Diseño de la estructura interna de un andamio (scaffold) para tejido óseo

dc.contributor.advisorGarzón Alvarado, Diego Alexanderspa
dc.contributor.advisorVelasco Peña, Marco Antoniospa
dc.contributor.authorToro Toro, Lina Fernandaspa
dc.contributor.cvlacToro Toro, Lina Fernanda [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001720717]spa
dc.contributor.orcidToro Toro, Lina Fernanda [0000-0002-0979-3241]spa
dc.contributor.researchgroupGnum Grupo de Modelado y Métodos Numericos en Ingenieríaspa
dc.date.accessioned2024-09-26T19:58:53Z
dc.date.available2024-09-26T19:58:53Z
dc.date.issued2024-09-09
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa ingeniería de tejidos óseos busca la regeneración de tejido óseo dañado o perdido. Los scaffolds son estructuras tridimensionales que proporcionan un andamiaje para el crecimiento de células y tejidos. Los avances en las tecnologías de manufactura aditiva (MA) han facilitado la fabricación de scaffolds complejos y personalizados. Este estudio evaluó el diseño y fabricación de scaffolds para ingeniería de tejido óseo basados en la arquitectura interna del hueso. Se utilizaron geometrías de poliedros y diagramas Voronoi con tamaños de celdas de 1.500 µm a 1.250 µm y trabéculas de 200 µm a 250 µm. Los scaffolds se fabricaron mediante estereolitografía (SLA). Se evaluó la precisión geométrica y dimensional de los scaffolds comparando el modelo CAD, STL y MA, así como su rugosidad superficial y propiedades mecánicas. Los resultados mostraron que las geometrías fabricadas presentaban poros cerrados en las esquinas entre celdas y en el centro de la celda unitaria. Esto se debe al proceso de manufactura, el tamaño de la celda y la complejidad geométrica. Los scaffolds se sometieron a ensayos a compresión para evaluar su viabilidad como sustituto óseo. Los resultados mostraron que la geometría del octaedro truncado con tamaño de celda de 1.250 µm y tamaño de trabécula de 250 µm presentó los valores más altos del módulo elástico, esfuerzo y deformación. por último, se evalúa los scaffolds por análisis de elementos finitos (FEA) para comparar con los resultados experimentales y encontrar la geometría adecuada para el hueso trabecular. (Texto tomado de la fuente).spa
dc.description.abstractBone tissue engineering seeks the regeneration of damaged or lost bone tissue. Scaffolds are three-dimensional structures that provide a scaffolding for the growth of cells and tissues. Advances in additive manufacturing (AM) technologies have facilitated the manufacturing of complex and customized scaffolds. This study evaluated the design and fabrication of scaffolds for bone tissue engineering based on the internal architecture of the bone. Polyhedra geometries and Voronoi diagrams were used with cell sizes from 1,500 µm to 1,250 µm and trabeculae from 200 µm to 250 µm. The scaffolds were manufactured using stereolithography (SLA). The geometric and dimensional precision of the scaffolds was evaluated by comparing the CAD, STL and MA model, as well as their surface roughness and mechanical properties. The results showed that the fabricated geometries presented closed pores at the corners between cells and in the center of the unit cell. This is due to the manufacturing process, cell size and geometric complexity. The scaffolds were subjected to compression tests to evaluate their viability as a bone substitute. The results showed that the geometry of the truncated octahedron with a cell size of 1,250 µm and a trabecula size of 250 µm presented the highest values of elastic modulus, stress and deformation. Finally, the scaffolds are evaluated by finite element analysis (FEA) to compare with the experimental results and find the appropriate geometry for the trabecular bone.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Materiales y Procesosspa
dc.description.researchareaMecanobiología de órganos y tejidosspa
dc.format.extentxxi, 131 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86869
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Materiales y Procesosspa
dc.relation.indexedBiremespa
dc.relation.referencesF. P. W. Melchels, M. A. N. Domingos, T. J. Klein, J. Malda, P. J. Bartolo, and D. W. Hutmacher, “Additive manufacturing of tissues and organs,” Prog Polym Sci, vol. 37, no. 8, pp. 1079–1104, 2012, doi: 10.1016/j.progpolymsci.2011.11.007.spa
dc.relation.references“Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, Jan. 2016, doi: 10.1016/J.CIRP.2016.05.004.spa
dc.relation.referencesM. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Techniques for manufacturing polymer scaffolds with potential applications in tissue engineering ,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.spa
dc.relation.referencesS. M. Giannitelli, D. Accoto, M. Trombetta, and A. Rainer, “Current trends in the design of scaffolds for computer-aided tissue engineering,” Acta Biomater, vol. 10, no. 2, pp. 580–594, 2014, doi: 10.1016/j.actbio.2013.10.024.spa
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.spa
dc.relation.referencesJ. F. A. Barreto, “Regeneración ósea a través de la ingeniería de tejidos : una introducción,” Revista de Estudios Transdisciplinarios, vol. 1, no. 2, pp. 98–109, 2009.spa
dc.relation.referencesJ. Henkel et al., “Bone Regeneration Based on Tissue Engineering Conceptions — A 21st Century Perspective,” Bone Res, vol. 1, no. 3, pp. 216–248, 2014, doi: 10.4248/br201303002.spa
dc.relation.referencesM. D. Mirjam Fröhlich, Warren L. Grayson, Leo Q. Wan, Darja Marolt, “Tissue Engineered Bone Grafts: Biological Requirements, Tissue Culture and Clinical Relevance,” Curr Stem Cell Res, vol. 23, no. 1, pp. 254–264, 2008, doi: 10.1038/jid.2014.371.spa
dc.relation.referencesV. Karageorgiou and D. Kaplan, “Porosity of 3D biomaterial scaffolds and osteogenesis,” Biomaterials, vol. 26, no. 27, pp. 5474–5491, 2005, doi: 10.1016/j.biomaterials.2005.02.002.spa
dc.relation.referencesTony M. Keaveny, E. F. Morgan, G. L. Niebur, and O. C. Yeh, “BIOMECHANICS OF TRABECULAR BONE,” Annual Reviews, vol. 3, 2001.spa
dc.relation.referencesR. S. F. y O. R. C. Edgar Isaac Ramírez D., Armando Ortiz P., “Modelado de hueso trabecular mediante paquetería de elemento finito basándose en estructuras de Voronoi,” Ingeniería Mecánica. Tecnología y Desarrollo, vol. 2, no. 5, pp. 151–156, 2007.spa
dc.relation.referencesG. A. R. Bilezikian, John P. Lawrence G. Raisz, principles of bone biology second edition, 2nd ed., vol. 1, no. 5. 2002. doi: 10.1002/j.1556-6676.1995.tb01790.x.spa
dc.relation.referencesT. Wu, S. Yu, D. Chen, and Y. Wang, “Bionic design, materials and performance of bone tissue scaffolds,” Materials, vol. 10, no. 10, 2017, doi: 10.3390/ma10101187.spa
dc.relation.referencesJ. Y. Rho, L. Kuhn-Spearing, and P. Zioupos, “Mechanical properties and the hierarchical structure of bone,” Med Eng Phys, vol. 20, no. 2, pp. 92–102, 1998, doi: 10.1016/S1350-4533(98)00007-1.spa
dc.relation.referencesM. A. Velasco, C. A. Narváez-tovar, and D. A. Garzón-alvarado, “Design , Materials , and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering,” Biomed Res Int, vol. 2015, no. Article ID 729076, p. 21, 2015, doi: doi:10.1155/2015/729076.spa
dc.relation.referencesJ. K. Carrow and A. K. Gaharwar, “Bioinspired Polymeric Nanocomposites for Regenerative Medicine,” Macromol Chem Phys, vol. 216, no. 3, pp. 248–264, Feb. 2015, doi: 10.1002/macp.201400427.spa
dc.relation.referencesRobert langer and Vacanti Joseph P., “tissue Engineering,” STOR, vol. 260, no. 5110, pp. 920–926, 2007.spa
dc.relation.referencesH. Qu, “Additive manufacturing for bone tissue engineering scaffolds,” Mater Today Commun, vol. 24, p. 101024, 2020, doi: 10.1016/j.mtcomm.2020.101024.spa
dc.relation.referencesEkta Pandey, K. Srivastava, S. Gupta, S. Srivastava, and N. Mishra, “SOME BIOCOMPATIBLE MATERIALS USED IN MEDICAL PRACTICES- A REVIEW,” International Jornal of Pharmaceutical Sciences and Research, vol. 7, no. 7, pp. 2748–2755, 2016, doi: 10.13040/IJPSR.0975-8232.7(7).2748-55.spa
dc.relation.referencesH. Larry L and P. Julia M, “Third-generation biomedical materials,” Science (1979), vol. 295, no. 5557, pp. 1014–1017, 2002.spa
dc.relation.referencesM. M. Stevens, “Biomaterials for bone Materials that enhance bone regeneration have a wealth of potential,” Materialstoday, vol. 11, no. 5, pp. 18–25, 2008.spa
dc.relation.referencesC. Z. Liu and J. T. Czernuszka, “Development of biodegradable scaffolds for tissue engineering: a perspective on emerging technology,” Materials Science and Technology, vol. 23, no. 4, pp. 379–391, 2007, doi: 10.1179/174328407x177027.spa
dc.relation.referencesF. J. O’Brien, “Biomaterials & scaffolds for tissue engineering,” Materials Today, vol. 14, no. 3, pp. 88–95, 2011, doi: 10.1016/S1369-7021(11)70058-X.spa
dc.relation.referencesL. Roseti et al., “Scaffolds for Bone Tissue Engineering: State of the art and new perspectives,” Materials Science and Engineering C, vol. 78, pp. 1246–1262, 2017, doi: 10.1016/j.msec.2017.05.017.spa
dc.relation.referencesJ. A. R. and A. R. B. Q. Chen, “Tissue Engineering Scaffolds from Bioactive Glass and Composite Materials Q.,” in Topics in Tissue Engineering, Vol 4., 2008.spa
dc.relation.referencesY. Chen, S. Zhou, and Q. Li, “Microstructure design of biodegradable scaffold and its effect on tissue regeneration,” Biomaterials, vol. 32, no. 22, pp. 5003–5014, 2011, doi: 10.1016/j.biomaterials.2011.03.064.spa
dc.relation.referencesF. R. A. J. Rose and R. O. C. Oreffo, “Bone tissue engineering: Hope vs hype,” Biochem Biophys Res Commun, vol. 292, no. 1, pp. 1–7, 2002, doi: 10.1006/bbrc.2002.6519.spa
dc.relation.referencesD. W. Hutmacher, “Scaffolds in tissue engineering bone and cartilage,” The Biomaterials: Silver Jubilee Compendium, vol. 21, pp. 175–189, 2000, doi: 10.1016/B978-008045154-1.50021-6.spa
dc.relation.referencesM. A. Velasco, C. A. Narvaez-Tovar, and D. A. Garzon-Alvarado, “Design, materials, and mechanobiology of biodegradable scaffolds for bone tissue engineering.,” Biomed Res Int, vol. 2015, p. 729076, 2015, doi: 10.1155/2015/729076.spa
dc.relation.referencesV. Guarino, F. Causa, and L. Ambrosio, “Bioactive scaffolds for bone and ligament tissue,” Expert Rev Med Devices, vol. 4, no. 3, pp. 405–418, 2007, doi: 10.1586/17434440.4.3.405.spa
dc.relation.referencesA. R. Amin, C. T. Laurenci, and S. P. Nukavarapu, “Bone Tissue Engineering: Recent Advances and Challenges,” vol. 71, no. 2. pp. 233–236, 2013. doi: 10.1038/mp.2011.182.doi.spa
dc.relation.referencesY. Yan et al., “Vascularized 3D printed scaffolds for promoting bone regeneration,” Biomaterials, vol. 190–191, no. August 2018, pp. 97–110, 2019, doi: 10.1016/j.biomaterials.2018.10.033.spa
dc.relation.referencesS. F. Hulbert, F. A. Young, R. S. Mathews, J. J. Klawitter, C. D. Talbert, and F. H. Stelling, “Potential of ceramic materials as permanently implantable skeletal prostheses,” J Biomed Mater Res, vol. 4, no. 3, pp. 433–456, 1970, doi: 10.1002/jbm.820040309.spa
dc.relation.referencesS. Limmahakhun, A. Oloyede, K. Sitthiseripratip, Y. Xiao, and C. Yan, “3D-printed cellular structures for bone biomimetic implants,” Addit Manuf, vol. 15, pp. 93–101, 2017, doi: 10.1016/j.addma.2017.03.010.spa
dc.relation.referencesF. Zhao, Y. Xiong, K. Ito, B. van Rietbergen, and S. Hofmann, “Porous Geometry Guided Micro-mechanical Environment Within Scaffolds for Cell Mechanobiology Study in Bone Tissue Engineering,” Frontiers in Bioengineering and Biotechnology, vol. 9. Frontiers Media S.A., Sep. 14, 2021. doi: 10.3389/fbioe.2021.736489.spa
dc.relation.referencesD. W. Hutmacher, schantz jan Thorsten, lam christopher Xu, L. Thiam, and tan cheng, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective,” J Tissue Eng Regen Med, vol. 6, no. June, pp. 245–260, 2007, doi: 10.1002/term.spa
dc.relation.referencesC. Ma, T. Du, X. Niu, and Y. Fan, “Biomechanics and mechanobiology of the bone matrix,” Bone Research, vol. 10, no. 1. Springer Nature, Dec. 01, 2022. doi: 10.1038/s41413-022-00223-y.spa
dc.relation.referencesA. P. Moreno Madrid, S. M. Vrech, M. A. Sanchez, and A. P. Rodriguez, “Advances in additive manufacturing for bone tissue engineering scaffolds,” Materials Science and Engineering C, vol. 100, no. March, pp. 631–644, 2019, doi: 10.1016/j.msec.2019.03.037spa
dc.relation.referencesJ. Lee, M. J. Cuddihy, and N. A. Kotov, “Three-Dimensional Cell Culture Matrices: State of the Art,” Tissue Eng Part B Rev, vol. 14, no. 1, pp. 61–86, 2008, doi: 10.1089/teb.2007.0150.spa
dc.relation.referencesK. Hargroves and M. Smith, “Innovation inspired by nature: Biomimicry,” Ecos Science for Sustainability, no. 129, pp. 27–29, 2006, doi: 10.1071/EC129p27.spa
dc.relation.referencesD. Bhate, C. Penick, L. Ferry, and C. Lee, “Classification and Selection of Cellular Materials in Mechanical Design: Engineering and Biomimetic Approaches,” Designs (Basel), vol. 3, no. 1, p. 19, 2019, doi: 10.3390/designs3010019.spa
dc.relation.referencesY. F. Tang, Y., & Zhao, “A survey of the design methods for additive manufacturing to improve,” Rapid Prototyp J, vol. 22 Iss 3 p, 2016, doi: 10.1108/RPJ-01-2015-0011.spa
dc.relation.referencesG. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review,” Appl Bionics Biomech, vol. 2018, 2018, doi: 10.1155/2018/1654782.spa
dc.relation.referencesand S. Z. X. Wang, S. Xu, “topological design and additive manufacturing of porous metal for bone scaffolds and orthopaedic implants: A Review,” Biomaterials, vol. 83, pp. 127–141, 2016.spa
dc.relation.referencesS.N.chiu, “Spatial point pattern analysis by using Voronoi diagrams and Delaunay tessellations - A comparative study,” Biometrical Journal, vol. 45, no. 3, pp. 367–376, 2003, doi: 10.1002/bimj.200390018.spa
dc.relation.referencesM. F. A.- Lorna J. Gibson, Cellular solids - Second Edition (1), 2nd ed. Cambridge, 1999.spa
dc.relation.referencesV. S. Deshpande, M. F. Ashby, and N. A. Fleck, “Foam topology: Bending versus stretching dominated architectures,” Acta Mater, vol. 49, no. 6, pp. 1035–1040, 2001, doi: 10.1016/S1359-6454(00)00379-7.spa
dc.relation.referencesX. Y. Kou, S. T. Tan, J. Møller, and D. Stoyan, “Stochastic Geometry and Random Tessellations,” CAD Computer Aided Design, vol. 42, no. 1995, pp. 1–32, 2010, doi: 10.1016/j.cad.2010.06.006.spa
dc.relation.referencesC. Alsina, las mil caras de la belleza geometrica, vol. 1. 2010. doi: 10.1017/CBO9781107415324.004.spa
dc.relation.referencesN. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.spa
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.spa
dc.relation.referencesM. Godfrey, “Chapter-22 Extracellular Matrix,” Essentials of Biochemistry (For Medical Students), pp. 329–336, 2009, doi: 10.5005/jp/books/11965_22.spa
dc.relation.referencesQ. L. Loh and C. Choong, “Three-Dimensional Scaffolds for Tissue Engineering Applications: Role of Porosity and Pore Size,” Tissue Eng Part B Rev, vol. 19, no. 6, pp. 485–502, 2013, doi: 10.1089/ten.teb.2012.0437.spa
dc.relation.referencesO. D. Acevedo Rueda, G. P. Fernández Morales, and J. F. Ramírez Patiño, “Definición geométrica de andamios metálicos para posibles aplicaciones en ingeniería de tejidos,” Inge Cuc, vol. 15, no. 1, pp. 17–24, 2019, doi: 10.17981/ingecuc.15.1.2019.02.spa
dc.relation.referencesPearlin, S. Nayak, G. Manivasagam, and D. Sen, “Progress of Regenerative Therapy in Orthopedics,” Curr Osteoporos Rep, vol. 16, no. 2, pp. 169–181, 2018, doi: 10.1007/s11914-018-0428-x.spa
dc.relation.referencesF. Matassi, L. Nistri, M. Innocenti, and D. C. Paez, “New biomaterials for bone regeneration Mini-review,” Clin Cases Miner Bone Metab, vol. 8, pp. 21–24, 2011, doi: 10.1007/s00264-012-1525-6.spa
dc.relation.referencesASTM, “ASTM F2792 - 12a. Standard Terminology for Additive Manufacturing Technologies,” ASTM F2792-10e1. pp. 2–4, 2013. doi: 10.1520/F2792-12A.2.spa
dc.relation.referencesI. Gibson, D. Rosen, and B. Stucker, Additive manufacturing technologies: 3D printing, rapid prototyping, and direct digital manufacturing, second edition. 2015. doi: 10.1007/978-1-4939-2113-3.spa
dc.relation.referencesM. K. Thompson et al., “Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints,” CIRP Ann Manuf Technol, vol. 65, no. 2, pp. 737–760, 2016, doi: 10.1016/j.cirp.2016.05.004.spa
dc.relation.referencesM. A. Sabino, M. Loaiza, J. Dernowsek, R. Rezende, and J. V. L. Da Silva, “Técnicas para la fabricación de andamios poliméricos con aplicaciones en ingeniería de tejidos,” Revista Latinoamericana de Metalurgia y Materiales, vol. 37, no. 2, pp. 120–146, 2017.spa
dc.relation.referencesP. J. Bártolo, Stereolithography: Materials, Processes and Applications. 2011.spa
dc.relation.referencesA. Ronca, L. Ambrosio, and D. W. Grijpma, “Preparation of designed poly(d,l-lactide)/nanosized hydroxyapatite composite structures by stereolithography,” Acta Biomater, vol. 9, no. 4, pp. 5989–5996, 2013, doi: 10.1016/j.actbio.2012.12.004.spa
dc.relation.referencesB. Yuan, S. yuan Zhou, and X. sheng Chen, “Rapid prototyping technology and its application in bone tissue engineering,” J Zhejiang Univ Sci B, vol. 18, no. 4, pp. 303–315, 2017, doi: 10.1631/jzus.B1600118.spa
dc.relation.referencesL. C.-S. Chua Chee Kai, Leong Kah Fai, RAPID PROTOTYPING: PRINCIPLES AND APPLICATIONS, 2nd Edition, 2nd ed. World Scientific Publishing Co. Pte. Ltd, 2003.spa
dc.relation.referencesK. Tappa and U. Jammalamadaka, “Novel biomaterials used in medical 3D printing techniques,” J Funct Biomater, vol. 9, no. 1, 2018, doi: 10.3390/jfb9010017.spa
dc.relation.referencesStratasys, “How PolyJet 3D Printing Works,” computer aided technology. Accessed: Jan. 22, 2020. [Online]. Available: https://www.cati.com/3d-printing/polyjet-technology/spa
dc.relation.referencesY. W. Chen, H. Y. Fang, M. Y. Shie, and Y. F. Shen, “The mussel-inspired assisted apatite mineralized on PolyJet material for artificial bone scaffold,” Int J Bioprint, vol. 5, no. 2, pp. 83–88, 2019, doi: 10.18063/ijb.v5i2.197.spa
dc.relation.referencesS. M. Peltola, F. P. W. Melchels, D. W. Grijpma, and M. Kellomäki, “A review of rapid prototyping techniques for tissue engineering purposes,” Annals of Medicine, vol. 40, no. 4. pp. 268–280, 2008. doi: 10.1080/07853890701881788.spa
dc.relation.referencesA. M. Tarawneh, M. Wettergreen, and M. A. K. Liebschner, “Computer-aided tissue engineering: Benefiting from the control over scaffold micro-architecture,” Methods in Molecular Biology, vol. 868, pp. 1–25, 2012, doi: 10.1007/978-1-61779-764-4_1.spa
dc.relation.referencesC. K. Chua, K. F. Leong, C. M. Cheah, and S. W. Chua, “Development of a tissue engineering scaffold structure library for rapid prototyping. Part 1: Investigation and classification,” International Journal of Advanced Manufacturing Technology, vol. 21, no. 4, pp. 291–301, 2003, doi: 10.1007/s001700300034.spa
dc.relation.referencesN. Sudarmadji, C. K. Chua, and K. F. Leong, “The development of computer-aided system for tissue scaffolds (CASTS) system for functionally graded tissue-engineering scaffolds,” Methods in Molecular Biology, vol. 868, pp. 111–123, 2012, doi: 10.1007/978-1-61779-764-4_7.spa
dc.relation.referencesP. Navarrete-Segado, M. Tourbin, C. Frances, and D. Grossin, “Masked stereolithography of hydroxyapatite bioceramic scaffolds: From powder tailoring to evaluation of 3D printed parts properties,” Open Ceramics, vol. 9, 2022, doi: 10.1016/j.oceram.2022.100235.spa
dc.relation.referencesM. M. Bazyar, S. A. A. B. Tabary, D. Rahmatabdi, K. Mohammadi, and R. Hashemi, “A novel practical method for the production of Functionally Graded Materials by varying exposure time via photo-curing 3D printing,” J Manuf Process, vol. 103, pp. 136–143, Oct. 2023, doi: 10.1016/j.jmapro.2023.08.018.spa
dc.relation.referencesB. ALICONA, “No Title,” Surface Roughness vs. Surface texture measurement comparison | Alicona. Accessed: May 03, 2023. [Online]. Available: https://www.alicona.com/en/publications/publication/surface-roughness-vs-surface-texture-measurement-comparison/spa
dc.relation.referencesS. Ponader et al., “Effects of topographical surface modifications of electron beam melted Ti-6Al-4V titanium on human fetal osteoblasts,” J Biomed Mater Res A, vol. 84, no. 4, pp. 1111–1119, Mar. 2008, doi: 10.1002/jbm.a.31540.spa
dc.relation.referencesP. Mondal, A. Das, A. Wazeer, and A. Karmakar, “Biomedical porous scaffold fabrication using additive manufacturing technique: Porosity, surface roughness and process parameters optimization,” International Journal of Lightweight Materials and Manufacture, vol. 5, no. 3, pp. 384–396, Sep. 2022, doi: 10.1016/j.ijlmm.2022.04.005.spa
dc.relation.referencesÉ. Lakatos, L. Magyar, and I. Bojtár, “Material properties of the mandibular trabecular bone,” in 28th Danubia - Adria - Symposium on Advances in Experimental Mechanics, DAS 2011, 2011. doi: 10.1155/2014/470539.spa
dc.relation.referencesN. Chantarapanich, P. Puttawibul, S. Sucharitpwatskul, P. Jeamwatthanachai, S. Inglam, and K. Sitthiseripratip, “Scaffold library for tissue engineering: A geometric evaluation,” Comput Math Methods Med, vol. 2012, 2012, doi: 10.1155/2012/407805.spa
dc.relation.referencesP. Bogusz, A. Popławski, M. Stankiewicz, and B. Kowalski, “Citation: materials Experimental Research of Selected Lattice Structures Developed with 3D Printing Technology,” 2022, doi: 10.3390/ma.spa
dc.relation.referencesB. Herath et al., “Mechanical and geometrical study of 3D printed Voronoi scaffold design for large bone defects,” Mater Des, vol. 212, Dec. 2021, doi: 10.1016/j.matdes.2021.110224.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.decsIngeniería de Tejidos/métodosspa
dc.subject.decsTissue Engineering/methodseng
dc.subject.decsEstereolitografíaspa
dc.subject.decsStereolithographyeng
dc.subject.decsTecnologíaspa
dc.subject.decsTechnologyeng
dc.subject.proposalScaffoldsspa
dc.subject.proposalDiseñospa
dc.subject.proposalIngeniera de tejidos óseospa
dc.subject.proposalManufactura aditiva (MA)spa
dc.subject.proposalCeldas poliédricasspa
dc.subject.proposalVoronoispa
dc.subject.proposalScaffoldseng
dc.subject.proposalDesigneng
dc.subject.proposalBone tissue engineereng
dc.subject.proposalAdditive manufacturing (AM)eng
dc.subject.proposalPolyhedral cellseng
dc.subject.proposalVoronoieng
dc.titleDiseño de la estructura interna de un andamio (scaffold) para tejido óseospa
dc.title.translatedDesign of the internal structure of a scaffold for bone tissueeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1013601639.2024.pdf
Tamaño:
6.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Materiales y Procesos

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: