Evaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidas

dc.contributor.advisorSinuco León, Diana Cristinaspa
dc.contributor.advisorAhumada Forigua, Diego Alejandrospa
dc.contributor.authorMorales Erazo, Laura Vanessaspa
dc.contributor.financerInstituto Nacional de Metrología de Colombiaspa
dc.contributor.researchgroupGrupo de Investigación en Metrología Química y Bioanálisis-GIMQBspa
dc.contributor.researchgroupGrupo de Investigación en Metrología Química y LEAspa
dc.date.accessioned2022-01-11T17:31:11Z
dc.date.available2022-01-11T17:31:11Z
dc.date.issued2021-12-30
dc.descriptionilustraciones, fotografías, gráficas, tablasspa
dc.description.abstractEn la presente investigación se estudió el efecto del uso de diferentes estrategias sobre la estabilidad de plaguicidas seleccionados en candidatos a materiales de referencia (MR). En una primera parte, se evaluó el efecto de aditivos sobre plaguicidas en soluciones de calibración y en una segunda parte, se evaluó la influencia del uso de aditivos, matrices encapsulantes y procesos de secado, sobre la estabilidad de materiales de referencia de plaguicidas en aguacate hass. Para los estudios de soluciones calibrantes de plaguicidas, se desarrollaron y validaron diferentes métodos a través de cromatografía de gases; posteriormente, se realizaron estudios de estabilidad, los cuales evidenciaron que las estrategias de estabilización propuestas fueron efectivas, logrando estabilizar todos los plaguicidas que se mostraron inestables, lo cual se tradujo en una mejora de la incertidumbre por estabilidad de hasta 286 veces. Por otro lado, se emplearon cuatro diferentes estrategias de estabilización sobre MR de plaguicidas en aguacate liofilizado. Los resultados mostraron que el uso de antioxidantes y conservantes, permiten incrementar la vida útil de los MR. Igualmente, se evidenció que el empleo de tecnologías de encapsulación permitió mejorar la estabilidad de los materiales; sin embargo, se encontró que, aunque la encapsulación a través de secado por aspersión permite obtener materiales con menores incertidumbres, el material obtenido es de difícil reconstitución, lo que podría conllevar a mayores errores en su uso. Por su parte, la encapsulación a través del uso de liofilización permitió establecer que la mezcla de goma arábiga-maltodextrina, proporciona un material de fácil reconstitución y con incertidumbres inferiores que el material sin ningún tratamiento. (Texto tomado de la fuente).spa
dc.description.abstractThis research aims to study the effect of the use of different strategies in the stability of the selected pesticides in Reference Materials candidates. In the first part, the effect of pesticides additives in calibration solutions was evaluated. The second part is focused on the evaluation of the influence of using additives, encapsulating matrices, and drying processes on the stability of reference materials of Hass avocado pesticides. Four methods were developed and validated for the study of pesticides in calibrant solutions. Gas chromatography coupled to mass spectrometry was the analytical technique selected. Subsequently, the stability of the materials was evaluated; these studies showed satisfactory results confirming that the proposed stabilization strategies were effective, achieving stabilizing in all the instable pesticides, representing an improvement of the uncertainty due to instability up to 286 times. Additionally, four strategies were used to stabilize avocado pesticides undergoing freeze drying over Reference Materials-RM. The results showed that the use of additives such as antioxidants and preservatives allowed the increasing of the useful life of the RM. Also, it has been seen that the use of encapsulation technologies improves the stability of materials. However, it was found that that although spray drying obtains materials with smaller uncertainties, the material obtained is difficult to reconstitute, which could lead to greater errors during its use. On the other hand, encapsulating through freeze drying established that the mixture of gum Arabic and maltodextrin provides a material of easy reconstitution and with lower uncertainties compared with the material without any treatment.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.notesIncluye anexosspa
dc.description.researchareaMetrología química aplicadaspa
dc.format.extentxxi, 138 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80798
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Químicaspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesS. A. Wise, “What is novel about certified reference materials?,” Anal. Bioanal. Chem., vol. 410, no. 8, pp. 2045–2049, 2018.spa
dc.relation.referencesBundesanstalt für Materialforschung und -prüfung (BAM), “Certified Reference Materials COMAR Database.” [Online]. Available: https://www.comar.bam.de/home/search_applic.php.spa
dc.relation.referencesInternational Organization for Standarization (ISO), “ISO Guide 30:2015, Reference materials — Selected terms and definitions.” Geneva, 2015.spa
dc.relation.referencesM. del R. Arvizu Torres, E. Valle Moya, and A. Reyes del Valle, “Estudios de estabilidad en materiales de referencia ertificados en matriz acuosa empleando el método de pérdidas de transpiración,” in Simposio de Metrología, 2010, pp. 1–9.spa
dc.relation.referencesA. Lamberty, H. Schimmel, and J. Pauwels, “The study of the stability of reference materials by isochronous measurements,” Fresenius. J. Anal. Chem., vol. 360, no. 3, pp. 359–361, 1998.spa
dc.relation.referencesFederal Institute for Materials Research and Testing (BAM), “COMAR, International database for Certified Reference Materials,” 2014. .spa
dc.relation.referencesOrganización de las Naciones Unidas para la Alimentación y la Agricultura and Organización Mundial de la Salud, Manual de procedimiento-Comisión del CODEX Alimentarius, 27th ed. Rome, 2019.spa
dc.relation.referencesInternational Organization for Standarization (ISO), “ISO GUIDE 35:2017 Reference materials — Guidance for the characterization and the assessment of the homogeneity and stability of the material.” Geneva, Switzerland, 2017.spa
dc.relation.referencesD. A. Ahumada Forigua, L. L. Soto Morales, L. V. Morales Erazo, and J. P. Abella Gamba, “Desarrollo de un material de referencia certificado para análisis elemental de agua potable,” Rev. Colomb. Química, vol. 48, no. 3 SE-, pp. 36–44, Sep. 2019.spa
dc.relation.referencesJoint Committee for Guides in Metrology, “JCGM 100:2008-Guide to the expression of uncertainty in measurement, GUM 1995, with minor modifications,” InBureau International des Poids et Mesures-BIPM, vol. 50, no. September. p. 134, 2008.spa
dc.relation.referencesT. P. J. Linsinger, J. Pauwels, A. M. H. van der Veen, H. Schimmel, and A. Lamberty, “Homogeneity and stability of reference materials,” Accredit. Qual. Assur., vol. 6, no. 1, pp. 20–25, 2001.spa
dc.relation.referencesJ. W. Finley, A.-N. Kong, K. J. Hintze, E. H. Jeffery, L. L. Ji, and X. G. Lei, “Antioxidants in Foods: State of the Science Important to the Food Industry,” J. Agric. Food Chem., vol. 59, no. 13, pp. 6837–6846, Jul. 2011.spa
dc.relation.referencesF. Ibañez, P. Torre, and A. Irigoyen, “Aditivos alimentarios,” Pamplona, España, 2003.spa
dc.relation.referencesR. García-García and S. S. Searle, “Preservatives: Food Use,” B. Caballero, P. M. Finglas, and F. B. T.-E. of F. and H. Toldrá, Eds. Oxford: Academic Press, 2016, pp. 505–509spa
dc.relation.referencesC. de la U. E. Parlamento Europeo, Reglamento (CE) n o 1333/2008 del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008 , sobre aditivos alimentarios (Texto pertinente a efectos del EEE). 2008.spa
dc.relation.referencesN. J. Zuidam and E. Shimoni, “Overview of microencapsulates for use in food products or process and methods to make them,” in Encapsulation Technologies for Active Food Ingredients and Food Processing, 1st ed., N. J. Zuidam and V. Nedovic, Eds. Springer-Verlag New York, 2010, pp. 3–4.spa
dc.relation.referencesC. Wandrey, A. Bartkowiak, and S. E. Harding, “Materials for Encapsulation BT - Encapsulation Technologies for Active Food Ingredients and Food Processing,” N. J. Zuidam and V. Nedovic, Eds. New York, NY: Springer New York, 2010, pp. 31–100.spa
dc.relation.referencesJ. Castro-Rosas et al., “Recent advances in microencapsulation of natural sources of antimicrobial compounds used in food - A review,” Food Res. Int., vol. 102, no. May, pp. 575–587, 2017.spa
dc.relation.referencesB. F. Gibbs, S. Kermasha, I. Alli, and C. N. Mulligan, “Encapsulation in the food industry: a review.,” Int. J. Food Sci. Nutr., vol. 50, no. 3, pp. 213–224, May 1999spa
dc.relation.referencesZ. Fang and B. Bhandari, “Spray drying, freeze drying and related processes for food ingredient and nutraceutical encapsulation,” in Woodhead Publishing Series in Food Science, Technology and Nutrition, N. Garti and D. J. B. T.-E. T. and D. S. for F. I. and N. McClements, Eds. Woodhead Publishing, 2012, pp. 73–109.spa
dc.relation.referencesJ. L. Villacrez, “Desarrollo de microencapsulados por SPRAY DRYING a partir de frutos de mora de castilla ( Rubus glaucus Benth ).,” p. 92, 2013.spa
dc.relation.referencesC. Quan, “Establishment of the purity values of carbohydrate certified reference materials using quantitative nuclear magnetic resonance and mass balance approach,” Food Chem., vol. 153, pp. 378–386, 2014.spa
dc.relation.referencesT. Saito et al., “A new traceability scheme for the development of international system-traceable persistent organic pollutant reference materials by quantitative nuclear magnetic resonance,” Accredit. Qual. Assur., vol. 14, no. 2, pp. 79–86, 2009.spa
dc.relation.referencesH. Wang, K. Ma, W. Zhang, J. Li, G. Sun, and H. Li, “Certification of the reference material of water content in water saturated 1-octanol by Karl Fischer coulometry, Karl Fischer volumetry and quantitative nuclear magnetic resonance,” Food Chem., vol. 134, no. 4, pp. 2362–2366, 2012.spa
dc.relation.referencesK. A. Lippa, D. L. Duewer, M. A. Nelson, S. R. Davies, and L. G. Mackay, “The role of the CCQM OAWG in providing SI traceable calibrators for organic chemical measurements,” Accredit. Qual. Assur., vol. 24, no. 6, pp. 407–415, 2019.spa
dc.relation.referencesS. Richter et al., “Certification of a new series of gravimetrically prepared synthetic reference materials for n(236U)/n(238U) isotope ratio measurements,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 7, pp. 956–959, 2010.spa
dc.relation.referencesK. Ishikawa et al., “Preparation and characterization of organic calibration solutions for development of certified reference materials at the National Metrology Institute of Japan,” Accredit. Qual. Assur., vol. 13, no. 7, pp. 397–408, 2008.spa
dc.relation.referencesS. Iqbal, M. Rafique Asi, U. Hanif, M. Zuber, and S. Jinap, “The presence of aflatoxins and ochratoxin A in rice and rice products; And evaluation of dietary intake,” Food Chem., vol. 210, pp. 135–140, Nov. 2016.spa
dc.relation.referencesI. R. B. Olivares, G. B. Souza, A. R. A. Nogueira, G. T. K. Toledo, and D. C. Marcki, “Trends in developments of certified reference materials for chemical analysis - Focus on food, water, soil, and sediment matrices,” TrAC - Trends Anal. Chem., vol. 100, pp. 53–64, 2018.spa
dc.relation.referencesE. C. P. do Rego, E. de F. Guimarães, J. M. Rodrigues, R. C. Scarlato, R. I. Nogueira, and A. D. Pereira Netto, “Feasibility study for development of candidate reference material for food analysis: Chloramphenicol in milk powder,” Meas. J. Int. Meas. Confed., vol. 98, pp. 300–304, 2017.spa
dc.relation.referencesS. A. Wise et al., “Two new marine sediment standard reference materials (SRMs) for the determination of organic contaminants,” Anal. Bioanal. Chem., vol. 378, no. 5, pp. 1251–1264, 2004spa
dc.relation.referencesS. Grimalt et al., “Development of a new cucumber reference material for pesticide residue analysis: Feasibility study for material processing, homogeneity and stability assessment,” Anal. Bioanal. Chem., vol. 407, no. 11, pp. 3083–3091, 2015.spa
dc.relation.referencesB. Sejerøe-Olsen, R. Zeleny, H. Emons, F. Ulberth, and H. Saldanha, “Feasibility study for producing a carrot/potato matrix reference material for 11 selected pesticides at EU MRL level: Material processing, homogeneity and stability assessment,” Food Chem., 2011.spa
dc.relation.referencesNational Institute of Standards and technology NIST, “Standard reference material SRM2261- Chloridated pesticides in hexane,” Gaithersburg, Meryland, 2018.spa
dc.relation.referencesNational Institute of Standards and technology NIST, “Standard reference material SRM2275 chlorinated pesticide solution in 2,2,24-trimethylpentane,” Gaithersburg, Meryland, 2020.spa
dc.relation.referencesChemical Metrology & Analytical Science Division-National Institute of Metrology, “National Sharing Platform for Refernce Materials.” [Online]. Available: https://www.ncrm.org.cn/Web/MaterialEn/Components?autoID=7126&pageIndex=1.spa
dc.relation.referencesT. Otake et al., “Development of green onion and cabbage certified reference materials for quantification of organophosphorus and pyrethroid pesticides,” J. Agric. Food Chem., 2011.spa
dc.relation.referencesT. Otake et al., “Development of apple certified reference material for quantification of organophosphorus and pyrethroid pesticides,” Food Chem., vol. 138, no. 2–3, pp. 1243–1249, 2013.spa
dc.relation.referencesT. Yarita et al., “Development of soybean certified reference material for pesticide residue analysis,” Talanta, vol. 119, pp. 255–261, 2014.spa
dc.relation.referencesT. Otake, Y. Aoyagi, T. Yarita, and M. Numata, “Characterization of certified reference material for quantification of polychlorinated biphenyls and organochlorine pesticides in fish,” Anal. Bioanal. Chem., vol. 397, pp. 2569–2577, Jul. 2010.spa
dc.relation.referencesT. Otake et al., “Development of certified reference material for quantification of two pesticides in brown rice.,” J. Agric. Food Chem., vol. 57, no. 18, pp. 8208–8212, Sep. 2009.spa
dc.relation.referencesM. Numata et al., “Sediment certified reference materials for the determination of polychlorinated biphenyls and organochlorine pesticides from the National Metrology Institute of Japan (NMIJ),” Anal. Bioanal. Chem., vol. 387, no. 7, pp. 2313–2323, 2007.spa
dc.relation.referencesJ. S. M. Dabrio, S. Grimalt Brea, P. Shegunova, S. Harbeck, B. Sejerøe-Olsen, A.R. Fernández-Alba, “The certification of the mass fraction of pesticides in cucumber: ERM®-BC403 EUR 29243 EN,” 2018.spa
dc.relation.referencesD. W. M. Sin et al., “Development of a candidate certified reference material of cypermethrin in green tea,” Anal. Chim. Acta, vol. 721, pp. 110–114, 2012.spa
dc.relation.referencesD. W. M. Sin et al., “S1 certification of alpha-endosulfan, beta-endosulfan, and endosulfan sulfate in a candidate certified reference material (organochlorine pesticides in tea) by isotope dilution gas chromatography-mass spectrometry,” Anal. Bioanal. Chem., 2015.spa
dc.relation.referencesEuropean Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 115,” Brussels, Belgium, 1996.spa
dc.relation.referencesEuropean Comission-Standards Measurements and Testing Programm, “The certification of the contents (mass fraction) of organochlorine pesticides in animal feed-BCR 187-188,” Luxembourg city, Luxembourg, 1989spa
dc.relation.referencesNational Institute of Standards and technology NIST, “Certificate of Analysis Standard Reference Material SRM1947- Lake Michigan Fish Tissue,” Gaithersburg, Meryland, 2007.spa
dc.relation.referencesS. Ahn, B. Kim, and E. Hwang, “Stability monitoring of pesticide residues in a Chinese cabbage certified reference material,” Bull. Korean Chem. Soc., vol. 32, no. 4, pp. 1365–1367, 2011.spa
dc.relation.referencesU. Faure and P. J. Wagstaffe, “Stability of reference materials,” Fresenius. J. Anal. Chem., 1993.spa
dc.relation.referencesP. McCarron, E. Wright, H. Emteborg, and M. A. Quilliam, “A mussel tissue certified reference material for multiple phycotoxins. Part 4: certification,” Anal. Bioanal. Chem., vol. 409, no. 1, pp. 95–106, 2017.spa
dc.relation.referencesF. G. M. Violante, C. de O. Rosas, E. de F. Guimarães, H. de C. Vital, N. O. C. Zúniga, and F. R. de Aquino Neto, “Feasibility study for the development of a certified reference material of nitrofuran metabolites in chicken breast muscle from incurred samples,” Measurement, vol. 129, pp. 368–374, 2018.spa
dc.relation.referencesH. Kodamatani, C. Maeda, S. J. Balogh, Y. H. Nollet, R. Kanzaki, and T. Tomiyasu, “The influence of sample drying and storage conditions on methylmercury determination in soils and sediments,” Chemosphere, vol. 173, pp. 380–386, 2017.spa
dc.relation.referencesD. L. Ellisor, W. C. Davis, and R. S. Pugh, “Spiking and homogenization of biological matrices for production of reference materials using cryogenic processes,” Anal. Bioanal. Chem., vol. 412, no. 22, pp. 5447–5451, 2020.spa
dc.relation.referencesE. Kurniawati, B. Ibrahim, and Desniar, “Homogeneity and stability of a secondary microbiological reference material candidate for Salmonella in fish matrix,” IOP Conf. Ser. Earth Environ. Sci., vol. 404, no. 1, 2019.spa
dc.relation.referencesT. A. Dang and H.-J. Lunk, “Freeze drying: a novel method for preparation of solid analytical tungsten and molybdenum standards,” ChemTexts, vol. 4, no. 3, p. 11, 2018.spa
dc.relation.referencesS.-W. Hyung, C.-H. Lee, and B. Kim, “Development of certified reference materials for accurate determination of fluoroquinolone antibiotics in chicken meat,” Food Chem., vol. 229, pp. 472–478, 2017.spa
dc.relation.referencesJ. H. Kim, S. G. Choi, Y. S. Kwon, S. M. Hong, and J. S. Seo, “Development of cabbage reference material for multi-residue pesticide analysis,” Appl. Biol. Chem., vol. 61, no. 1, pp. 15–23, 2018.spa
dc.relation.referencesB. Sejerøe-Olsen et al., “PAHs in baby food: assessment of three different processing techniques for the preparation of reference materials,” Anal. Bioanal. Chem., 2015.spa
dc.relation.referencesW. R. Hardstaff, W. D. Jamieson, J. E. Milley, M. A. Quilliam, and P. G. Sim, “Reference materials for domoic acid, a marine neurotoxin,” Fresenius. J. Anal. Chem., vol. 338, no. 4, pp. 520–525, 1990.spa
dc.relation.referencesC. A. Fraser et al., “Preparation and certification of a biological reference material (CARP-1) for polychlorinated dibenzo-p-dioxin and dibenzofuran congeners,” Fresenius. J. Anal. Chem., vol. 352, no. 1, pp. 143–147, 1995spa
dc.relation.referencesP. Armishaw, J. M. Majewski, P. J. McLay, and R. G. Millar, “Development and certification of reference materials for residues of organochlorine and organophosphorus pesticides in beef fat ACSL CRM 1 and 2,” Fresenius. J. Anal. Chem., vol. 360, no. 6, pp. 630–639, 1998.spa
dc.relation.referencesA. Kiełbasa, R. Gadzała-Kopciuch, and B. Buszewski, “Reference Materials: Significance, General Requirements, and Demand,” Critical Reviews in Analytical Chemistry. 2016spa
dc.relation.referencesR. A. Perez et al., “The preparation of certified calibration solutions for azaspiracid-1, -2, and -3, potent marine biotoxins found in shellfish,” Anal. Bioanal. Chem., vol. 398, no. 5, pp. 2243–2252, 2010.spa
dc.relation.referencesJ. L. Bernal, M. J. Del Nozal, and J. J. Jiménez, “Influence of solvent and storage conditions on the stability of acaricide standard stock solutions,” J. Chromatogr. A, vol. 765, no. 1, pp. 109–114, 1997.spa
dc.relation.referencesK. Maštovská and S. J. Lehotay, “Evaluation of common organic solvents for gas chromatographic analysis and stability of multiclass pesticide residues,” J. Chromatogr. A, vol. 1040, no. 2, pp. 259–272, 2004.spa
dc.relation.referencesK. K. Sharma et al., “Monitoring of purity and stability of CRMs of multiclass pesticides during prolonged storage before and after expiration,” Accredit. Qual. Assur., vol. 25, pp. 89–97, 2020spa
dc.relation.referencesY. Bian, Y. Wang, F. Liu, X. Li, and B. Wang, The stability of four organophosphorus insecticides in stored cucumber samples is affected by additives. Elsevier Ltd, 2020.spa
dc.relation.referencesE. Lugo Medina, C. García Gutiérrez, and R. D. Ruelas Ayala, “Nanotecnología y nanoencapsulación de plaguicidas,” Rev. Soc. Cult. y Desarro. Sustentable, vol. 6, no. 1, pp. 57–62, 2010.spa
dc.relation.referencesM. Nuruzzaman, M. M. Rahman, Y. Liu, and R. Naidu, “Nanoencapsulation, Nano-guard for Pesticides: A New Window for Safe Application,” J. Agric. Food Chem., vol. 64, no. 7, pp. 1447–1483, 2016.spa
dc.relation.referencesL. Wang, X. Li, G. Zhang, J. Dong, and J. Eastoe, “Oil-in-water nanoemulsions for pesticide formulations.,” J. Colloid Interface Sci., vol. 314, no. 1, pp. 230–235, Oct. 2007.spa
dc.relation.referencesS. Song, X. Liu, J. Jiang, Y. Qian, N. Zhang, and Q. Wu, “Stability of triazophos in self-nanoemulsifying pesticide delivery system,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 350, no. 1–3, pp. 57–62, 2009.spa
dc.relation.referencesX. Zhang and J. Liu, “Effect of Arabic Gum and Xanthan Gum on the Stability of Pesticide in Water Emulsion,” J. Agric. Food Chem., vol. 59, no. 4, pp. 1308–1315, Feb. 2011.spa
dc.relation.referencesFood and Agricultural Organization, “The International Code of Conduct on Pesticide Management,” Rome, 2014.spa
dc.relation.referencesOCDE/FAO, “OCDE/FAO Perspectivas agrícolas 2012-2021,” Universidad Autónoma de Chapingo, Texcoco, 2013.spa
dc.relation.referencesV. Bardwick, Ed., Eurachem/CITAC Guide: Guide to Quality in Analytical Chemistry: An Aid to Accreditation, 3rd ed. 2016.spa
dc.relation.referencesChemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006.spa
dc.relation.referencesInstituto Colombiano Agropecuario-ICA, “Estadisticas de plaguicidas 2019,” Bogotá, 2019.spa
dc.relation.referencesRStudio Team, “RStudio: Integrated Development for R.” Boston, 2020.spa
dc.relation.referencesD. A. Ahumada Forigua, “Reducción del efecto matriz en el análisis de residuos de Plaguicidas mediante Cromatografía de gases,” Universidad Nacional De Colombia, 2010.spa
dc.relation.referencesEU Reference Laboratory for Pesticides Requiring Single Residue Methods, “Analysis of Captan, Folpet and their respective metabolites Phthalimide and Tetrahydrophthalimide via LC-MS/MS either directly or following hydrolysis,” Stuttgart, 2019.spa
dc.relation.referencesJ. L. Gastwirth, Y. R. Gel, and W. Miao, “The Impact of Levene’s Test of Equality of Variances on Statistical Theory and Practice,” Stat. Sci., vol. 24, no. 3, pp. 343–360, 2009.spa
dc.relation.referencesD. Sud, J. Kumar, P. Kaur, and P. Bansal, “Toxicity, natural and induced degradation of chlorpyrifos,” J. Chil. Chem. Soc., vol. 65, pp. 4807–4816, 2020.spa
dc.relation.referencesC. M. Menzie, “Metabolism of pesticides: update III,” 1980.spa
dc.relation.referencesS. E. Duirk and T. W. Collette, “Degradation of Chlorpyrifos in Aqueous Chlorine Solutions:  Pathways, Kinetics, and Modeling,” Environ. Sci. Technol., vol. 40, no. 2, pp. 546–551, Jan. 2006.spa
dc.relation.referencesH. Liu et al., “Oxidative degradation of chlorpyrifos using ferrate(VI): Kinetics and reaction mechanism,” Ecotoxicol. Environ. Saf., vol. 170, pp. 259–266, 2019.spa
dc.relation.referencesT. Lazarević-Pašti, B. Nastasijević, and V. Vasić, “Oxidation of chlorpyrifos, azinphos-methyl and phorate by myeloperoxidase,” Pestic. Biochem. Physiol., vol. 101, no. 3, pp. 220–226, 2011.spa
dc.relation.referencesChemisches und Veterinäruntersuchungsamt Stuttgart/EU Reference Laboratories for Residues of Pesticides, “DataPool EURL database,” 2006. [Online]. Available: https://www.eurl-pesticides-datapool.eu/Member/Compound/StabilityData.spa
dc.relation.referencesR. Djouaka et al., “The Rapid Degradation of Lambda-Cyhalothrin Makes Treated Vegetables Relatively Safe for Consumption,” Int. J. Environ. Res. Public Health, vol. 15, no. 7, p. 1536, Jul. 2018.spa
dc.relation.referencesR. Colombo, J. Yariwake, and M. Lanza, “Degradation Products of Lambda-Cyhalothrin in Aqueous Solution as Determined by SBSE-GC-IT-MS,” J. Braz. Chem. Soc., vol. 29, pp. 2207–2212, 2018.spa
dc.relation.referencesZ. Chen, F. Maartens, H. Vega, S. Kunene, J. Gumede, and R. I. Krieger, “2,2-bis(4-Chlorophenyl)Acetic Acid (DDA), a Water-Soluble Urine Biomarker of DDT Metabolism in Humans,” Int. J. Toxicol., vol. 28, no. 6, pp. 528–533, Nov. 2009.spa
dc.relation.referencesH. Huang et al., “Sources and transformation pathways for dichlorodiphenyltrichloroethane (DDT) and metabolites in soils from Northwest Fujian, China.,” Environ. Pollut., vol. 235, pp. 560–570, Apr. 2018spa
dc.relation.referencesO`Brien, “DDT and related compounds,” in Handbook of pollution prevention adn cleaner production:best prractices in agrochemical industry, 1st ed., N. P. Cheremisinoff and P. E. Rosenfeld, Eds. Oxford: Academic Press, 2011, pp. 247–259.spa
dc.relation.referencesJ. R. Plimmer, U. I. Klingebiel, and B. E. Hummer, “Photooxidation of DDT and DDE,” Science (80-. )., vol. 167, no. 3914, pp. 67 LP – 69, Jan. 1970.spa
dc.relation.referencesJ. E. Thomas, L.-T. Ou, and A. All-Agely, “DDE remediation and degradation.,” Rev. Environ. Contam. Toxicol., vol. 194, pp. 55–69, 2008.spa
dc.relation.referencesA. S. Purnomo, T. Mori, I. Kamei, and R. Kondo, “Basic studies and applications on bioremediation of DDT: A review,” Int. Biodeterior. Biodegrad., vol. 65, no. 7, pp. 921–930, 2011spa
dc.relation.referencesJ. Wang et al., “Degradation pathway of triazole fungicides and synchronous removal of transformation products via photo-electrocatalytic oxidation tandem MoS2 adsorption,” Environ. Sci. Pollut. Res., vol. 28, no. 13, pp. 16480–16491, 2021.spa
dc.relation.referencesE. Ueyama, N. Suzuki, and K. Kano, “Mechanistic study of the oxidative degradation of the triazole antifungal agent CS-758 in an amorphous form.,” J. Pharm. Sci., vol. 102, no. 1, pp. 104–113, Jan. 2013.spa
dc.relation.referencesY. Akiyama, N. Yoshioka, and M. Tsuji, “Pesticide Residues in Agricultural Products Monitored in Hyogo Prefecture, Japan, FYs 1995–1999,” J. AOAC Int., vol. 85, no. 3, pp. 692–703, May 2002.spa
dc.relation.referencesJ. Morales, J. A. Manso, A. Cid, and J. C. Mejuto, “Degradation of carbofuran and carbofuran-derivatives in presence of humic substances under basic conditions,” Chemosphere, vol. 89, no. 11, pp. 1267–1271, 2012.spa
dc.relation.referencesL. P. de Melo Plese, L. C. Paraiba, L. L. Foloni, and L. R. Pimentel Trevizan, “Kinetics of carbosulfan hydrolysis to carbofuran and the subsequent degradation of this last compound in irrigated rice fields,” Chemosphere, vol. 60, no. 2, pp. 149–156, 2005.spa
dc.relation.referencesQ. S. Lin, S. H. Chen, M. Y. Hu, M. R. U. Haq, L. Yang, and H. Li, “Biodegradation of Cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge,” Int. J. Environ. Sci. Technol., vol. 8, no. 1, pp. 45–56, 2011.spa
dc.relation.referencesK. I. Al-Mughrabi, I. K. Nazer, and Y. T. Al-Shuraiqi, “Effect of pH of water from the King Abdallah Canal in Jordan on the stability of cypermethrin,” Crop Prot., vol. 11, no. 4, pp. 341–344, 1992.spa
dc.relation.referencesÁ. Ambrus, “International Harmonization of Food Safety Assessment of Pesticide Residues,” J. Agric. Food Chem., vol. 64, no. 1, pp. 21–29, 2016spa
dc.relation.referencesM. W. Aktar, D. Sengupta, and A. Chowdhury, “Impact of pesticides use in agriculture: their benefits and hazards,” Interdiscip. Toxicol., vol. 2, no. 1, pp. 1–12, Mar. 2009.spa
dc.relation.referencesThe European Union, “RASFF-The Rapid Alert System for Food and Feed-Annual Report,” 2020.spa
dc.relation.referencesP. Atkins, J. Blount, T. Grim, M. Phillips, and J. Wong, “Reference Material Use in Trace Analysis,” 2021.spa
dc.relation.referencesS. Rückold, K. H. Grobecker, and H.-D. Isengard, “Water as a source of errors in reference materials,” Fresenius. J. Anal. Chem., vol. 370, no. 2, pp. 189–193, 2001.spa
dc.relation.referencesP. McCarron, S. Burrell, and P. Hess, “Effect of addition of antibiotics and an antioxidant on the stability of tissue reference materials for domoic acid, the amnesic shellfish poison,” in Analytical and Bioanalytical Chemistry, 2007.spa
dc.relation.referencesA. Marulanda, M. Ruiz-Ruiz, and M. Cortes-Rodríguez, “Influence of spray drying process on the quality of avocado powder: A functional food with great industrial potential,” Vitae, vol. 25, no. 1, pp. 37–48, 2018spa
dc.relation.referencesAsociación Española de Normalización, Método múltiple para la determinación de residuos de plaguicidas mediante análisis basados en GC y LC tras extracción con acetonitrilo y limpieza mediante SPE por dispersión- Método QuEChERs. España, 2019.spa
dc.relation.referencesB. Akdeniz, G. Sumnu, and S. Sahin, “The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds,” Chem. Eng. Trans., vol. 57, pp. 1891–1896, 2017.spa
dc.relation.referencesM. Najaf Najafi, R. Kadkhodaee, and S. A. Mortazavi, “Effect of Drying Process and Wall Material on the Properties of Encapsulated Cardamom Oil,” Food Biophys., vol. 6, no. 1, pp. 68–76, 2011.spa
dc.relation.referencesA. Wilkowska, W. Ambroziak, A. Czyżowska, and J. Adamiec, “Effect of Microencapsulation by Spray Drying and Freeze Drying Technique on the Antioxidant Properties of Blueberry (Vaccinium myrtillus) Juice Polyphenolic Compounds,” Polish J. Food Nutr. Sci., vol. 66, no. 1, pp. 11–16, 2016.spa
dc.relation.referencesD. Ogrodowska, M. Tańska, W. Brandt, and S. Czaplicki, “Impact of the Encapsulation Process by Spray- and Freeze-Drying on the Properties and Composition of Powders Obtained from Cold-Pressed Seed Oils with Various Unsaturated Fatty Acids,” Polish J. Food Nutr. Sci., vol. 70, no. 3, pp. 241–252, 2020.spa
dc.relation.referencesE. F. do E. Santo, L. K. F. de Lima, A. P. C. Torres, G. de Oliveira, and E. H. G. Ponsano, “Comparison between freeze and spray drying to obtain powder Rubrivivax gelatinosus biomass,” Food Sci. Technol., vol. 33, no. 1, pp. 47–51, Feb. 2013.spa
dc.relation.referencesM. S. Levenson et al., “An Approach to Combining Results From Multiple Methods Motivated by the ISO GUM,” J. Res. Natl. Inst. Stand. Technol., vol. 105, no. 4, pp. 571–579, Aug. 2000.spa
dc.relation.referencesA. A. Veroniki et al., “Methods to estimate the between-study variance and its uncertainty in meta-analysis,” Res. Synth. Methods, vol. 7, no. 1, pp. 55–79, Mar. 2016.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.lembAvocado
dc.subject.lembAguacate
dc.subject.proposalMateriales de referenciaspa
dc.subject.proposalPlaguicidasspa
dc.subject.proposalEstabilidadspa
dc.subject.proposalIncertidumbrespa
dc.subject.proposalAditivosspa
dc.subject.proposalEncapsuladosspa
dc.subject.proposalTrazabilidad metrológicaspa
dc.subject.proposalReference materialfra
dc.subject.proposalMetrological traceabilityeng
dc.subject.proposalPesticidesfra
dc.subject.proposalStabilityeng
dc.subject.proposalUncertaintyeng
dc.subject.proposalAdditiveseng
dc.subject.proposalEncapsulateseng
dc.subject.unescoPlaguicidaspa
dc.subject.unescoPesticideeng
dc.subject.unescoProducto fitoquímicospa
dc.subject.unescoPhytochemicalseng
dc.titleEvaluación de métodos para incrementar la estabilidad de materiales de referencia de plaguicidasspa
dc.title.translatedAssessment of methods for improving the stability of pesticides reference materialseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleColombiaMide:"Calidad para la competitividad – Reduciendo las brechas de calidad en Micro, Pequeñas y Medianas Empresas en regiones de Colombia"spa
oaire.awardtitleGlobal Quality and Standards Programme-GQSPspa
oaire.fundernameInstituto Nacional de Metrología de Colombiaspa
oaire.fundernameUnión Europeaspa
oaire.fundernameMinisterio de Industria y Comerciospa
oaire.fundernameCooperación Económica y Desarrollo-SECOspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1094925645.2021.pdf
Tamaño:
3.87 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: