Detección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michel

dc.contributor.advisorBotero Fernandez, Veronica Catalinaspa
dc.contributor.authorDíaz Herrera, Cristian Camilospa
dc.date.accessioned2024-06-25T20:07:23Z
dc.date.available2024-06-25T20:07:23Z
dc.date.issued2024-06-24
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa detección temprana de enfermedades y estrés hídrico (EH) en las plantas es crucial para la agricultura y la soberanía alimentaria de los países latinoamericanos. En este contexto, se han utilizado métodos de espectroscopía de reflectancia electromagnética visible (VIS) e infrarroja (NIR), que son no invasivos y han demostrado ser prometedores para identificar el estrés biótico y abiótico en las plantas incluso en su fase asintomática. Un ejemplo relevante de esto es la infección de las plantas de banano por enfermedades devastadoras, como la marchitez vascular causada por el hongo Fusarium oxysporum f.sp. cubense Raza 1 (FOCR1) y por la bacteria Ralstonia solanacearum Raza 2 (RSR2), que pueden resultar en pérdidas de hasta el 100% en las plantaciones. Para abordar este desafío, se llevó a cabo un estudio en el que se analizaron datos de reflectancia de 240 plantas de banano en el municipio de Carepa, ubicado en el departamento de Antioquia, Colombia. Estos datos incluyeron plantas sanas, aquellas sometidas a EH, infectadas con FOCR1, contagiadas con RSR2 y sus interacciones. El análisis se realizó utilizando un espectrómetro portátil ASD FieldSpec. Inicialmente, se aplicaron diversas técnicas de preprocesamiento a los datos de reflectancia en el rango espectral de 350-2500 nm, estas incluyen 2 de tratamiento de datos atípicos y 5 de suavizamiento. Luego, se llevaron a cabo diferentes enfoques para la selección de características, identificando las longitudes de onda que mejor discriminaban entre los diferentes tratamientos mediante la metodología RELIEF. Se emplearon métodos de clasificación supervisada, como Análisis Lineal Discriminante (ALD), Análisis Cuadrático Discriminante (ACD), Bosques Aleatorios (BA), Bayes ingenuo (BI), Máquinas de Soporte Vectorial (MSV), K vecinos más cercanos (KVC) y Perceptrón Multicapa (PM) con el objetivo de optimizar la exactitud de clasificación de los tratamientos, para esta medición se tuvo en cuenta una división de las plantas en el 75\% de entrenamiento y 25\% de prueba. Los resultados mostraron que, a pesar de que el período asintomático de las plantas de banano es de 20 días, con el ALD se logró un porcentaje de clasificación correcto del 86\% en el día 3 con métodos de preprocesamiento de Mínimos Cuadrados Asimétricos (MCAS) y la gestión de datos atípicos mediante el Método de la Bolsa (MB). Sin tener en cuenta las interacciones, la mejor metodología se obtiene al emplear un ALD con una precisión similar. Al día 6 post-inoculación, se obtienen precisiones similares con el ALD, siendo el más óptimo al usar los métodos de preprocesamiento como el de Corrección de Dispersión Multiplicativa (CDM) al tratar los datos atípicos con el MB. Estos resultados sugieren que la detección temprana de FOCR1, RSR2 y el EH en plantas de banano, mediante el uso de la espectroscopía de reflectancia, puede mejorar significativamente con la elección adecuada de metodologías de preprocesamiento, selección de características y clasificación de datos. (Texto tomado de la fuente).spa
dc.description.abstractThe early detection of diseases and water stress (WS) in plants is crucial for the agriculture and food sovereignty of Latin American countries. In this context, non-invasive methods such as visible-near infrared (VIS) and infrared (NIR) reflectance spectroscopy have been employed and proven promising for identifying biotic and abiotic stress in plants, even in asymptomatic phases. A relevant example is the infection of banana plants by devastating diseases like vascular wilt caused by the fungus Fusarium oxysporum f.sp. cubense Race 1 (FOCR1) and bacterial wilt caused by Ralstonia solanacearum Race 2 (RSR2), which can lead to losses of up to 100 % in plantations. To address this challenge, a study was conducted analyzing reflectance data from 240 banana plants in municipality of Carepa, located in the department from Antioquia, Colombia. The data included healthy plants, those subjected to WS, plants infected with FOCR1, contaged plants with RSR2, and their interactions. The analysis was performed using a portable ASD FieldSpec spectrometer. Initially, various preprocessing techniques were applied to the reflectance data in the spectral range of 350-2500 nm, including two for outlier treatment and five for smoothing. Different approaches for feature selection were then employed, identifying the wavelengths that best discriminated between the different treatments using the RELIEF methodology. Supervised classification methods such as Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), Random Forests (RF), Na¨ıve Bayes (NB), Support Vector Machines (SVM), k-Nearest Neighbors (KNN) and Multilayer Perceptron (MLP) were employed to optimize the classification accuracy of treatments. For this, a division of plants into 75 % training and 25 % testing was considered. Results showed that despite the asymptomatic period of 20 days for banana plants, LDA achieved a correct classification rate of 86 % on day 3 with asymmetric least squares (ALS) preprocessing and outlier management using the Bag method. Excluding interactions, the best methodology was obtained using LDA with similar accuracy. On day 6 post-inoculation, similar accuracies were achieved with LDA being optimal when using preprocessing methodologies such as multiplicative scatter correction (MSC) and outlier treatment with the Bag method. These results suggest that early detection of FOCR1, RSR2, and WS in banana plants through reflectance spectroscopy can significantly improve with the appropriate choice of preprocessing, feature selection, and data classification methodologies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Estadísticaspa
dc.format.extentxxi, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86300
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.indexedAgrosaviaspa
dc.relation.indexedAgrovocspa
dc.relation.references[Abdulridha et al., 2016] Abdulridha, J., Ehsani, R., and De Castro, A. (2016). Detection and differentiation between laurel wilt disease, phytophthora disease, and salinity damage using a hyperspectral sensing technique. Agriculture, 6(4):56.spa
dc.relation.references[Abu-Khalaf, 2015] Abu-Khalaf, N. (2015). Sensing tomato’s pathogen using visible/near infrared (vis/nir) spectroscopy and multivariate data analysis (mvda). Palest. Tech. Univ. Res. J., 3(1):12–22.spa
dc.relation.references[Anderson and Gupta, 2009] Anderson, H. S. and Gupta, M. R. (2009). Classifying linear system outputs by robust local bayesian quadratic discriminant analysis on linear estimators. In 2009 IEEE/SP 15th Workshop on Statistical Signal Processing, pages 789–792. IEEE.spa
dc.relation.references[Balakrishnama and Ganapathiraju, 1998] Balakrishnama, S. and Ganapathiraju, A. (1998). Linear discriminant analysis-a brief tutorial. Institute for Signal and information Processing, 18(1998):1–8.spa
dc.relation.references[Basa, 2022] Basa, J. (2022). Big data para quimiometría: Distribución asintótica del estimador pls en alta dimensión.spa
dc.relation.references[Berrar, 2019] Berrar, D. (2019). Bayes’ theorem and naive bayes classifier.spa
dc.relation.references[Bienkowski et al., 2019] Bienkowski, D., Aitkenhead, M. J., Lees, A. K., Gallagher, C., and Neilson, R. (2019). Detection and differentiation between potato (solanum tuberosum) diseases using calibration models trained with non-imaging spectrometry data. Computers and Electronics in Agriculture, 167:105056.spa
dc.relation.references[Bishop, 2006] Bishop, C. (2006). Pattern recognition and machine learning. Springer google schola, 2:531–537.spa
dc.relation.references[Bishop et al., 1995] Bishop, C. M. et al. (1995). Neural networks for pattern recognition. Oxford university press.spa
dc.relation.references[Box, 1953] Box, G. E. (1953). Non-normality and tests on variances. Biometrika, 40(3/4):318–335.spa
dc.relation.references[Breiman, 2001] Breiman, L. (2001). Random forests. Machine learning, 45(1):5–32.spa
dc.relation.references[Brown et al., 2000] Brown, C. D., Vega-Montoto, L., and Wentzell, P. D. (2000). Derivative preprocessing and optimal corrections for baseline drift in multivariate calibration. Applied Spectroscopy, 54(7):1055–1068.spa
dc.relation.references[Buja et al., 1989] Buja, A., Hastie, T., and Tibshirani, R. (1989). Linear smoothers and additive models. The Annals of Statistics, pages 453–510.spa
dc.relation.references[Choi and Marron, 2019] Choi, H. Y. and Marron, J. (2019). Theory of high-dimensional outliers. arXiv preprint arXiv:1909.02139.spa
dc.relation.references[Cortes and Vapnik, 1995] Cortes, C. and Vapnik, V. (1995). Support vector machine. Machine learning, 20(3):273–297.spa
dc.relation.references[de Carvalho et al., 2015] de Carvalho, G. G. A., Moros, J., Santos Jr, D., Krug, F. J., and Laserna, J. J. (2015). Direct determination of the nutrient profile in plant materials by femtosecond laser-induced breakdown spectroscopy. Analytica chimica acta, 876:26–38.spa
dc.relation.references[Dupas et al., 2019] Dupas, E., Legendre, B., Olivier, V., Poliakoff, F., Manceau, C., and Cunty, A. (2019). Comparison of real-time pcr and droplet digital pcr for the detection of xylella fastidiosa in plants. Journal of microbiological methods, 162:86–95.spa
dc.relation.references[el Financiero, 2019] el Financiero, P. (2019). Fusarium raza 4 tropical mantiene en vilo a los bananeros. Fecha de acceso: 02/07/2023.spa
dc.relation.references[Espectador, 2019] Espectador, P. E. (2019). Ica firma acuerdos con asociaciones bananeras para controlar hongo fusarium. Fecha de acceso: 27/08/2023.spa
dc.relation.references[FAO, 2017] FAO (2017). Manual de seguridad y salud en la industria bananera. Fecha de acceso: 01/10/2023.spa
dc.relation.references[FAO, 2019] FAO (2019). La marchitez del banano por fusarium raza 4 tropical: ¿una creciente amenaza al mercado mundial del banano? Fecha de acceso: 20/10/2022.spa
dc.relation.references[FAO, 2021] FAO (2021). Análisis del mercado del banano, resultados preliminares 2020. Fecha de acceso: 28/10/2022.spa
dc.relation.references[Farber et al., 2019a] Farber, C., Mahnke, M., Sanchez, L., and Kurouski, D. (2019a). Advanced spectroscopic techniques for plant disease diagnostics. a review. TrAC Trends in Analytical Chemistry, 118:43–49.spa
dc.relation.references[Farber et al., 2019b] Farber, C., Shires, M., Ong, K., Byrne, D., and Kurouski, D. (2019b). Raman spectroscopy as an early detection tool for rose rosette infection. Planta, 250(4):1247–1254.spa
dc.relation.references[Fegan and Prior, 2006] Fegan, M. and Prior, P. (2006). Diverse members of the ralstonia solanacearum species complex cause bacterial wilts of banana. Australasian Plant Pathology, 35:93–101.spa
dc.relation.references[Garc´ıa-Bastidas et al., 2020] Garc´ıa-Bastidas, F., Quintero-Vargas, J., Ayala-Vasquez, M., Schermer, T., Seidl, M., Santos-Paiva, M., Noguera, A., Aguilera-Galvez, C., Wittenberg, A., Hofstede, R., et al. (2020). First report of fusarium wilt tropical race 4 in cavendish bananas caused by fusarium odoratissimum in colombia. Plant disease, 104(3):994–994.spa
dc.relation.references[Gazalba et al., 2017] Gazalba, I., Reza, N. G. I., et al. (2017). Comparative analysis of k-nearest neighbor and modified k-nearest neighbor algorithm for data classification. In 2017 2nd international conferences on information technology, information systems and electrical engineering (ICITISEE), pages 294–298. IEEE.spa
dc.relation.references[Genin and Denny, 2012] Genin, S. and Denny, T. P. (2012). Pathogenomics of the ralstonia solanacearum species complex. Annual review of phytopathology, 50:67–89.spa
dc.relation.references[Gold and Sollich, 2003] Gold, C. and Sollich, P. (2003). Model selection for support vector machine classification. Neurocomputing, 55(1-2):221–249.spa
dc.relation.references[Gomez et al., 2008] Gomez, C., Rossel, R. A. V., and McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-nir spectroscopy: An australian case study. Geoderma, 146(3-4):403–411.spa
dc.relation.references[Gull et al., 2019] Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, pages 1–19.spa
dc.relation.references[Guo et al., 2003] Guo, G., Wang, H., Bell, D., Bi, Y., and Greer, K. (2003). Knn modelbased approach in classification. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE: OTM Confederated International Conferences, CoopIS, DOA, and ODBASE 2003, Catania, Sicily, Italy, November 3-7, 2003. Proceedings, pages 986–996. Springer.spa
dc.relation.references[Hanusz et al., 2018] Hanusz, Z., Enomoto, R., Seo, T., and Koizumi, K. (2018). A monte carlo comparison of jarque–bera type tests and henze–zirkler test of multivariate normality. Communications in Statistics-Simulation and Computation, 47(5):1439–1452.spa
dc.relation.references[Hou et al., 2022] Hou, B., Hu, Y., Zhang, P., and Hou, L. (2022). Potato late blight severity and epidemic period prediction based on vis/nir spectroscopy. Agriculture, 12(7):897.spa
dc.relation.references[(ICA), 2020] (ICA), I. C. A. (2020). Fusarium r4t. Fecha de acceso: 27/08/2023.spa
dc.relation.references[Ignat et al., 2022] Ignat, T., Shavit, Y., Rachmilevitch, S., and Karnieli, A. (2022). Spectral monitoring of salinity stress in tomato plants. Biosystems Engineering, 217:26–40.spa
dc.relation.references[Jie et al., 2009] Jie, L., Zifeng, W., Lixiang, C., Hongming, T., Patrik, I., Zide, J., and Shining, Z. (2009). Artificial inoculation of banana tissue culture plantlets with indigenous endophytes originally derived from native banana plants. Biological control, 51(3):427–434.spa
dc.relation.references[Kaliramesh et al., 2013] Kaliramesh, S., Chelladurai, V., Jayas, D., Alagusundaram, K., White, N., and Fields, P. (2013). Detection of infestation by callosobruchus maculatus in mung bean using near-infrared hyperspectral imaging. Journal of Stored Products Research, 52:107–111.spa
dc.relation.references[Khaled et al., 2018a] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., and Seman, I. A. (2018a). Spectral features selection and classification of oil palm leaves infected by basal stem rot (bsr) disease using dielectric spectroscopy. Computers and Electronics in Agriculture, 144:297–309.spa
dc.relation.references[Khaled et al., 2018b] Khaled, A. Y., Abd Aziz, S., Bejo, S. K., Nawi, N. M., Seman, I. A., and Onwude, D. I. (2018b). Early detection of diseases in plant tissue using spectroscopy– applications and limitations. Applied Spectroscopy Reviews, 53(1):36–64.spa
dc.relation.references[Kira and Rendell, 1992] Kira, K. and Rendell, L. A. (1992). The feature selection problem: Traditional methods and a new algorithm. In Proceedings of the tenth national conference on Artificial intelligence, pages 129–134.spa
dc.relation.references[Klap et al., 2020] Klap, C., Luria, N., Smith, E., Bakelman, E., Belausov, E., Laskar, O., Lachman, O., Gal-On, A., and Dombrovsky, A. (2020). The potential risk of plant-virus disease initiation by infected tomatoes. Plants, 9(5):623.spa
dc.relation.references[Koc et al., 2020] Koc, G., Fidan, H., Sari, N., and C¸ALIS¸, O. (2020). A comparative study on apple chlorotic leafspot virus (aclsv) isolates from different hosts in the east mediterranean region of turkey. APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 18(1):141–157.spa
dc.relation.references[Kononenko, 1994] Kononenko, I. (1994). Estimating attributes: Analysis and extensions of relief. In European conference on machine learning, pages 171–182. Springer.spa
dc.relation.references[Learning, 1997] Learning, M. (1997). Tom mitchell. Publisher: McGraw Hill.spa
dc.relation.references[LeCun et al., 1989] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., and Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural computation, 1(4):541–551.spa
dc.relation.references[Li et al., 2014] Li, M.-H., Xie, X.-L., Lin, X.-F., Shi, J.-X., Ding, Z.-J., Ling, J.-F., Xi, P.-G., Zhou, J.-N., Leng, Y., Zhong, S., et al. (2014). Functional characterization of the gene fooch1 encoding a putative α-1, 6-mannosyltransferase in fusarium oxysporum f. sp. cubense. Fungal Genetics and Biology, 65:1–13.spa
dc.relation.references[Li et al., 2008] Li, R., Mock, R., Huang, Q., Abad, J., Hartung, J., and Kinard, G. (2008). A reliable and inexpensive method of nucleic acid extraction for the pcr-based detection of diverse plant pathogens. Journal of Virological Methods, 154(1-2):48–55.spa
dc.relation.references[Lipton et al., 2014] Lipton, Z. C., Elkan, C., and Narayanaswamy, B. (2014). Thresholding classifiers to maximize f1 score. arXiv preprint arXiv:1402.1892.spa
dc.relation.references[Luana et al., 2015] Luana, G., Fabiano, S., Fabio, G., and Paolo, G. (2015). Comparing visual inspection of trees and molecular analysis of internal wood tissues for the diagnosis of wood decay fungi. Forestry: An International Journal of Forest Research, 88(4):465–470.spa
dc.relation.references[Macias-Echeverri et al., 2022] Macias-Echeverri, E., Hoyos-Carvajal, L. M., Botero- Fernández, V., Zapata-Henao, S., and Marín-Ortiz, J. C. (2022). Spectral behavior of banana with foc r1 infection: Analysis of williams and gros michel clones. Agronomía Colombiana, 40(3).spa
dc.relation.references[Madihah et al., 2014] Madihah, A., Idris, A., and Rafidah, A. (2014). Polyclonal antibodies of ganoderma boninense isolated from malaysian oil palm for detection of basal stem rot disease. African Journal of Biotechnology, 13(34).spa
dc.relation.references[Manzo-Sánchez et al., 2014] Manzo-Sánchez, G., Orozco-Santos, M., Martínez-Bolaños, L., Garrido-Ramírez, E., and Canto-Canche, B. (2014). Enfermedades de importancia cuarentenaria y económica del cultivo de banano (musa sp.) en México. Revista mexicana de fitopatología, 32(2):89–107.spa
dc.relation.references[Mar´ın-Ortiz et al., 2020] Marín-Ortiz, J. C., Gutierrez-Toro, N., Botero-Fernández, V., and Hoyos-Carvajal, L. M. (2020). Linking physiological parameters with visible/near-infrared leaf reflectance in the incubation period of vascular wilt disease. Saudi Journal of Biological Sciences, 27(1):88–99.spa
dc.relation.references[Martens et al., 1983] Martens, H., Jensen, S., and Geladi, P. (1983). Multivariate linearity transformation for near-infrared reflectance spectrometry. In Proceedings of the Nordic symposium on applied statistics, pages 205–234. Stokkand Forlag Publishers Stavanger, Norway.spa
dc.relation.references[Monroy and Rivera, 2012] Monroy, L. G. D. and Rivera, M. A. M. (2012). Análisis estadístico de datos multivariados. Universidad Nacional de Colombia.spa
dc.relation.references[Montoya Rios et al., 2022] Montoya Rios, D. P., Molano Prieto, O. J., et al. (2022). Análisis de producción, rendimiento y exportación de banano en los principales países afectados por el hongo fusarium oxysporum f. sp. cubense (foc r4t) y recomendaciones para Colombia.spa
dc.relation.references[Morellos et al., 2020] Morellos, A., Tziotzios, G., Orfanidou, C., Pantazi, X. E., Sarantaris, C., Maliogka, V., Alexandridis, T. K., and Moshou, D. (2020). Non-destructive early detection and quantitative severity stage classification of tomato chlorosis virus (tocv) infection in young tomato plants using vis–nir spectroscopy. Remote Sensing, 12(12):1920.spa
dc.relation.references[Mosa et al., 2017] Mosa, K. A., Ismail, A., and Helmy, M. (2017). Introduction to plant stresses. In Plant stress tolerance, pages 1–19. Springer.spa
dc.relation.references[Müller and Guido, 2016] Müller, A. C. and Guido, S. (2016). Introduction to machine learning with Python: a guide for data scientists. .O’Reilly Media, Inc.”.spa
dc.relation.references[Muncan et al., 2022] Muncan, J., Jinendra, B. M. S., Kuroki, S., and Tsenkova, R. (2022). Aquaphotomics research of cold stress in soybean cultivars with different stress tolerance ability: Early detection of cold stress response. Molecules, 27(3):744.spa
dc.relation.references[Murphy, 2012] Murphy, K. P. (2012). Machine learning: a probabilistic perspective. MIT press.spa
dc.relation.references[Newey and Powell, 1987] Newey, W. K. and Powell, J. L. (1987). Asymmetric least squares estimation and testing. Econometrica: Journal of the Econometric Society, pages 819–847.spa
dc.relation.references[Pal, 2005] Pal, M. (2005). Random forest classifier for remote sensing classification. International journal of remote sensing, 26(1):217–222.spa
dc.relation.references[Pavia et al., 2014] Pavia, D. L., Lampman, G. M., Kriz, G. S., and Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage learning.spa
dc.relation.references[Ploetz, 2006] Ploetz, R. C. (2006). Fusarium wilt of banana is caused by several pathogens referred to as fusarium oxysporum f. sp. cubense. Phytopathology, 96(6):653–656.spa
dc.relation.references[Ploetz, 2015] Ploetz, R. C. (2015). Fusarium wilt of banana. Phytopathology, 105(12):1512– 1521.spa
dc.relation.references[R. Beghi and Guidetti, 2017] R. Beghi, V. Giovenzana, L. B. and Guidetti, R. (2017). Rapid evaluation of grape phytosanitary status directly at the check point station entering the winery by using visible/near infrared spectroscopy. Journal of Food Engineering, 204:46–54.spa
dc.relation.references[Ramsay and Silverman, 2002] Ramsay, J. O. and Silverman, B. W. (2002). Applied functional data analysis: methods and case studies. Springer.spa
dc.relation.references[Reyes-Matamoros et al., 2014] Reyes-Matamoros, J., Mart´ınez-Moreno, D., Rueda-Luna, R., and Rodr´ıguez-Ram´ırez, T. (2014). Efecto del estr´es h´ıdrico en plantas de frijol (phaseolus vulgaris l.) en condiciones de invernadero. Revista Iberoamericana de Ciencias, 1(2):191–203.spa
dc.relation.references[Rinnan et al., 2009] Rinnan, A., Van Den Berg, F., and Engelsen, S. B. (2009). Review of the most common pre-processing techniques for near-infrared spectra. TrAC Trends in Analytical Chemistry, 28(10):1201–1222.spa
dc.relation.references[Roa Martínez and Loaiza Correa, 2011] Roa Martínez, S. M. and Loaiza Correa, H. (2011). Evaluation of techniques for relevance analysis of radiological images using filters. Revista Ingeniería Biomédica, 5(9):26–34.spa
dc.relation.references[Rousseeuw et al., 1999] Rousseeuw, P. J., Ruts, I., and Tukey, J. W. (1999). The bagplot: a bivariate boxplot. The American Statistician, 53(4):382–387.spa
dc.relation.references[Rumpf et al., 2010] Rumpf, T., Mahlein, A.-K., Steiner, U., Oerke, E.-C., Dehne, H.-W., and Pl¨umer, L. (2010). Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Computers and electronics in agriculture, 74(1):91–99.spa
dc.relation.references[Salazar et al., 2014] Salazar, E., Trujillo, I., Macías, M. P., Gutiérrez, M. A., Castro, L., Vallejo, E., and Torrealba, M. (2014). Respuesta fisiológica al estrés hídrico de plantas de banano cv.pineo gigante’(musa aaa) regeneradas a partir de yemas irradiadas. Biotecnología Vegetal, 14(3).spa
dc.relation.references[Sankaran et al., 2010] Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and electronics in agriculture, 72(1):1–13.spa
dc.relation.references[Savitzky and Golay, 1964] Savitzky, A. and Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry, 36(8):1627–1639.spa
dc.relation.references[Schölkopf and Smola, 2002] Schölkopf, B. and Smola, A. J. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT press.spa
dc.relation.references[Shin et al., 2023] Shin, M.-Y., Viejo, C. G., Tongson, E., Wiechel, T., Taylor, P. W., and Fuentes, S. (2023). Early detection of verticillium wilt of potatoes using near-infrared spectroscopy and machine learning modeling. Computers and Electronics in Agriculture, 204:107567.spa
dc.relation.references[Sun and Wu, 2008] Sun, Y. and Wu, D. (2008). A relief based feature extraction algorithm. In Proceedings of the 2008 SIAM International Conference on Data Mining, pages 188– 195. SIAM.spa
dc.relation.references[Svanberg, 2012] Svanberg, S. (2012). Atomic and molecular spectroscopy: basic aspects and practical applications, volume 6. Springer Science & Business Media.spa
dc.relation.references[Tjandra Nugraha et al., 2021] Tjandra Nugraha, D., Zinia Zaukuu, J.-L., Aguinaga B´osquez, J. P., Bodor, Z., Vitalis, F., and Kovacs, Z. (2021). Near-infrared spectroscopy and aquaphotomics for monitoring mung bean (vigna radiata) sprout growth and validation of ascorbic acid content. Sensors, 21(2):611.spa
dc.relation.references[Tu et al., 2022] Tu, Y.-K., Kuo, C.-E., Fang, S.-L., Chen, H.-W., Chi, M.-K., Yao, M.-H., and Kuo, B.-J. (2022). A 1d-sp-net to determine early drought stress status of tomato (solanum lycopersicum) with imbalanced vis/nir spectroscopy data. Agriculture, 12(2):259.spa
dc.relation.references[Tunsagool et al., 2019] Tunsagool, P., Jutidamrongphan, W., Phaonakrop, N., Jaresitthikunchai, J., Roytrakul, S., and Leelasuphakul, W. (2019). Insights into stress responses in mandarins triggered by bacillus subtilis cyclic lipopeptides and exogenous plant hormones upon penicillium digitatum infection. Plant cell reports, 38(5):559–575.spa
dc.relation.references[Urbanowicz et al., 2018] Urbanowicz, R. J., Meeker, M., La Cava, W., Olson, R. S., and Moore, J. H. (2018). Relief-based feature selection: Introduction and review. Journal of biomedical informatics, 85:189–203.spa
dc.relation.references[Visa et al., 2011] Visa, S., Ramsay, B., Ralescu, A. L., and Van Der Knaap, E. (2011). Confusion matrix-based feature selection. Maics, 710(1):120–127.spa
dc.relation.references[Walsh et al., 2020] Walsh, K. B., Blasco, J., Zude-Sasse, M., and Sun, X. (2020). Visiblenir ‘point’ spectroscopy in postharvest fruit and vegetable assessment: The science behind three decades of commercial use. Postharvest Biology and Technology, 168:111246.spa
dc.relation.references[Wang et al., 2020] Wang, D., Peng, C., Zheng, X., Chang, L., Xu, B., and Tong, Z. (2020). Secretome analysis of the banana fusarium wilt fungi foc r1 and foc tr4 reveals a new effector oastl required for full pathogenicity of foc tr4 in banana. Biomolecules, 10(10):1430.spa
dc.relation.references[Yu et al., 2021] Yu, K., Fang, S., and Zhao, Y. (2021). Heavy metal hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 245:118917.spa
dc.relation.references[Zahir et al., 2022] Zahir, S. A. D. M., Omar, A. F., Jamlos, M. F., Azmi, M. A. M., and Muncan, J. (2022). A review of visible and near-infrared (vis-nir) spectroscopy application in plant stress detection. Sensors and Actuators A: Physical, page 113468.spa
dc.relation.references[Zhang et al., 2019] Zhang, J., Huang, Y., Pu, R., Gonzalez-Moreno, P., Yuan, L., Wu, K., and Huang, W. (2019). Monitoring plant diseases and pests through remote sensing technology: A review. Computers and Electronics in Agriculture, 165:104943.spa
dc.relation.references[Zhang et al., 2012] Zhang, J., Pu, R., Huang, W., Yuan, L., Luo, J., and Wang, J. (2012). Using in-situ hyperspectral data for detecting and discriminating yellow rust disease from nutrient stresses. Field Crops Research, 134:165–174.spa
dc.relation.references[Zhang et al., 2021] Zhang, W., Zhang, W., Yang, Y., Hu, G., Ge, D., Liu, H., Cao, H., et al. (2021). A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress. Computers and Electronics in Agriculture, 181:105966.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocEstrés de sequiaspa
dc.subject.agrovocdrought stresseng
dc.subject.agrovocEstrés abióticospa
dc.subject.agrovocabiotic stresseng
dc.subject.agrovocEstrés bióticospa
dc.subject.agrovocbiotic stresseng
dc.subject.agrovocFusarium oxysporumspa
dc.subject.agrovocFusarium oxysporumeng
dc.subject.agrovocEspectroscopiaspa
dc.subject.agrovocspectroscopyeng
dc.subject.ddc000 - Ciencias de la computación, información y obras generales::004 - Procesamiento de datos Ciencia de los computadoresspa
dc.subject.ddc510 - Matemáticas::519 - Probabilidades y matemáticas aplicadasspa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.proposalDetección tempranaspa
dc.subject.proposalVIS / NIRspa
dc.subject.proposalClasificaciónspa
dc.subject.proposalEstrés hídricospa
dc.subject.proposalFusarium oxysporumspa
dc.subject.proposalRalstonia solanacearumspa
dc.subject.proposalEarly detectioneng
dc.subject.proposalVIS/NIReng
dc.subject.proposalClassificationeng
dc.subject.proposalWater stresseng
dc.subject.proposalFusarium oxysporumeng
dc.subject.proposalRalstonia solanacearumeng
dc.subject.proposalBananaeng
dc.titleDetección temprana de estrés biótico y abiótico usando modelos de clasificación de datos de espectroscopía de reflectancia VIS/NIR: Aplicación en plantas de Banano Gros Michelspa
dc.title.translatedEarly detection of biotic and abiotic stress using classification models of VIS/NIR reflectance spectroscopy data: Application in Gros Michel banana plantseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1019036345.2024.pdf
Tamaño:
932.74 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: