Estudio de nuevos modelos epidemiológicos compartiméntales con inafectabilidad estocástica y movilidad

dc.contributor.advisorLondoño Londoño, Jaime Alberto
dc.contributor.authorGallego Murillo, Jarvin Jeffrey
dc.date.accessioned2021-08-17T21:41:19Z
dc.date.available2021-08-17T21:41:19Z
dc.date.issued2021
dc.descriptionfiguras
dc.description.abstractBased on the study of recent and classical epidemiological models, we present a susceptible-infected-recovered (SIR) epidemiological compartment model in different regions encompassing the movement of individuals among such regions. In the first chapter, preliminaries of stochastic analysis are presented, which are needed to develop the theory. In the second chapter, we propose a stochastic model having as a starting point the SIR model. The feasibility of the model is demonstrated when assuring the existence and uniqueness of the solutions. Apart from showing a lack of explosion in the solutions and the positivity of the solutions, it is also shown a stability condition for the process of the sum of infected individuals in the regions. Also, we relate this result with the deterministic case and the extinction of the infection in a single region. In the third chapter, some numerical simulations were conducted explaining the implemented numerical method and comparing such solutions to the deterministic case.eng
dc.description.abstractBasándonos en el estudio de literatura reciente y clásica de los modelos epidemiológicos, presentamos un modelo epidemiológico compartimental (SIR) susceptible-infectado-recuperado con múltiples regiones y movimiento de individuos entre dichas regiones. En el primer capitulo se presentan los preliminares de análisis estocástico, los cuales son necesarios para desarrollar la teoría. En el segundo capitulo proponemos un modelo estocástico teniendo como punto de partida el modelo SIR. La viabilidad del modelo se demuestra al asegurar la existencia y unicidad de las soluciones. Además, de mostrar la falta de explosión de las soluciones y la positividad de las soluciones, también se muestra una condición de estabilidad para el proceso de la suma de los individuos infectados en las regiones. También, relacionamos este resultado con el caso determinístico y la extinción de la infección en una sola región. En el tercer capítulo, se presentan simulaciones numéricas, explicamos el método numérico implementado y se comparan las soluciones con el modelo determinístico. (Texto tomado de la fuente)spa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemática Aplicadaspa
dc.description.researchareaStochastic Epidemiologyspa
dc.format.extent62 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79958
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Matemáticas y Estadísticaspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Matemática Aplicadaspa
dc.relation.references[Allen, 2017] Allen, L. J. (2017). A primer on stochastic epidemic models: Formulation, numerical simulation, and analysis. Infectious Disease Modelling, 2(2):128– 142.spa
dc.relation.references[Anqi Miao et al., 2018] Anqi Miao, Tongqian Zhang, Jian Zhang, and Chaoyang Wang (2018). DYNAMICS OF A STOCHASTIC SIR MODEL WITH BOTH HORIZONTAL AND VERTICAL TRANSMISSION. Journal of Applied Analysis & Computation, 8(4):1108–1121.spa
dc.relation.references[Aràndiga et al., 2020] Aràndiga, F., Baeza, A., Cordero-Carrión, I., Donat, R., Martí, M. C., Mulet, P., and Yáñez, D. F. (2020). A spatial-temporal model for the evolution of the COVID-19 pandemic in spain including mobility. Mathematics, 8(10):1–19.spa
dc.relation.references[Arnold, 1974] Arnold, L. (1974). Stochastic Differential Equations: Theory and Applications. JOHN WILEY & SONS.spa
dc.relation.references[Besançon et al., 2019] Besançon, M., Anthoff, D., Arslan, A., Byrne, S., Lin, D., Papamarkou, T., and Pearson, J. (2019). Distributions.jl: Definition and Modeling of Probability Distributions in the JuliaStats Ecosystem. http://arxiv.org/ abs/1907.08611.spa
dc.relation.references[Bezanson et al., 2017] Bezanson, J., Edelman, A., Karpinski, S., and Shah, V. B. (2017). Julia: A Fresh Approach to Numerical Computing. SIAM Review, 59(1):65–98.spa
dc.relation.references[Brugnano and Iavernaro, 2020] Brugnano, L. and Iavernaro, F. (2020). A multiregion variant of the SIR model and its extensions. http://arxiv.org/abs/2003. 09875.spa
dc.relation.references[Cao et al., 2020] Cao, Z., Shi, Y., Wen, X., Su, H., and Li, X. (2020). Dynamic behaviors of a two-group stochastic SIRS epidemic model with standard incidence rates. Physica A: Statistical Mechanics and its Applications, 554:124628.spa
dc.relation.references[Chen et al., 2014] Chen, Y., Yan, M., and Xiang, Z. (2014). Transmission Dynamics of a Two-City SIR Epidemic Model with Transport-Related Infections. Journal of Applied Mathematics, 2014:1–12.spa
dc.relation.references[Dalal et al., 2008] Dalal, N., Greenhalgh, D., and Mao, X. (2008). A stochastic model for internal HIV dynamics. Journal of Mathematical Analysis and Applications, 341(2):1084–1101.spa
dc.relation.references[DIRECTION GÉNÉRALE DES ENTREPRISES, 2018] DIRECTION GÉNÉRALE DES ENTREPRISES (2018). LE 4 PAGES DE LA DGE. https://www.entreprises.gouv.fr/files/files/directions{_}services/ etudes-et-statistiques/4p-DGE/2019-07-4Pn88-EVE.pdf.spa
dc.relation.references[Godio et al., 2020] Godio, A., Pace, F., and Vergnano, A. (2020). SEIR Modeling of the Italian Epidemic of SARS-CoV-2 Using Computational Swarm Intelligence. International Journal of Environmental Research and Public Health, 17(10):3535.spa
dc.relation.references[Gray et al., 2011] Gray, A., Greenhalgh, D., Hu, L., Mao, X., and Pan, J. (2011). A Stochastic Differential Equation SIS Epidemic Model. SIAM Journal on Applied Mathematics, 71(3):876–902.spa
dc.relation.references[Hurn et al., 2003] Hurn, A. S., Lindsay, K. A., and Martin, V. L. (2003). On the efficacy of simulated maximum likelihood for estimating the parameters of stochastic differential Equations*. Journal of Time Series Analysis, 24(1):45–63.spa
dc.relation.references[Irwin, 2008] Irwin, J. O. (2008). Mathematical Epidemiology, volume 1945 of Lecture Notes in Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.references[Ji et al., 2011] Ji, C., Jiang, D., and Shi, N. (2011). Multigroup SIR epidemic model with stochastic perturbation. Physica A: Statistical Mechanics and its Applications, 390(10):1747–1762.spa
dc.relation.references[Johns Hopkins University of Medicine, 2020] Johns Hopkins University of Medicine (2020). CORONAVIRUS RESOURCE CENTER. https: //coronavirus.jhu.edu/.spa
dc.relation.references[Karatzas and Shreve, 1998] Karatzas, I. and Shreve, S. E. (1998). Brownian Motion and Stochastic Calculus, volume 113 of Graduate Texts in Mathematics. Springer New York, New York, NY.spa
dc.relation.references[Karnakov et al., 2020] Karnakov, P., Arampatzis, G., Kii, I., Wermelinger, F., Wlchli, D., Papadimitriou, C., and Koumoutsakos, P. (2020). Data-driven inference of the reproduction number for COVID-19 before and after interventions for 51 European countries. Swiss Medical Weekly.spa
dc.relation.references[Kermack and McKendrick, 1927] Kermack, W. O. and McKendrick, A. G. (1927). A contribution to the mathematical theory of epidemics. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 115(772):700–721.spa
dc.relation.references[Khasminskii, 2012] Khasminskii, R. (2012). Stochastic Stability of Differential Equations, volume 66 of Stochastic Modelling and Applied Probability. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.references[Kiran et al., 2020] Kiran, R., Roy, M., Abbas, S., and Taraphder, A. (2020). Effect of population migration and punctuated lockdown on the spread of infectious diseases. http://arxiv.org/abs/2006.15010.spa
dc.relation.references[Kloeden and Platen, 1992] Kloeden, P. E. and Platen, E. (1992). Numerical Solution of Stochastic Differential Equations, volume 53. Springer Berlin Heidelberg, Berlin, Heidelberg.spa
dc.relation.references[Lin and Jiang, 2013] Lin, Y. and Jiang, D. (2013). Long-time behaviour of a perturbed sir model by white noise. Discrete and Continuous Dynamical Systems - Series B, 18(7):1873–1887.spa
dc.relation.references[Liu and Jiang, 2019] Liu, Q. and Jiang, D. (2019). Dynamical behavior of a stochastic multigroup SIR epidemic model. Physica A: Statistical Mechanics and its Applications, 526:120975.spa
dc.relation.references[Liu et al., 2019] Liu, Q., Jiang, D., Hayat, T., and Alsaedi, A. (2019). Dynamics of a stochastic multigroup SIQR epidemic model with standard incidence rates. Journal of the Franklin Institute, 356(5):2960–2993.spa
dc.relation.references[Londoño, 2020] Londoño, J. A. (2020). Stochastic Analysis. Universidad Nacional de Colombia, Bogota, Colombia.spa
dc.relation.references[Londoño and Villegas, 2016] Londoño, J. A. and Villegas, A. M. (2016). Numerical performance of some Wong-Zakai type approximations for stochastic differential equations. International Journal of Pure and Applied Mathematics, 107(2):301– 315.spa
dc.relation.references[Mao, 1991] Mao, X. (1991). A note on global solution to stochastic differential equation based on a semimartingale with spatial parameters. Journal of Theoretical Probability, 4(1):161–167.spa
dc.relation.references[Mao, 2008] Mao, X. (2008). Stochastic Differential Equations and Applications. Woodhead Publishing, second edition.spa
dc.relation.references[Mao et al., 2002] Mao, X., Marion, G., and Renshaw, E. (2002). Environmental Brownian noise suppresses explosions in population dynamics. Stochastic Processes and their Applications, 97(1):95–110.spa
dc.relation.references[Markus, 2012] Markus, K. (2012).Stochastic Differential Equations. https://www.uni-ulm.de/fileadmin/website_uni_ulm/mawi.inst.020/ kunze/SDE/sde_skript.pdf.spa
dc.relation.references[Nualart, 2011] Nualart, D. (2011). Stochastic Processes. https://nualart.ku.edu/StochasticCalculus.pdf.spa
dc.relation.references[Øksendal, 2003] Øksendal, B. (2003). Stochastic Differential Equations, volume 53 of Universitext. Springer Berlin Heidelberg, Berlin, Heidelberg, fifth edition.spa
dc.relation.references[Perasso, 2018] Perasso, A. (2018). An Introduction to The Basic Reproduction Number in Mathematical Epidemiology. ESAIM: Proceedings and Surveys, 62:123–138.spa
dc.relation.references[Rackauckas and Nie, 2017] Rackauckas, C. and Nie, Q. (2017). DifferentialEquations. jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia. Journal of Open Research Software, 5.spa
dc.relation.references[Simha et al., 2020] Simha, A., Prasad, R. V., and Narayana, S. (2020). A simple Stochastic SIR model for COVID 19 Infection Dynamics for Karnataka: Learning from Europe. http://arxiv.org/abs/2003.11920.spa
dc.relation.references[Sistema statistico nazionale Istituto nazionale di Statistica, 2019] Sistema statistico nazionale Istituto nazionale di Statistica (2019). ANNUARIO STATISTICO ITALIANO 2019. https://www.istat.it/it/files//2019/12/Asi-2019.pdf.spa
dc.relation.references[Steele, 2001] Steele, J. M. (2001). Stochastic Calculus and Financial Applications, volume 53. Springer New York, New York, NY.spa
dc.relation.references[Plotly Technologies, 2015] Plotly Technologies (2015). Collaborative data science. https://plot.ly.spa
dc.relation.references[WORLD TOURISM ORGANIZATION, 2021] WORLD TOURISM ORGANIZATION (2021). UNWTO. https://www.unwto.org/.spa
dc.relation.references[Xu, 2017] Xu, C. (2017). Global threshold dynamics of a stochastic differential equation SIS model. Journal of Mathematical Analysis and Applications, 447(2):736–757.spa
dc.relation.references[Xu and Li, 2018] Xu, C. and Li, X. (2018). The threshold of a stochastic delayed SIRS epidemic model with temporary immunity and vaccination. Chaos, Solitons & Fractals, 111:227–234.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.lcshEpidemiology--Mathematical models
dc.subject.lembEpidemiología -- Modelos matemáticos - Tesis y disertaciones académicas
dc.subject.proposalModelo SIR epidemiologicospa
dc.subject.proposalEcuación diferencial estocásticaspa
dc.subject.proposalTransportespa
dc.subject.proposalExtensión multi-regionspa
dc.subject.proposalSIR epidemic modeleng
dc.subject.proposalStochastic differential equationeng
dc.subject.proposalTransportationeng
dc.subject.proposalMulti-region extensioneng
dc.titleEstudio de nuevos modelos epidemiológicos compartiméntales con inafectabilidad estocástica y movilidadspa
dc.title.translatedStudy of New Compartmental Epidemiological Models with Stochastic Infectivity and Mobilityeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053854263.2021.pdf
Tamaño:
977.25 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemática Aplicada

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: