Evaluación del contenido proteico de vesículas extracelulares pequeñas derivadas de células de melanoma humano tratadas con Doxorrubicina
dc.contributor.advisor | Novoa-Herrán, Susana | spa |
dc.contributor.advisor | Umana-Perez, Adriana | spa |
dc.contributor.author | Fernández-Fonseca, Laura Fernanda | spa |
dc.contributor.cvlac | Fernandez Fonseca, Laura Fernanda [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001681180] | spa |
dc.contributor.orcid | Fernandez-Fonseca, Laura Fernanda [0000000277869279] | spa |
dc.date.accessioned | 2025-04-29T15:36:17Z | |
dc.date.available | 2025-04-29T15:36:17Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Las Vesículas Extracelulares (EV) son estructuras membranosas liberadas al espacio extracelular, que transportan biomoléculas y permiten la modulación de microambientes locales y distantes. En particular las células cancerígenas liberan EV, incluyendo vesículas extracelulares pequeñas (sEV) como exosomas, que participan en la comunicación intercelular. Estudios in vitro han mostrado que el tratamiento con Doxorrubicina (Doxo) incrementa el nivel de secreción de sEV. Este agente quimioterapéutico puede inducir respuestas de estrés celular que alteran el microambiente tumoral y, además, se ha asociado con efectos secundarios como la cardiotoxicidad. Este estudio evaluó el efecto de Doxo (10 nM) sobre la biogénesis, producción y contenido de sEV derivadas de células de melanoma humano A375, realizando un análisis multidimensional. A nivel intracelular, la inmunocitoquímica mostró un leve aumento en los marcadores característicos de sEV, destacándose especialmente CD81 a las 96 horas (p = 0,0083). Asimismo, se observó un incremento en las estructuras positivas relacionadas con como cuerpos multivesiculares y exosomas a las tinciones con naranja de acridina (A.O) y Bodipy-TR en células vivas a las 24 y 96 horas, respectivamente. Las sEV fueron aisladas del medio tras 48 horas de condicionamiento, utilizando cromatografía de exclusión por tamaño (SEC). El análisis por seguimiento de nanopartículas evidenció un aumento significativo en la concentración de sEV (13,6 veces; p = 0,000014), acompañado de cambios en la distribución de tamaños en la población tratada (Doxo: 135,4± 5,60 nm). Mientras, la microscopía electrónica de barrido (SEM) mostró morfologías compatibles con un proceso de vesiculación activa. Por otro lado, la detección de citoquinas mediante un arreglo de anticuerpos indicó un aumento en los niveles de KITLG, CXCL1, CXCL12, CCL5, VEGF, IL-3, IL-4 e IL-10, siendo TGF-β la más destacada (p = 0,0134). El análisis bioinformático sugirió que algunas de las citoquinas encontradas en estas sEV podrían estar implicadas en la progresión tumoral y en efectos cardiotóxicos inducidos por el tratamiento. En conjunto, los resultados evidenciaron que la exposición de células A375 a Doxo 10nM potencian la biogénesis y liberación de sEV, sugiriendo que la diseminación de sEV con elevado contenido de TGF-β puede contribuir a los efectos a nivel paracrino y autocrino en su microambiente, y a efectos secundarios atribuidos a la Doxo (Texto tomado de la fuente). | spa |
dc.description.abstract | Extracellular Vesicles (EV) are membrane-bound structures released into the extracellular space that transport biomolecules and enable the modulation of local and distant microenvironments. Cancer cells actively secrete EV, including small extracellular vesicles (sEV) such as exosomes, which play a key role in intercellular communication. In vitro, studies have demonstrated that treatment with Doxorubicin (Doxo) leads to an increased secretion of sEV. This chemotherapeutic agent can induce cellular stress responses that alter the tumor microenvironment and has also been associated with side effects such as cardiotoxicity. This study evaluated the effect of Doxo (10 nM) on biogenesis, production, and content of sEV derived from human melanoma A375 cells through multidimensional analysis. At the intracellular level, immunocytochemistry revealed a slight increase in characteristic sEV markers, with a notable rise in CD81 expression at 96 hours (p = 0.0083). Furthermore, an increased presence of structures associated with multivesicular bodies and exosomes was detected through acridine orange (A.O.) and Bodipy-TR staining in live cells at 24 and 96 hours, respectively. sEV were isolated from the conditioned medium after 48 hours using size-exclusion chromatography (SEC). Nanoparticle tracking analysis revealed a significant increase in sEV concentration (13.6 F.C; p = 0.000014), accompanied by changes in size distribution within the treated population (Doxo: 135.4 ± 5.60 nm). Meanwhile, scanning electron microscopy (SEM) showed morphologies consistent with active vesiculation. On the other hand, cytokine detection using an antibody array indicated increased levels of KITLG, CXCL1, CXCL12, CCL5, VEGF, IL-3, IL-4, and IL-10, with TGF-β being the most prominent (p = 0.0134). Bioinformatic analysis suggested that some of the cytokines in these sEV might be involved in tumor progression and Doxo-induced cardiotoxic effects. Altogether, the results demonstrated that exposure of A375 cells to 10 nM Doxo enhances the biogenesis and release of sEV, suggesting that the dissemination of sEV with high TGF-β content may contribute to paracrine and autocrine effects within their microenvironment, as well as to side effects attributed to Doxo. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias – Bioquímica | spa |
dc.description.researcharea | Bases moleculares de la diferenciación celular y transformación maligna | spa |
dc.format.extent | 92 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88136 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.references | Ab Razak, N.S. et al. (2019) ‘Impact of Chemotherapy on Extracellular Vesicles: Understanding the Chemo-EVs’, Frontiers in Oncology. Available at: https://doi.org/10.3389/fonc.2019.01113. | spa |
dc.relation.references | Alenquer, M. and Amorim, M.J. (2015) ‘Exosome biogenesis, regulation, and function in viral infection’, Viruses. Available at: https://doi.org/10.3390/v7092862. | spa |
dc.relation.references | Aubertin, K. et al. (2016) ‘Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy’, Scientific Reports, 6. Available at: https://doi.org/10.1038/srep35376. | spa |
dc.relation.references | Badila, E. et al. (2023) ‘Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles’, Biomolecules. NLM (Medline). Available at: https://doi.org/10.3390/biom13020321. | spa |
dc.relation.references | Beyer, U. et al. (2001) ‘Differences in the intracellular distribution of acid-sensitive doxorubicin-protein conjugates in comparison to free and liposomal formulated doxorubicin as shown by confocal microscopy’, Pharmaceutical Research, 18(1). Available at: https://doi.org/10.1023/A:1011018525121. | spa |
dc.relation.references | Boudreault, J. et al. (2024) ‘Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis’, Cancers, 16(1). Available at: https://doi.org/10.3390/cancers16010224. | spa |
dc.relation.references | Burrow, S. et al. (2002) Intracellular localisation studies of doxorubicin and Victoria Blue BO in EMT6-S and EMT6-R cells using confocal microscopy, Cytotechnology. | spa |
dc.relation.references | Carpentier, G. and Henault, E. (2010) ‘Protein Array Analyzer for ImageJ’, in Proceedings of the ImageJ User and Developer Conference. | spa |
dc.relation.references | Catalano, M. and O’Driscoll, L. (2020) ‘Inhibiting extracellular vesicles formation and release: a review of EV inhibitors’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.1080/20013078.2019.1703244. | spa |
dc.relation.references | Colombo, M., Raposo, G. and Théry, C. (2014) ‘Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles’, Annual review of cell and developmental biology. Available at: https://doi.org/10.1146/annurev-cellbio-101512-122326. | spa |
dc.relation.references | Dezfouli, A.B. et al. (2017) ‘Evaluation of age effects on doxorubicin-induced toxicity in mesenchymal stem cells’, Medical Journal of the Islamic Republic of Iran, 31(1), pp. 572–578. Available at: https://doi.org/10.14196/MJIRI.31.98. | spa |
dc.relation.references | DiStefano, J.K. et al. (2024) ‘Changes in proteomic cargo of circulating extracellular vesicles in response to lifestyle intervention in adolescents with hepatic steatosis’, Clinical Nutrition ESPEN, 60. Available at: https://doi.org/10.1016/j.clnesp.2024.02.024. | spa |
dc.relation.references | Dobaczewski, M., Chen, W. and Frangogiannis, N.G. (2011) ‘Transforming growth factor (TGF)-β signaling in cardiac remodeling’, Journal of Molecular and Cellular Cardiology. Available at: https://doi.org/10.1016/j.yjmcc.2010.10.033. | spa |
dc.relation.references | Dunkern, T.R. et al. (2003) ‘Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling’, DNA Repair, 2(1). Available at: https://doi.org/10.1016/S1568-7864(02)00185-4. | spa |
dc.relation.references | Egerer, M. et al. (2024) ‘Extracellular Vesicles May Predict Response to Atezolizumab Plus Bevacizumab in Patients with Advanced Hepatocellular Carcinoma’, Cancers, 16(21). Available at: https://doi.org/10.3390/cancers16213651. | spa |
dc.relation.references | Elsner, C., Ergün, S. and Wagner, N. (2023) ‘Biogenesis and release of endothelial extracellular vesicles: Morphological aspects’, Annals of Anatomy, 245. Available at: https://doi.org/10.1016/j.aanat.2022.152006. | spa |
dc.relation.references | Emam, S.E. et al. (2018) ‘Doxorubicin expands in vivo secretion of circulating exosome in mice’, Biological and Pharmaceutical Bulletin, 41(7). Available at: https://doi.org/10.1248/bpb.b18-00202. | spa |
dc.relation.references | Feola, M. et al. (2011) ‘Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: Effects on left ventricular ejection fraction, troponin i and brain natriuretic peptide’, International Journal of Cardiology, 148(2). Available at: https://doi.org/10.1016/j.ijcard.2009.09.564. | spa |
dc.relation.references | Ferlay J et al. (2024) Global Cancer Observatory: Cancer Today. Lyon,France. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (Accessed: 5 October 2024). | spa |
dc.relation.references | Ferlay J, et al. (2024) Global Cancer Observatory - Colombia. Globocan 2022. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/170-colombia-fact-sheet.pdf (Accessed: 13 October 2024). | spa |
dc.relation.references | Filyak, Y. et al. (2008) ‘Doxorubicin inhibits TGF-β signaling in human lung carcinoma A549 cells’, European Journal of Pharmacology, 590(1–3). Available at: https://doi.org/10.1016/j.ejphar.2008.05.030. | spa |
dc.relation.references | Fitzgerald, W. et al. (2018) ‘A System of Cytokines Encapsulated in ExtraCellular Vesicles’, Scientific Reports, 8(1). Available at: https://doi.org/10.1038/s41598-018-27190-x. | spa |
dc.relation.references | Gómez-Grosso Luis Alberto and Novoa Herrán Susana (2019) ‘Aislamiento y caracterización parcial de vesículas extracelulares tipo exosomas de sobrenadantes de cultivos de células de melanoma expuestas a Doxorrubicina y su efecto sobre la viabilidad y acortamiento de cardiomiocitos aislados.’, Informe Final Científico-Técnico [Preprint]. | spa |
dc.relation.references | Graner, M.W. et al. (2009) ‘Proteomic and immunologic analyses of brain tumor exosomes’, The FASEB Journal, 23(5). Available at: https://doi.org/10.1096/fj.08-122184. | spa |
dc.relation.references | Grant, B.D. and Donaldson, J.G. (2009) ‘Pathways and mechanisms of endocytic recycling’, Nature Reviews Molecular Cell Biology. Available at: https://doi.org/10.1038/nrm2755. | spa |
dc.relation.references | Grupo de Vigilancia del Cáncer (2022) ‘Cáncer en Cifras, 2022’, Instituto Nacional de Cancerología, Colombia [Preprint]. Available at: https://www.cancer.gov.co/recursos_user/imagenes/Infografias/CANCER_EN_CIFRAS_2022_APROBADA.pdf (Accessed: 5 October 2024). | spa |
dc.relation.references | Gu, M. et al. (2025) ‘Synergistic in vivo anticancer effects of 1,7-heptanediol and doxorubicin co-loadedliposomes in highly aggressive breast cancer’, Journal of Controlled Release, 377, pp. 174–185. Available at: https://doi.org/https://doi.org/10.1016/j.jconrel.2024.11.012. | spa |
dc.relation.references | Guerra, F. et al. (2019) ‘Modulation of RAB7A protein expression determines resistance to cisplatin through late endocytic pathway impairment and extracellular vesicular secretion’, Cancers, 11(1). Available at: https://doi.org/10.3390/cancers11010052. | spa |
dc.relation.references | Gupta, D., Zickler, A.M. and El Andaloussi, S. (2021) ‘Dosing extracellular vesicles’, Advanced Drug Delivery Reviews. Available at: https://doi.org/10.1016/j.addr.2021.113961. | spa |
dc.relation.references | Gurung, S. et al. (2021) ‘The exosome journey: from biogenesis to uptake and intracellular signalling’, Cell Communication and Signaling. Available at: https://doi.org/10.1186/s12964-021-00730-1. | spa |
dc.relation.references | György, B. et al. (2011) ‘Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles’, Cellular and Molecular Life Sciences. Available at: https://doi.org/10.1007/s00018-011-0689-3. | spa |
dc.relation.references | Hessvik, N.P. and Llorente, A. (2018) ‘Current knowledge on exosome biogenesis and release’, Cellular and Molecular Life Sciences. Available at: https://doi.org/10.1007/s00018-017-2595-9. | spa |
dc.relation.references | Hoshino, A. et al. (2015) ‘Tumour exosome integrins determine organotropic metastasis’, Nature, 527(7578). Available at: https://doi.org/10.1038/nature15756. | spa |
dc.relation.references | Hurwitz, S.N. et al. (2016) ‘Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis’, Journal of Extracellular Vesicles, 5(1). Available at: https://doi.org/10.3402/jev.v5.31295. | spa |
dc.relation.references | Ikushima, H. and Miyazono, K. (2010) ‘Cellular context-dependent “colors” of transforming growth factor-β signaling’, Cancer Science. Available at: https://doi.org/10.1111/j.1349-7006.2009.01441.x. | spa |
dc.relation.references | Jadli, A.S. et al. (2021) ‘Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger’, Frontiers in Cardiovascular Medicine. Available at: https://doi.org/10.3389/fcvm.2021.767488. | spa |
dc.relation.references | Kahlert, C. and Kalluri, R. (2013) ‘Exosomes in tumor microenvironment influence cancer progression and metastasis’, Journal of Molecular Medicine. Available at: https://doi.org/10.1007/s00109-013-1020-6. | spa |
dc.relation.references | Kokkotis, G. et al. (2024) ‘Oncostatin M Induces a Pro-inflammatory Phenotype in Intestinal Subepithelial Myofibroblasts’, Inflammatory Bowel Diseases, 30. Available at: https://doi.org/10.1093/ibd/izae098. | spa |
dc.relation.references | Kosaka, N. et al. (2010) ‘Secretory mechanisms and intercellular transfer of microRNAs in living cells’, Journal of Biological Chemistry, 285(23). Available at: https://doi.org/10.1074/jbc.M110.107821. | spa |
dc.relation.references | Krylova, S. V. and Feng, D. (2023) ‘The Machinery of Exosomes: Biogenesis, Release, and Uptake’, International Journal of Molecular Sciences. Available at: https://doi.org/10.3390/ijms24021337. | spa |
dc.relation.references | Kurien, B.T. and Hal Scofield, R. (2015) Western blotting: Methods and protocols, Western Blotting: Methods and Protocols. Available at: https://doi.org/10.1007/978-1-4939-2694-7. | spa |
dc.relation.references | Lai, M. et al. (2021) ‘Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-90219-1. | spa |
dc.relation.references | Latifkar, A. et al. (2019) ‘New insights into extracellular vesicle biogenesis and function’, Journal of Cell Science. Available at: https://doi.org/10.1242/JCS.222406. | spa |
dc.relation.references | LeBleu, V.S. and Kalluri, R. (2020) ‘Exosomes as a Multicomponent Biomarker Platform in Cancer’, Trends in Cancer. Available at: https://doi.org/10.1016/j.trecan.2020.03.007. | spa |
dc.relation.references | Lind, H. et al. (2020) ‘Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: Status of preclinical and clinical advances’, Journal for ImmunoTherapy of Cancer. Available at: https://doi.org/10.1136/jitc-2019-000433. | spa |
dc.relation.references | Lobb, R.J. et al. (2015) ‘Optimized exosome isolation protocol for cell culture supernatant and human plasma’, Journal of Extracellular Vesicles, 4(1). Available at: https://doi.org/10.3402/jev.v4.27031. | spa |
dc.relation.references | De Maio, A. (2011) ‘Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage’, Cell Stress and Chaperones, 16(3). Available at: https://doi.org/10.1007/s12192-010-0236-4. | spa |
dc.relation.references | Mariachiara Di Cesare et al. (2023) World Heart Report 2023: Confronting the World’s Number One Killer., World Heart Federation. 2023. Geneva, Switzerland. Available at: https://world-heart-federation.org/wp-content/uploads/World-Heart-Report-2023.pdf (Accessed: 5 October 2024). | spa |
dc.relation.references | Mathieu, M. et al. (2019) ‘Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication’, Nature Cell Biology. Available at: https://doi.org/10.1038/s41556-018-0250-9. | spa |
dc.relation.references | Mathieu, M. et al. (2021) ‘Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9’, Nature Communications, 12(1). Available at: https://doi.org/10.1038/s41467-021-24384-2. | spa |
dc.relation.references | Midekessa, G. et al. (2020) ‘Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability’, ACS Omega, 5(27). Available at: https://doi.org/10.1021/acsomega.0c01582. | spa |
dc.relation.references | Minciacchi, V.R., Freeman, M.R. and Di Vizio, D. (2015) ‘Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes’, Seminars in Cell and Developmental Biology. Available at: https://doi.org/10.1016/j.semcdb.2015.02.010. | spa |
dc.relation.references | Mizushima, N. and Komatsu, M. (2011) ‘Autophagy: Renovation of cells and tissues’, Cell. Available at: https://doi.org/10.1016/j.cell.2011.10.026. | spa |
dc.relation.references | Nederveen, J.P. et al. (2021) ‘Extracellular Vesicles and Exosomes: Insights From Exercise Science’, Frontiers in Physiology. Available at: https://doi.org/10.3389/fphys.2020.604274. | spa |
dc.relation.references | Ngo, J.M. et al. (2025) ‘Extracellular Vesicles and Cellular Homeostasis’, Annual Review of Biochemistry [Preprint]. Available at: https://doi.org/https://doi.org/10.1146/annurev-biochem-100924-012717. | spa |
dc.relation.references | Van Niel, G., D’Angelo, G. and Raposo, G. (2018) ‘Shedding light on the cell biology of extracellular vesicles’, Nature Reviews Molecular Cell Biology. Available at: https://doi.org/10.1038/nrm.2017.125. | spa |
dc.relation.references | Novoa-Herrán Susana, Domínguez Yohana and Gómez-Grosso Luis Alberto (2019) ‘Efecto de medios condicionados y de vesículas extracelulares de células de melanoma tratadas con doxorrubicina, sobre la actividad MTT reductasa, longitud y generación del anión superóxido en cardiomiocitos individuales’, Biomédica, 21 November, p. 51. | spa |
dc.relation.references | Pickup, M., Novitskiy, S. and Moses, H.L. (2013) ‘The roles of TGFβ in the tumour microenvironment’, Nature Reviews Cancer. Available at: https://doi.org/10.1038/nrc3603 | spa |
dc.relation.references | Van Der Pol, E. et al. (2010) ‘Optical and non-optical methods for detection and characterization of microparticles and exosomes’, Journal of Thrombosis and Haemostasis. Available at: https://doi.org/10.1111/j.1538-7836.2010.04074.x. | spa |
dc.relation.references | Popa, S.J., Stewart, S.E. and Moreau, K. (2018) ‘Unconventional secretion of annexins and galectins’, Seminars in Cell and Developmental Biology. Available at: https://doi.org/10.1016/j.semcdb.2018.02.022. | spa |
dc.relation.references | Rawat, P.S. et al. (2021) ‘Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management’, Biomedicine and Pharmacotherapy. Available at: https://doi.org/10.1016/j.biopha.2021.111708. | spa |
dc.relation.references | Rodda, D.J. and Yamazaki, H. (1994) ‘Poly(vinyl alcohol) as a blocking agent in enzyme immunoassays’, Immunological Investigations, 23(6–7). Available at: https://doi.org/10.3109/08820139409066836. | spa |
dc.relation.references | ROITT, I. (1992) ‘Essential Immunology’, Revista do Instituto de Medicina Tropical de São Paulo, 34(1). Available at: https://doi.org/10.1590/s0036-46651992000100014. | spa |
dc.relation.references | Singal, P.K. and Iliskovic, N. (1998) ‘Doxorubicin-Induced Cardiomyopathy’, New England Journal of Medicine, 339(13), pp. 900–905. Available at: https://doi.org/10.1056/NEJM199809243391307. | spa |
dc.relation.references | SS Novoa Herrán, JJ Osorio and LA Gomez Grosso (2021) ‘Galectina-3 es secretada yasociada a vesículas extracelulares obtenidas de células de melanoma A375y de cáncer de seno MDA-MB-231 y MCF7 tratadas con doxorrubicina’, Biomédica2021; 41(Supl.3):293 [Preprint]. | spa |
dc.relation.references | Sung, B.H. et al. (2020) ‘A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15747-2. | spa |
dc.relation.references | Sung, H. et al. (2021) ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries’, CA: A Cancer Journal for Clinicians, 71(3), pp. 209–249. Available at: https://doi.org/10.3322/caac.21660. | spa |
dc.relation.references | Thomé, M.P. et al. (2016) ‘Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy’, Journal of Cell Science, 129(24). Available at: https://doi.org/10.1242/jcs.195057. | spa |
dc.relation.references | Tian, C. et al. (2021) ‘Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity’, International Journal of Biological Sciences. Available at: https://doi.org/10.7150/ijbs.58786. | spa |
dc.relation.references | Tkach, M. and Théry, C. (2016) ‘Communication by Extracellular Vesicles: Where We Are and Where We Need to Go’, Cell. Cell Press, pp. 1226–1232. Available at: https://doi.org/10.1016/j.cell.2016.01.043. | spa |
dc.relation.references | Trajkovic, K. et al. (2008) ‘Ceramide triggers budding of exosome vesicles into multivesicular endosomes’, Science, 319(5867). Available at: https://doi.org/10.1126/science.1153124. | spa |
dc.relation.references | Verweij, F.J. et al. (2018) ‘Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling’, Journal of Cell Biology, 217(3). Available at: https://doi.org/10.1083/jcb.201703206. | spa |
dc.relation.references | Villodre, E.S. et al. (2018) ‘Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells’, Molecular Neurobiology, 55(5). Available at: https://doi.org/10.1007/s12035-017-0611-6. | spa |
dc.relation.references | Wang, S.E. (2020) ‘Extracellular vesicles and metastasis’, Cold Spring Harbor Perspectives in Medicine, 10(7). Available at: https://doi.org/10.1101/cshperspect.a037275. | spa |
dc.relation.references | Welsh, J.A. et al. (2024) ‘Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches’, Journal of Extracellular Vesicles, 13(2). Available at: https://doi.org/10.1002/jev2.12404. | spa |
dc.relation.references | Wendler, F., Bota-Rabassedas, N. and Franch-Marro, X. (2013) ‘Cancer becomes wasteful: Emerging roles of exosomes in cell-fate determination’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.3402/jev.v2i0.22390. | spa |
dc.relation.references | Wu, Y., Deng, W. and Klinke, D.J. (2015) ‘Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers’, Analyst, 140(19). Available at: https://doi.org/10.1039/c5an00688k. | spa |
dc.relation.references | Yáñez-Mó, M. et al. (2015) ‘Biological properties of extracellular vesicles and their physiological functions’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.3402/jev.v4.27066. | spa |
dc.relation.references | Yang, Y. et al. (2021) ‘Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma’, Journal of Translational Medicine, 19(1). Available at: https://doi.org/10.1186/s12967-021-02775-9. | spa |
dc.relation.references | Zamorano, J.L. et al. (2016) ‘2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines’, European Heart Journal. Available at: https://doi.org/10.1093/eurheartj/ehw211. | spa |
dc.relation.references | van der Zanden, S.Y., Qiao, X. and Neefjes, J. (2021) ‘New insights into the activities and toxicities of the old anticancer drug doxorubicin’, FEBS Journal. Available at: https://doi.org/10.1111/febs.15583. | spa |
dc.relation.references | Zhang, M. et al. (2021) ‘TGF-β Signaling and Resistance to Cancer Therapy’, Frontiers in Cell and Developmental Biology. Available at: https://doi.org/10.3389/fcell.2021.786728. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Microambiente Tumoral | spa |
dc.subject.decs | Tumor Microenvironment | eng |
dc.subject.decs | Vesículas Extracelulares | spa |
dc.subject.decs | Extracellular Vesicles | eng |
dc.subject.decs | Doxorrubicina | spa |
dc.subject.decs | Doxorubicin | eng |
dc.subject.decs | Cardiotoxicity | eng |
dc.subject.decs | Biogénesis de Organelos | spa |
dc.subject.decs | Organelle Biogenesis | eng |
dc.subject.decs | Inmunohistoquímica | spa |
dc.subject.decs | Immunohistochemistry | eng |
dc.subject.decs | Cuerpos Multivesiculares | spa |
dc.subject.decs | Multivesicular Bodies | eng |
dc.subject.decs | Cromatografía en Gel | spa |
dc.subject.decs | Chromatography, Gel | eng |
dc.subject.decs | Nanopartículas | spa |
dc.subject.decs | Nanoparticles | eng |
dc.subject.decs | Cardiotoxicidad | spa |
dc.subject.proposal | Exosomas | spa |
dc.subject.proposal | Doxorrubicina | spa |
dc.subject.proposal | Vesículas Extracelulares | spa |
dc.subject.proposal | Biogénesis | spa |
dc.subject.proposal | Melanoma | spa |
dc.subject.proposal | Exosomes | eng |
dc.subject.proposal | Extracellular vesicles | eng |
dc.subject.proposal | Doxorubicin | eng |
dc.subject.proposal | Biogenesis | eng |
dc.subject.proposal | Melanoma | eng |
dc.subject.proposal | Cuerpos Multivesiculares | spa |
dc.subject.proposal | Multivesicular Bodies | eng |
dc.title | Evaluación del contenido proteico de vesículas extracelulares pequeñas derivadas de células de melanoma humano tratadas con Doxorrubicina | spa |
dc.title.translated | Evaluation of the protein content of small extracellular vesicles derived from human melanoma cells treated with Doxorubicin | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Instituto Nacional de Salud | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010227838.2025.pdf
- Tamaño:
- 2.92 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: