Variación ecofisiológica de Persea americana (aguacate variedad Hass) en un gradiente ambiental en los Andes tropicales
dc.contributor.advisor | Polanía Vorenberg, Jaime Henning | |
dc.contributor.advisor | González Caro, Jilbert Sebastián | |
dc.contributor.author | Caro Holguín, Andrés Felipe | |
dc.contributor.orcid | Caro Holguín, Andrés Felipe [0009-0005-7022-7723] | |
dc.contributor.orcid | Polanía Vorenberg, Jaime Henning [0000-0002-6521-3061] | |
dc.date.accessioned | 2025-09-05T14:38:32Z | |
dc.date.available | 2025-09-05T14:38:32Z | |
dc.date.issued | 2025-09-27 | |
dc.description | Ilustraciones, fotografías | spa |
dc.description.abstract | La conductancia estomática y la arquitectura hidráulica de las plantas desempeñan un papel fundamental en su capacidad de adaptación a condiciones climáticas variables, como las fluctuaciones en la disponibilidad de agua. La conductancia estomática regula el intercambio gaseoso y la transpiración, influyendo directamente en la eficiencia en el uso del agua, mientras que la arquitectura hidráulica, determinada por la estructura y disposición de los vasos conductores, controla el transporte de agua desde las raíces hasta las hojas. En este estudio, se evaluó la variación en la conductancia estomática y la arquitectura hidráulica de árboles de aguacate (Persea americana Mill., 1768) en diferentes sitios con condiciones climáticas contrastantes, particularmente en términos de precipitación. Mediante un enfoque multifactorial, se analizaron rasgos funcionales asociados con la eficiencia en el uso del agua, como la densidad y el diámetro de los vasos, en relación con la conductancia estomática a lo largo del día. Los resultados mostraron ligeras variaciones entre los sitios de estudio, aunque no se encontraron diferencias significativas en el consumo total de agua entre las fincas, lo que sugiere que estos cambios podrían estar relacionados con las prácticas de manejo del cultivo. Además, se identificó una correlación positiva entre la precipitación y la conductancia estomática, así como una relación inversa entre la disponibilidad de agua y la densidad de vasos, lo que indica una mayor eficiencia en el transporte hídrico bajo condiciones más húmedas. Estos hallazgos proporcionan información relevante para mejorar la gestión del recurso hídrico en los cultivos de aguacate y resaltan la importancia de implementar estrategias de manejo que optimicen el uso del agua, especialmente en regiones propensas a la variabilidad climática y a condiciones de limitación hídrica. (Tomado de la fuente) | spa |
dc.description.abstract | The stomatal conductance and hydraulic architecture of plants play a fundamental role in their ability to adapt to variable climatic conditions, such as fluctuations in water availability. Stomatic conductance regulates gas exchange and transpiration, directly influencing water use efficiency, while hydraulic architecture, determined by the structure and arrangement of conducting vessels, controls water transport from roots to leaves. In this study, variation in stomatal conductance and hydraulic architecture of avocado (Persea americana Mill., 1768) trees was evaluated at different sites with contrasting climatic conditions, particularly in terms of precipitation. Using a multifactorial approach, functional traits associated with water use efficiency, such as vessel density and diameter, were analyzed in relation to stomatal conductance throughout the day. The results showed slight variations among study sites, although no significant differences in total water consumption were found among farms, suggesting that these changes could be related to crop management practices. In addition, a positive correlation between precipitation and stomatal conductance was identified, as well as an inverse relationship between water availability and vessel density, indicating greater efficiency in water transport under wetter conditions. These findings provide relevant information to improve water resource management in avocado crops and highlight the importance of implementing management strategies that optimize water use, especially in regions prone to climatic variability and water limitation conditions. | eng |
dc.description.curriculararea | Bosques Y Conservación Ambiental.Sede Medellín | |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Bosques y Conservación Ambiental | |
dc.format.extent | 40 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88625 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias Agrarias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Bosques y Conservación Ambiental | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Abràmoff, M. D., Magalhães, P. J., & Ram, S. J. (2004). Image processing with Image J. Biophotonics international, 11(7), 36-42. | |
dc.relation.references | Anderegg, W. R., Klein, T., Bartlett, M., Sack, L., Pellegrini, A. F., Choat, B., & Jansen, S. (2016). Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences, 113(18), 5024-5029. | |
dc.relation.references | Anderson, E. P., Marengo, J., Villalba, R., Halloy, S., Young, B., Cordero, D., & Herzog, S. K. (2011). Consequences of climate change for ecosystems and ecosystem services in the tropical Andes. Climate change and biodiversity in the tropical Andes, 1, 1-18. | |
dc.relation.references | Bartoli JA. 2008. Manual técnico del cultivo del aguacate Hass (Persea americana L.). La Lima, Honduras: Fundación Hondureña de Investigación. | |
dc.relation.references | Bernal, J. A., & Díaz, C. A. (Comp.). (2020). Actualización tecnológica y buenas prácticas agrícolas (BPA) en el cultivo de aguacate (2.ª Ed.). Corporación Colombiana de Investigación Agropecuaria - AGROSAVIA. https://doi.org/10.21930/agrosavia.manual.7403831. | |
dc.relation.references | Brodribb, T. J., Powers, J., Cochard, H., & Choat, B. (2020). Hanging by a thread? Forests and drought. Science, 368(6488), 261-266. | |
dc.relation.references | Cárceles Rodríguez, B., Durán Zuazo, V. H., Franco Tarifa, D., Cuadros Tavira, S., Cermeño Sacristan, P., & García-Tejero, I. F. (2023). Irrigation Alternatives for Avocado (Persea americana Mill.) in the Mediterranean Subtropical Region in the Context of Climate Change: A Review. Agriculture, 13, 1049. htps. doi. org/10.3390/agricul-ture13051049 Academic Editor: Robert J. Lascano Received, 2. | |
dc.relation.references | Castillo-Argaez, R., Schaffer, B., Vazquez, A., & Sternberg, L. D. (2020). Leaf gas exchange and stable carbon isotope composition of redbay and avocado trees in response to laurel wilt or drought stress. Environmental and Experimental Botany, 171, 103948. https://doi.org/10.1016/j.envexpbot.2019.103948. | |
dc.relation.references | Castillo-Argaez, R., Vazquez, A., Konkol, J. L., Vargas, A. I., Ploetz, R. C., Etxeberria, E., & Schaffer, B. (2021). Sap flow, xylem anatomy and photosynthetic variables of three Persea species in response to laurel wilt. Tree Physiology, 41(6), 1004–1018. https://doi.org/10.1093/treephys/tpaa137 | |
dc.relation.references | Chave, J., Coomes, D., Jansen, S., Lewis, S. L., Swenson, N. G., & Zanne, A. E. (2009). Towards a worldwide wood economics spectrum. Ecology letters, 12(4), 351-366 | |
dc.relation.references | Chen, J., Shi, X., Gu, L., Wu, G., Su, T., Wang, H. M., ... & Xiong, L. (2023). Impacts of climate warming on global floods and their implication to current flood defense standards. Journal of Hydrology, 618, 129236. | |
dc.relation.references | Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science, 322(5899), 258-261. | |
dc.relation.references | Cox, A. J., Hartley, I. P., Meir, P., Sitch, S., Dusenge, M. E., Restrepo, Z., ... & Mercado, L. M. (2023). Acclimation of photosynthetic capacity and foliar respiration in Andean tree species to temperature change. New Phytologist, 238(6), 2329-2344. | |
dc.relation.references | Cox, A. J., González‐Caro, S., Meir, P., Hartley, I. P., Restrepo, Z., Villegas, J. C., . & Mercado, L. M. (2024). Variable thermal plasticity of leaf functional traits in Andean tropical montane forests. Plant, Cell & Environment, 47 (3), 731-750. | |
dc.relation.references | Damour, G., Simonneau, T., Cochard, H., & Urban, L. (2010). An overview of models of stomatal conductance at the leaf level. Plant, cell & environment, 33(9), 1419-1438. | |
dc.relation.references | De Souza, A. P. (2023). Dynamic responses of carbon assimilation and stomatal conductance in the future climate. Journal of Experimental Botany, 74(9), 2790-2793. | |
dc.relation.references | Denvir, A., Arima, E. Y., González-Rodríguez, A., & Young, K. R. (2021). Ecological and human dimensions of avocado expansion in México: Towards supply-chain sustainability. Ambio, 1-15. | |
dc.relation.references | Duque, A., Stevenson, P.R. & Feeley, K.J. (2015) Thermophilization of adult and juvenile tree communities in the Northern tropical Andes. Proceedings of the National Academy of Sciences of the United States of America, 112(34), 10744–10749 | |
dc.relation.references | Erazo-Mesa, E., Ramírez-Gil, J. G., & Sánchez, A. E. (2021). Avocado cv. Hass needs water irrigation in tropical precipitation regime: Evidence from Colombia. Water, 13(14), 1942. | |
dc.relation.references | Fadrique, B., Báez, S., Duque, Á., Malizia, A., Blundo, C., Carilla, J. ... (2018) Widespread but heterogeneous responses of Andean forests to climate change. Nature, 564(7735), 207–212. | |
dc.relation.references | Feeley, K. J. (2012). Distributional migrations, expansions, and contractions of tropical plant species as revealed in dated herbarium records. Global Change Biology, 18(4), 1335-1341. | |
dc.relation.references | Feeley KJ, Silman MR, Bush MB, Farfan W, Cabrera KG, Malhi Y, Meir P, Revilla NS, Quisiyupanqui MNR, Saatchi S. 2011. Upslope migration of Andean trees. Journal of Biogeography, 38: 783–791. | |
dc.relation.references | Garrido, M. I., & Vergara, S. (2022). Lack of tradeoff between leaf hydraulic efficiency and safety across six contrasting water-stress tolerant fruit tree species. Agronomy, 12(10), 2351. | |
dc.relation.references | Gleason, S. M., Butler, D. W., & Waryszak, P. (2013). Shifts in leaf and stem hydraulic traits across aridity gradients in eastern Australia. International Journal of Plant Sciences, 174(9), 1292-1301. | |
dc.relation.references | Hazir, M. H. M., Gloor, E., Docherty, E., & Galbraith, D. (2024). Leaf thermotolerance of Hevea brasiliensis clones: intra-versus interclonal variation and relationships with other functional traits. Tree Physiology, 44(3), tpae022 | |
dc.relation.references | Hatfield, J. L., & Dold, C. (2019). Water-use efficiency: advances and challenges in a changing climate. Frontiers in plant science, 10, 103. | |
dc.relation.references | Intergovernmental Panel on Climate Change (IPCC). Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2023. | |
dc.relation.references | Janzen DH. 1967. Why mountain passes are higher in the tropics? The American Naturalist, 101: 233–249. | |
dc.relation.references | Johnson, D. M., McCulloh, K. A., Woodruff, D. R., & Meinzer, F. C. (2012). Hydraulic safety margins and embolism reversal in stems and leaves: why are conifers and angiosperms so different?. Plant Science, 195, 48-53. | |
dc.relation.references | Krauss, K. W., Lovelock, C. E., Chen, L., Berger, U., Ball, M. C., Reef, R., ... & Duberstein, J. A. (2022). Mangroves provide blue carbon ecological value at a low freshwater cost. Scientific Reports, 12(1), 17636. | |
dc.relation.references | Lamour, J., Souza, D. C., Gimenez, B. O., Higuchi, N., Chave, J., Chambers, J., & Rogers, A. (2023). Wood‐density has no effect on stomatal control of leaf‐level water use efficiency in an Amazonian Forest. Plant, Cell & Environment, 46(12), 3806-3821. | |
dc.relation.references | López, J., Del Valle, J. I., & Giraldo, J. A. (2014). Flood-promoted vessel formation in Prioria copaifera trees in the Darien Gap, Colombia. Tree Physiology, 34(10), 1079-1089. | |
dc.relation.references | Medina-Torres, R., Salazar-García, S., Castillo-Serrano, B. E., & Barrientos-Priego, A. (2013). Variación de la transpiración del aguacate ‘Colinmex’ usando interinjertos bajo dos regímenes de humedad edáfica. Revista Chapingo Serie Horticultura, 19(1), 117-127. https://doi.org/10.5154/r.rchsh.2011.10.056. | |
dc.relation.references | Medrano, H., Bota, J., Cifre, J., Flexas, J., Ribas-Carbó, M., & Gulías, J. (2007). Eficiencia en el uso del agua por las plantas. Investigaciones geográficas (Esp), (43), 63-84. | |
dc.relation.references | Moritz, C., Patton, J. L., Conroy, C. J., Parra, J. L., White, G. C., & Beissinger, S. R. (2008). Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science, 322(5899), 261-264. | |
dc.relation.references | Olson, M. E., Soriano, D., Rosell, J. A., Anfodillo, T., Donoghue, M. J., Edwards, E. J., ... & Méndez-Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences, 115(29), 7551-7556. | |
dc.relation.references | Opazo, I., Pimentel, P., Salvatierra, A., Ortiz, M., Toro, G., & Garrido-Salinas, M. (2024). Water stress tolerance is coordinated with water use capacity and growth under water deficit across six fruit tree species. Irrigation Science, 42(3), 493-507. | |
dc.relation.references | Perez, T.M., Stroud, J.T. & Feeley, K.J. (2016) Thermal trouble in the tropics. Science, 351(6280), 1392–1393. | |
dc.relation.references | Pratt, R. B., & Jacobsen, A. L. (2017). Conflicting demands on angiosperm xylem: tradeoffs among storage, transport and biomechanics. Plant, Cell & Environment, 40(6), 897-913. | |
dc.relation.references | R Core Team. 2022. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org [accessed 30 March 2023]. | |
dc.relation.references | Rosell, J. A., Olson, M. E., Martínez-Garza, C., & Martínez-Méndez, N. (2022). Functional diversity in woody organs of tropical dry forests and implications for restoration. Sustainability,14(14), 8362. | |
dc.relation.references | Sack, L., Buckley, T. N., & Scoffoni, C. (2016). Why are leaves hydraulically vulnerable? Journal of Experimental Botany, 67(17), 4917-4919. | |
dc.relation.references | Scholz, A., Klepsch, M., Karimi, Z., & Jansen, S. (2013). How to quantify conduits in wood? Frontiers in plant science, 4, 56. | |
dc.relation.references | Sommaruga, R., & Eldridge, H. M. (2021). Avocado production: Water footprint and socio‐economic implications. EuroChoices, 20(2), 48-53. | |
dc.relation.references | Schuldt, B., Leuschner, C., Brock, N., & Horna, V. (2013). Changes in wood density, wood anatomy and hydraulic properties of the xylem along the root-to-shoot flow path in tropical rainforest trees. Tree Physiology, 33(2), 161-174. | |
dc.relation.references | Tally, T. (2006). SilverFast: The Official Guide. John Wiley & Sons. | |
dc.relation.references | Torres‐Ruiz, J. M., Cochard, H., Delzon, S., Boivin, T., Burlett, R., Cailleret, M., & Martin‐StPaul, N. K. (2024). Plant hydraulics at the heart of plant, crops and ecosystem functions in the face of climate change. New Phytologist, 241(3), 984-999. | |
dc.relation.references | Tyree, M. T., & Zimmermann, M. H. (2013). Xylem structure and the ascent of sap. Springer Science & Business Media. Springer Berlin, Heidelberg. | |
dc.relation.references | Useche-Carrillo, N. V., Ayala-Arreola, J., Campos-Rojas, E., & Barrientos-Priego, A. F. (2022). Relationships between stomatal and gas exchange characteristics of the leaf blade in'Colín V-33'avocado seedlings. Revista Chapingo. Serie horticultura, 28(3), 133-144. https://doi.org/10.5154/r.rchsh.2021.05.008. | |
dc.relation.references | Weithmann, G., Paligi, S. S., Schuldt, B., & Leuschner, C. (2022). Branch xylem vascular adjustments in European beech in response to decreasing water availability across a precipitation gradient. Tree Physiology, 42(11), 2224-2238. | |
dc.relation.references | Zhang, B., Liu, Y., Xu, D., Cai, J., & Li, F. (2011). Evapotranspiration estimation based on scaling up from leaf stomatal conductance to canopy conductance. Agricultural and Forest Meteorology, 151(8), 1086-1095. | |
dc.relation.references | Zhang, Z., Zhang, L., Xu, H., Creed, I. F., Blanco, J. A., Wei, X., ... & Bishop, K. (2023). Forest water-use efficiency: Effects of climate change and management on the coupling of carbon and water processes. Forest Ecology and Management, 534, 120853. | |
dc.relation.references | Zhao, W., Liu, L., Shen, Q., Yang, J., Han, X., Tian, F., & Wu, J. (2020). Effects of water stress on photosynthesis, yield, and water use efficiency in winter wheat. Water, 12(8), 2127. | |
dc.relation.references | Zhou, S., Yu, B., & Zhang, Y. (2023). Global concurrent climate extremes exacerbated by anthropogenic climate change. Science Advances, 9(10), eabo1638. | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.agrovoc | Conductancia estomática | |
dc.subject.ddc | 580 - Plantas | |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas | |
dc.subject.lemb | Aguacate - Cultivo | |
dc.subject.lemb | Agua en agricultura | |
dc.subject.lemb | Cultivos y agua | |
dc.subject.proposal | fisiología | spa |
dc.subject.proposal | conductancia estomática | spa |
dc.subject.proposal | aguacate Hass | spa |
dc.subject.proposal | vasos | spa |
dc.subject.proposal | arquitectura hidráulica | spa |
dc.subject.proposal | physiology | eng |
dc.subject.proposal | stomatal conductance | eng |
dc.subject.proposal | Hass avocado | eng |
dc.subject.proposal | vessels | eng |
dc.subject.proposal | hydraulic architecture | eng |
dc.title | Variación ecofisiológica de Persea americana (aguacate variedad Hass) en un gradiente ambiental en los Andes tropicales | spa |
dc.title.translated | Ecophysiological variation of persea americana (hass avocado) along an environmental gradient in the tropical Andes | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.fundername | Fundación Con Vida, a través del Scotiabank Net Zero Research Fund en su convocatoria de 2022. |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Maestría en Bosques y Conservación Ambiental
- Tamaño:
- 1.16 MB
- Formato:
- Adobe Portable Document Format
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: