuckelbusch, Y., 1972. The relevance of drowsiness of the circadian cycle of farm animals. Anim. Behav.20:637spa
dc.relation.referencesSanderson, M. A., Rotz, C. A., Fultz, S. W., Rayburn, E., 2001. Estimating forage mass with a comercial capacitance meter and pasture ruler.spa
dc.relation.referencesSato, S., Tarumizu, K., Hatae, K., 1993. The influence of social factors on allogrooming in cows. Applied Animal Behaviour Science, 38(3–4). https://doi.org/10.1016/0168-1591(93)90022-Hspa
dc.relation.referencesSchütz, K. E., Cox, N. R., Matthews, L. R., 2008. How important is shade to dairy cattle? Choice between shade or lying following different levels of lying deprivation. Applied Animal Behaviour Science, 114(3–4). https://doi.org/10.1016/j.applanim.2008.04.001spa
dc.relation.referencesSchütz, K. E., Rogers, A. R., Poulouin, Y. A., Cox, N. R., Tucker, C. B., 2010. The amount of shade influences the behavior and physiology of dairy cattle. Journal of Dairy Science, 93(1). https://doi.org/10.3168/jds.2009-2416spa
dc.relation.referencesSouza de Abreu, M., Ibrahim, M., Harvey, C., Jimenez, F., 2000. Caracterización del componente arbóreo en los sistemas ganaderos de La Fortuna de San Carlos, Costa Rica. . . Agroforestería de Las Américas 7(26): 53-56.spa
dc.relation.referencesStuth, J. W., 1991. Foraging Behavior. In Grazing management an ecological perspective. Eds. R. K. Heitschmidt y J. W. Stuth. Timber Press, Oregon. pp. 65-83spa
dc.relation.referencesSyme, G. J., 1974. Competitive orders as measures of social dominance. Animal Behaviour, 22(PART 4). https://doi.org/10.1016/0003-3472(74)90016-5spa
dc.relation.referencesWidowski, T. M., 2013. Shade-Seeking Behavior of Rotationally-Grazed Cows and Calves in a Moderate Climate. https://doi.org/10.13031/2013.7126spa
dc.relation.referencesTribe, D. E., 1950. The Behaviour Of The Grazing Animal: A Critical Review Of Present Knowledge. Grass and Forage Science, 5(3). https://doi.org/10.1111/j.1365-2494.1950.tb01285.xspa
dc.relation.referencesValenzuela, F. G., Villanueva, G., Alcudia, A., Medrano, O. R., Cámara, L., Martínez, P., Casanova, F., Aryal, D. R., 2022. Los sistemas silvopastoriles mejoran las reservas de carbono en las estancias ganaderas de Tabasco, México. Gestión del uso del suelo 38:1237–1249spa
dc.relation.referencesValtorta, S. E., Leva, P. E., Gallardo, M. R., 1997. Evaluation of different shades to improve dairy cattle well-being in Argentina. International Journal of Biometeorology, 41(2). https://doi.org/10.1007/s004840050055spa
dc.relation.referencesVan Soest, P. J., 1994. Nutritional Ecology of the Ruminant. Cornell Univ. Press, Ithaca, NY.spa
dc.relation.referencesVan Soest, P. J., 2019. 10. Fiber and Physicochemical Properties of Feeds. In Nutritional Ecology of the Ruminant. https://doi.org/10.7591/9781501732355-011spa
dc.relation.referencesVelásquez, R., 2005. Selectividad animal de forrajes herbáceos y leñosos en pasturas naturalizadas en función de dos épocas, manejo y condición de paisajes en Muy Muy, Nicaragua. Tesis de M.Sc. CATIE, Turrialba, Costa Rica.spa
dc.relation.referencesVelásquez, R., Pezo, D., Skarpe, C., Ibrahim, M., Mora, J., Benjamin, T., 2009. Selectividad animal de especies herbáceas y leñosas en pasturas seminaturales de Muy Muy, Nicaragua. Agroforestería en las Américas. No. 49. pp 51- 60.spa
dc.relation.referencesVerstegen, M. W. A., Hacker, R. R., 1983. Environmental management in animal agriculture. Livestock Production Science, 10(1). https://doi.org/10.1016/0301-6226(83)90013-1spa
dc.relation.referencesVillanueva, G., Martínez, P., Casanova, F., Ramírez, L., Montañez, P. I., 2015 Almacenamiento de carbono en sistemas ganaderos con y sin cercas vivas de Gliricidia sepium en el trópico húmedo de México . Sistema Agrofor 89(6):1083–1096spa
dc.relation.referencesVizzotto, E. F., Fischer, V., Thaler Neto, A., Abreu, A. S., Stumpf, M. T., Werncke, D., Schmidt, F. A., McManus, C. M., 2015. Access to shade changes behavioral and physiological attributes of dairy cows during the hot season in the subtropics. Animal, 9(9). https://doi.org/10.1017/S1751731115000877spa
dc.relation.referencesVon Keyserlingk, M. A. G., Olenick, D., Weary, D. M., 2008. Acute behavioral effects of regrouping dairy cows. Journal of Dairy Science, 91(3). https://doi.org/10.3168/jds.2007-0532spa
dc.relation.referencesWalters R.J., Evans E.M., 1979. Evaluation of the sward sampling technique for estimating herbageintake by grazing sheep. Grass Forage Sci.spa
dc.relation.referencesWang, L., Tang, L., Wang, X., Chen, F., 2010. Effects of alley crop planting on soil and nutrient losses in the citrus orchards of the Three Gorges Region. Soil Tillage Res 110:243–250.spa
dc.relation.referencesWang, X., Cammeraat, E. L., Cerli, C., Kalbitz, K., 2014. Agregación del suelo y estabilización del carbono orgánico afectado por la erosión y la deposición. Bioquímica del suelo Bioquímica 72:55–65spa
dc.relation.referencesWest, J. W., 2003. Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6). https://doi.org/10.3168/jds.S0022-0302(03)73803-Xspa
dc.relation.referencesWheelock, J. B., Roads, R. P., VanBaale, M. J., Lijadoras, S. R., Baumgard, L. H., 2010. Efectos del estrés por calor en el metabolismo energético en vacas Holstein lactantes, Journal of Dairy Science, 93, 644-655.spa
dc.relation.referencesWilm, H. G., Costello, D. F., Klipple, G. E., 1944. Estimating forage yield by the double-sampling method. Journal of the American Society of Agronomy 36: 194.spa
dc.relation.referencesZehner, N., Niederhauser, J. J., Nydegger, F., Grothmann, a, Keller, M., Hoch, M., Haeussermann, A., Schick, M., 2012. Validation of a new health monitoring system (RumiWatch) for combined automatic measurement of rumination, feed intake, water intake and locomotion in dairy cows. Infomation Technology, Automation and Precision Farming. International Conference of Agricultural Engineering - CIGR-AgEng 2012: Agriculture and Engineering for a Healthier Life, Valencia, Spain, 8-12 July 2012.spa
dc.relation.referencesZehner, N., Umstätter, C., Niederhauser, J. J., Schick, M., 2017. System specification and validation of a noseband pressure sensor for measurement of ruminating and eating behavior in stable-fed cows. Computers and Electronics in Agriculture, 136. https://doi.org/10.1016/j.compag.2017.02.021spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.ddc590 - Animales::599 - Mamíferosspa
dc.subject.lembPlantas forrajerasspa
dc.subject.lembAlimentos para aniamalesspa
dc.subject.lembFeedseng
dc.subject.lembForage plantseng
dc.subject.proposalBotanical composition of the pastureseng
dc.subject.proposalForage offereng
dc.subject.proposalGrazing bovineseng
dc.subject.proposalProductivityeng
dc.subject.proposalVoluntary intakeeng
dc.subject.proposalIntensive silvopastoral system (SSPi)eng
dc.subject.proposalEthogrameng
dc.subject.proposalBovinos en pastoreospa
dc.subject.proposalComposición botánica de las praderasspa
dc.subject.proposalConsumo voluntariospa
dc.subject.proposalOferta de forrajespa
dc.subject.proposalProductividadspa
dc.subject.proposalSistema silvopastoril intensivo (SSPi)spa
dc.subject.proposalEtogramaspa
dc.titleEfecto de los sistemas silvopastoriles en la producción forrajera, consumo y comportamiento ingestivo bovino en ganaderías colombianasspa
dc.title.translatedEffect of silvopastoral systems on forage production, dry matter intake and intake bovine behavior in Colombian livestockeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentAdministradoresspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleGanaderia Colombiana Sosteniblespa
oaire.fundernameFEDEGANspa
oaire.fundernameCIPAVspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1039451365.2023.pdf
Tamaño:
3.48 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: