Muestreo de Estructuras de Redes en Datos no Estructurados

dc.contributor.advisorTrujillo Oyola, Leonardo
dc.contributor.advisorRamirez Gil, Joaquin Guillermo
dc.contributor.authorVelásquez Tafur, Luis David
dc.date.accessioned2024-01-16T16:26:36Z
dc.date.available2024-01-16T16:26:36Z
dc.date.issued2023-11-02
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEste trabajo aborda el problema práctico en la industria fitosanitaria de la producción de arroz mediante la implementación de una metodología de muestreo estadístico en redes. Se analizan diversos métodos para el muestreo en redes, incluyendo muestreo aleatorio simple, estimador Horvitz Thompson, clasificación no supervisada, y estimación Monte Carlo. Se exploran también muestreos de redes, enfocándose en nodos y conexiones específicas. Luego, se aplican estos conceptos al muestreo fitosanitario en cultivos de arroz utilizando datos de Fedearroz. (Texto tomado de la fuente)spa
dc.description.abstractThis work addresses the practical problem in the phytosanitary industry of rice production through the implementation of a statistical sampling methodology in networks. Various methods for network sampling are analyzed, including simple random sampling, Horvitz Thompson estimator, unsupervised classification, and Monte Carlo estimation. Network samplings are also explored, focusing on specific nodes and connections. Subsequently, these concepts are applied to phytosanitary sampling in rice crops using data from Fedearroz.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en estadísticaspa
dc.description.researchareaMuestreo estadísticospa
dc.description.technicalinfoMuestreo en redesspa
dc.format.extentxi, 69 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85329
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesFrank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89spa
dc.relation.referencesFrank, O. (1977b), ‘A note on bernoulli sampling in graphs and horvitz-thompson estima- tion’, Scandinavian Journal of Statistics pp. 178–180.spa
dc.relation.referencesFrank, O. (1977c), ‘Survey sampling in graphs’, Journal of Statistical Planning and Inference 1(3), 235–264.spa
dc.relation.referencesFrank, O. (1978), ‘Estimation of the number of connected components in a graph by using a sampled subgraph’, Scandinavian Journal of Statistics pp. 177–188.spa
dc.relation.referencesFrank, O. (1979), ‘Sampling and estimation in large social networks’, Social networks 1(1), 91–101.spa
dc.relation.referencesQi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103spa
dc.relation.referencesRojas, H. (2009), Estrategias de muestreo. Diseño de Encuestas y Estimación de Parámetros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4Cspa
dc.relation.referencesSärndal„ C.-E., Swensson, B. Wretman, J. (1992), Model Assisted Survey Sampling, Springer Science & Business Media.spa
dc.relation.referencesShimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.spa
dc.relation.referencesThompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234spa
dc.relation.referencesTrujillo, L., Nino, J. & G, H. (2016), ‘Latin american congress of probability and mathema- tical statistics’, CLAPEM, San José, Costa Ricaspa
dc.relation.referencesZhang, L.-C. (2021), Graph Sampling, CRC Press.spa
dc.relation.referencesZhang, L.-C. Patone, M. (2017), ‘Graph sampling’, Metron 75, 277–299.spa
dc.relation.referencesZhang, P. Itan, Y. (2019), ‘Biological network approaches and applications in rare disease studies’, Genes 10(10), 797.spa
dc.relation.referencesAgrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.spa
dc.relation.referencesAhn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.spa
dc.relation.referencesAshish (2020), ‘Graph sampling’. URL: https://github.com/Ashish7129/Graph Samplingspa
dc.relation.referencesBa˜nos, R.A. A.A., . (2020), ‘Induced random walk sampling: a new methodology for social network analysis’, Quality Quantity, 54(5), pp.1371-1387. DOI .spa
dc.relation.referencesBiggs, N., Lloyd, E. K. & Wilson, R. J. (1986), Graph Theory, 1736-1936, Oxford University Press.spa
dc.relation.referencesBinns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.spa
dc.relation.referencesBirnbaum, Z. W. & Sirken, M. G. (1965), Design of Sample Surveys to Estimate the Prevalence of Rare Diseases: Three Unbiased Estimates, number 1000, Vital Health Statistics, 2(11), pp. 1-14. National Center for Health Statistics.spa
dc.relation.referencesBloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .spa
dc.relation.referencesBrewer, K. (2002), ‘Combined survey sampling inference: Weighing basu’s elephants’, Arnold Publishers .spa
dc.relation.referencesCarrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.spa
dc.relation.referencesCassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.spa
dc.relation.referencesCharitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12.spa
dc.relation.referencesCochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.spa
dc.relation.referencesCochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.spa
dc.relation.referencesDANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.spa
dc.relation.referencesDangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.spa
dc.relation.referencesDuan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.spa
dc.relation.referencesDuda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.spa
dc.relation.referencesDurand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.spa
dc.relation.referencesFarris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.spa
dc.relation.referencesFedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .spa
dc.relation.referencesGarrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.spa
dc.relation.referencesGilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.spa
dc.relation.referencesGile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.spa
dc.relation.referencesAgrama, H. A., Yan, W., Jia, M., Fjellstrom, R., McClung, A. M. et al. (2010), ‘Genetic structure associated with diversity and geographic distribution in the usda rice world collection’, Natural Science 2(04), 247.spa
dc.relation.referencesAhn, Y.-Y., Han, S., Kwak, H., Moon, S. & Jeong, H. (2007), Analysis of topological characteristics of huge online social networking services, in ‘Proceedings of the 16th international conference on World Wide Web’, pp. 835–844.spa
dc.relation.referencesBinns, M. (2000), ‘Sampling and monitoring in crop protection: The theoretical basis for developing practical decision guides. by mr binns, jp nyrop and w. van der werf. wallingford, uk: Cabi publishing (2000), pp. 284,£ 49.95. isbn 0-85199-347-8.’, Experimental Agriculture 37(1), 125–134.spa
dc.relation.referencesBloemena, A. (1964), ‘Sampling from a graph’, MC Tracts .spa
dc.relation.referencesCarrington, P. J., Scott, J. & Wasserman, S. (2005), Models and Methods in Social Network Analysis, Vol. 28, Cambridge university press.spa
dc.relation.referencesCassel, C. M., S¨arndal, C. E. & Wretman, J. H. (1976), ‘Some results on generalized difference estimation and generalized regression estimation for finite populations’, Biometrika 63(3), 615–620.spa
dc.relation.referencesCharitou, T., Bryan, K. & Lynn, D. J. (2016), ‘Using biological networks to integrate, visualize and analyze genomics data’, Genetics Selection Evolution 48(1), 1–12spa
dc.relation.referencesCochran, W. G. (1954), ‘The combination of estimates from different experiments’, Biometrics 10(1), 101–129.spa
dc.relation.referencesCochran, W. G. (1977), Sampling Techniques, John Wiley & Sons New, York, USA.spa
dc.relation.referencesDANE (2014), 3er censo nacional agropecuario: Hay campo para todos, Technical report, Departamento Administrativo Nacional de Estad´ıstica.Bogot´a,Colombia.spa
dc.relation.referencesDangeti, P. (2017), Statistics for Machine Learning, Packt Publishing Ltd.spa
dc.relation.referencesDuan, Y. & Lu, F. (2014), ‘Robustness of city road networks at different granularities’, Physica A: Statistical Mechanics and its Applications 411, 21–34.spa
dc.relation.referencesDuda, R., Hart, P., Stork, D. & Ionescu, A. (2000), ‘Pattern classification, chapter nonparametric techniques’.spa
dc.relation.referencesDurand-Morat, A. & Bairagi, S. (2021), ‘International rice outlook: International rice baseline projections 2020-2030’.spa
dc.relation.referencesFarris, J. S. (1969), ‘On the cophenetic correlation coefficient’, Systematic Zoology 18(3), 279–285.spa
dc.relation.referencesFedearroz (2021), ‘Cultivo de arroz en colombia 1998-2016: Cambios espaciales’, Divisi´on de Investigaciones Econ´omicas .spa
dc.relation.referencesFrank, O. (1971), ‘Statistical inference in graphs’, F¨orsvarets forskningsanstalt .spa
dc.relation.referencesFrank, O. (1977a), ‘Estimation of graph totals’, Scandinavian Journal of Statistics pp. 81–89.spa
dc.relation.referencesGarrett, K., Madden, L., Hughes, G. & Pfender, W. (2004), ‘New applications of statistical tools in plant pathology’, Phytopathology 94(9), 999–1003.spa
dc.relation.referencesGilbert, E. N. (1959), ‘Random graphs’, The Annals of Mathematical Statistics 30(4), 1141– 1144.spa
dc.relation.referencesGile, K. J., Beaudry, I. S., Handcock, M. S. & Ott, M. Q. (2018), ‘Methods for inference from respondent-driven sampling data’, Annual Review of Statistics and Its Application 5, 65–93.spa
dc.relation.referencesGregoire, T. G. & Valentine, H. T. (2007), Sampling Strategies for Natural Resources and the Environment, CRC Press.spa
dc.relation.referencesGupta, L., Jain, R. & Vaszkun, G. (2015), ‘Survey of important issues in uav communication networks’, IEEE communications surveys & tutorials 18(2), 1123–1152.spa
dc.relation.referencesHarrison, R. L. (2010), Introduction to monte carlo simulation in aip conference proceedings, Vol. 1204, American Institute of Physics, pp. 17–21.spa
dc.relation.referencesHastie, T., Tibshirani, R., Friedman, J. H. & Friedman, J. H. (2009), The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Vol. 2, Springer.spa
dc.relation.referencesHorvitz, D. G. & Thompson, D. J. (1952), ‘A generalization of sampling without replacement from a finite universe’, Journal of the American statistical Association 47(260), 663–685.spa
dc.relation.referencesHu, M.-G. &Wang, J.-F. (2011), ‘A spatial sampling optimization package using msn theory’, Environmental Modelling & Software 26(4), 546–548.spa
dc.relation.referencesIFAPA (2004), ‘Comportamiento de pyricularia oryzae en las marimas del guadalquivir. eficacia fungicida frente al p´atogeno’, Junta de Andaluc´ıa. Consejer´ıa de Agricultura y Pesca .spa
dc.relation.referencesJessen, R. J. (1955), ‘Determining the fruit count on a tree by randomized branch sampling’, Biometrics 11(1), 99–109.spa
dc.relation.referencesKaufman, L. & Rousseeuw, P. J. (1990), Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley & Sons.spa
dc.relation.referencesLangville, A. N. & Meyer, C. D. (2006), Google’s PageRank and beyond: The science of Search Engine Rankings, Princeton university press.spa
dc.relation.referencesLavall´ee, P. (2007), ‘Gwsm and calibration’, Indirect Sampling pp. 121–150.spa
dc.relation.referencesLeskovec, J., Kleinberg, J. & Faloutsos, C. (2007), ‘Graph evolution: Densification and shrinking diameters’, ACM transactions on Knowledge Discovery from Data 1(1), 2–es.spa
dc.relation.referencesLinde, Y., Buzo, A. & Gray, R. (1980), ‘An algorithm for vector quantizer design’, IEEE Transactions on Communications 28(1), 84–95.spa
dc.relation.referencesL’heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. (2017), ‘Machine learning with big data: Challenges and approaches’, IEEE Access 5, 7776–7797.spa
dc.relation.referencesMadden, L. & Hughes, G. (1999), ‘Sampling for plant disease incidence’, Phytopathology 89(11), 1088–1103. URL: arxiv.org/pdf/physics/0603229.pdfspa
dc.relation.referencesMadden, L. V., Hughes, G. & Van Den Bosch, F. (2007), The Study of Plant Disease Epidemics.spa
dc.relation.referencesMcLaren, C. D. & Bruner, M. W. (2022), ‘Citation network analysis’, International Review of Sport and Exercise Psychology 15(1), 179–198.spa
dc.relation.referencesMichalski, R. S., Carbonell, J. G. & Mitchell, T. M. (2013), Machine Learning: An Artificial Intelligence Approach, Springer Science & Business Media.spa
dc.relation.referencesNajafabadi, M. M., Villanustre, F., Khoshgoftaar, T. M., Seliya, N., Wald, R. & Muharemagic, E. (2015), ‘Deep learning applications and challenges in big data analytics’, Journal of big data 2(1), 1–21.spa
dc.relation.referencesNewman, M. E. (2001), ‘The structure of scientific collaboration networks’, Proceedings of the national academy of sciences 98(2), 404–409.spa
dc.relation.referencesPearson, K. (1905), ‘The problem of the random walk’, Nature 72(1865), pp. 294.spa
dc.relation.referencesPorta, M. (2014), A Dictionary of Epidemiology, Oxford university press.spa
dc.relation.referencesPortenoy, J., Hullman, J. & West, J. D. (2017), ‘Leveraging citation networks to visualize scholarly influence over time’, Frontiers in Research Metrics and Analytics 2, 8.spa
dc.relation.referencesQi, X. (2022), ‘A review: Random walk in graph sampling’. URL: arxiv.org/abs/2209.13103spa
dc.relation.referencesRojas, H. (2009), Estrategias de muestreo. Dise˜no de Encuestas y Estimaci´on de Par´ametros, Ediciones de la U. URL: https://books.google.com.co/books?id=yiV8esNE9v4Cspa
dc.relation.referencesRousseeuw, P. J. (1987), ‘Silhouettes: A graphical aid to the interpretation and validation of cluster analysis’, Journal of Computational and Applied Mathematics 20, 53–65.spa
dc.relation.referencesSalganik, M. J. & Heckathorn, D. D. (2004), ‘Sampling and estimation in hidden populations using respondent-driven sampling’, Sociological methodology 34(1), 193–240.spa
dc.relation.referencesS¨arndal, C.-E., Swensson, B. & Wretman, J. (2003), Model Assisted Survey Sampling (2nd edition), Springer Science & Business Media.spa
dc.relation.referencesS¨arndal, C., Swensson, B. & Wretman, J. (1992), Model Assisted Survey Sampling, Springer series in statistics, Springer-Verlag. URL: https://books.google.com.co/books?id=MWCzngEACAAJspa
dc.relation.referencesShimbel, A. (1953), ‘Structural parameters of communication networks’, The bulletin of mathematical biophysics 15, 501–507.spa
dc.relation.referencesThompson, S. K. (2006), ‘Adaptive web sampling’, Biometrics 62(4), 1224–1234.spa
dc.relation.referencesVan den Bos, W., Crone, E. A., Meuwese, R. & G¨uro˘glu, B. (2018), ‘Social network cohesion in school classes promotes prosocial behavior’, PLoS One 13(4), e0194656.spa
dc.relation.referencesWiegand, H. & Kish, L. (1965), ‘Survey sampling’.spa
dc.relation.referencesXie, F. & Levinson, D. (2007), ‘Measuring the structure of road networks’, Geographical analysis 39(3), 336–356.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc310 - Colecciones de estadística generalspa
dc.subject.ddc000 - Ciencias de la computación, información y obras generalesspa
dc.subject.lembIndustrias de semillas de arrozspa
dc.subject.lembRice seed industryeng
dc.subject.lembEstadísticas y datos numéricosspa
dc.subject.lembStatistics & numerical dataeng
dc.subject.proposalMuestreo de grafosspa
dc.subject.proposalRedesspa
dc.subject.proposalCultivos de arrozspa
dc.subject.proposalMuestreo de caminatas aleatoriasspa
dc.subject.proposalMuestreo basado en nodosspa
dc.subject.proposalGraph samplingeng
dc.subject.proposalNetworkseng
dc.subject.proposalRice cropseng
dc.subject.proposalRandom walk samplingeng
dc.subject.proposalNode-based samplingeng
dc.titleMuestreo de Estructuras de Redes en Datos no Estructurados
dc.title.translatedSampling of Network Structures in Unstructured Dataeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1033817182.2023.pdf
Tamaño:
814.29 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: