Evaluación del contenido proteico de vesículas extracelulares pequeñas derivadas de células de melanoma humano tratadas con Doxorrubicina

dc.contributor.advisorNovoa-Herrán, Susanaspa
dc.contributor.advisorUmana-Perez, Adrianaspa
dc.contributor.authorFernández-Fonseca, Laura Fernandaspa
dc.contributor.cvlacFernandez Fonseca, Laura Fernanda [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0001681180]spa
dc.contributor.orcidFernandez-Fonseca, Laura Fernanda [0000000277869279]spa
dc.date.accessioned2025-04-29T15:36:17Z
dc.date.available2025-04-29T15:36:17Z
dc.date.issued2025
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLas Vesículas Extracelulares (EV) son estructuras membranosas liberadas al espacio extracelular, que transportan biomoléculas y permiten la modulación de microambientes locales y distantes. En particular las células cancerígenas liberan EV, incluyendo vesículas extracelulares pequeñas (sEV) como exosomas, que participan en la comunicación intercelular. Estudios in vitro han mostrado que el tratamiento con Doxorrubicina (Doxo) incrementa el nivel de secreción de sEV. Este agente quimioterapéutico puede inducir respuestas de estrés celular que alteran el microambiente tumoral y, además, se ha asociado con efectos secundarios como la cardiotoxicidad. Este estudio evaluó el efecto de Doxo (10 nM) sobre la biogénesis, producción y contenido de sEV derivadas de células de melanoma humano A375, realizando un análisis multidimensional. A nivel intracelular, la inmunocitoquímica mostró un leve aumento en los marcadores característicos de sEV, destacándose especialmente CD81 a las 96 horas (p = 0,0083). Asimismo, se observó un incremento en las estructuras positivas relacionadas con como cuerpos multivesiculares y exosomas a las tinciones con naranja de acridina (A.O) y Bodipy-TR en células vivas a las 24 y 96 horas, respectivamente. Las sEV fueron aisladas del medio tras 48 horas de condicionamiento, utilizando cromatografía de exclusión por tamaño (SEC). El análisis por seguimiento de nanopartículas evidenció un aumento significativo en la concentración de sEV (13,6 veces; p = 0,000014), acompañado de cambios en la distribución de tamaños en la población tratada (Doxo: 135,4± 5,60 nm). Mientras, la microscopía electrónica de barrido (SEM) mostró morfologías compatibles con un proceso de vesiculación activa. Por otro lado, la detección de citoquinas mediante un arreglo de anticuerpos indicó un aumento en los niveles de KITLG, CXCL1, CXCL12, CCL5, VEGF, IL-3, IL-4 e IL-10, siendo TGF-β la más destacada (p = 0,0134). El análisis bioinformático sugirió que algunas de las citoquinas encontradas en estas sEV podrían estar implicadas en la progresión tumoral y en efectos cardiotóxicos inducidos por el tratamiento. En conjunto, los resultados evidenciaron que la exposición de células A375 a Doxo 10nM potencian la biogénesis y liberación de sEV, sugiriendo que la diseminación de sEV con elevado contenido de TGF-β puede contribuir a los efectos a nivel paracrino y autocrino en su microambiente, y a efectos secundarios atribuidos a la Doxo (Texto tomado de la fuente).spa
dc.description.abstractExtracellular Vesicles (EV) are membrane-bound structures released into the extracellular space that transport biomolecules and enable the modulation of local and distant microenvironments. Cancer cells actively secrete EV, including small extracellular vesicles (sEV) such as exosomes, which play a key role in intercellular communication. In vitro, studies have demonstrated that treatment with Doxorubicin (Doxo) leads to an increased secretion of sEV. This chemotherapeutic agent can induce cellular stress responses that alter the tumor microenvironment and has also been associated with side effects such as cardiotoxicity. This study evaluated the effect of Doxo (10 nM) on biogenesis, production, and content of sEV derived from human melanoma A375 cells through multidimensional analysis. At the intracellular level, immunocytochemistry revealed a slight increase in characteristic sEV markers, with a notable rise in CD81 expression at 96 hours (p = 0.0083). Furthermore, an increased presence of structures associated with multivesicular bodies and exosomes was detected through acridine orange (A.O.) and Bodipy-TR staining in live cells at 24 and 96 hours, respectively. sEV were isolated from the conditioned medium after 48 hours using size-exclusion chromatography (SEC). Nanoparticle tracking analysis revealed a significant increase in sEV concentration (13.6 F.C; p = 0.000014), accompanied by changes in size distribution within the treated population (Doxo: 135.4 ± 5.60 nm). Meanwhile, scanning electron microscopy (SEM) showed morphologies consistent with active vesiculation. On the other hand, cytokine detection using an antibody array indicated increased levels of KITLG, CXCL1, CXCL12, CCL5, VEGF, IL-3, IL-4, and IL-10, with TGF-β being the most prominent (p = 0.0134). Bioinformatic analysis suggested that some of the cytokines in these sEV might be involved in tumor progression and Doxo-induced cardiotoxic effects. Altogether, the results demonstrated that exposure of A375 cells to 10 nM Doxo enhances the biogenesis and release of sEV, suggesting that the dissemination of sEV with high TGF-β content may contribute to paracrine and autocrine effects within their microenvironment, as well as to side effects attributed to Doxo.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias – Bioquímicaspa
dc.description.researchareaBases moleculares de la diferenciación celular y transformación malignaspa
dc.format.extent92 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88136
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.referencesAb Razak, N.S. et al. (2019) ‘Impact of Chemotherapy on Extracellular Vesicles: Understanding the Chemo-EVs’, Frontiers in Oncology. Available at: https://doi.org/10.3389/fonc.2019.01113.spa
dc.relation.referencesAlenquer, M. and Amorim, M.J. (2015) ‘Exosome biogenesis, regulation, and function in viral infection’, Viruses. Available at: https://doi.org/10.3390/v7092862.spa
dc.relation.referencesAubertin, K. et al. (2016) ‘Massive release of extracellular vesicles from cancer cells after photodynamic treatment or chemotherapy’, Scientific Reports, 6. Available at: https://doi.org/10.1038/srep35376.spa
dc.relation.referencesBadila, E. et al. (2023) ‘Cardiovascular Disease as a Consequence or a Cause of Cancer: Potential Role of Extracellular Vesicles’, Biomolecules. NLM (Medline). Available at: https://doi.org/10.3390/biom13020321.spa
dc.relation.referencesBeyer, U. et al. (2001) ‘Differences in the intracellular distribution of acid-sensitive doxorubicin-protein conjugates in comparison to free and liposomal formulated doxorubicin as shown by confocal microscopy’, Pharmaceutical Research, 18(1). Available at: https://doi.org/10.1023/A:1011018525121.spa
dc.relation.referencesBoudreault, J. et al. (2024) ‘Transforming Growth Factor-β/Smad Signaling Inhibits Melanoma Cancer Stem Cell Self-Renewal, Tumor Formation and Metastasis’, Cancers, 16(1). Available at: https://doi.org/10.3390/cancers16010224.spa
dc.relation.referencesBurrow, S. et al. (2002) Intracellular localisation studies of doxorubicin and Victoria Blue BO in EMT6-S and EMT6-R cells using confocal microscopy, Cytotechnology.spa
dc.relation.referencesCarpentier, G. and Henault, E. (2010) ‘Protein Array Analyzer for ImageJ’, in Proceedings of the ImageJ User and Developer Conference.spa
dc.relation.referencesCatalano, M. and O’Driscoll, L. (2020) ‘Inhibiting extracellular vesicles formation and release: a review of EV inhibitors’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.1080/20013078.2019.1703244.spa
dc.relation.referencesColombo, M., Raposo, G. and Théry, C. (2014) ‘Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles’, Annual review of cell and developmental biology. Available at: https://doi.org/10.1146/annurev-cellbio-101512-122326.spa
dc.relation.referencesDezfouli, A.B. et al. (2017) ‘Evaluation of age effects on doxorubicin-induced toxicity in mesenchymal stem cells’, Medical Journal of the Islamic Republic of Iran, 31(1), pp. 572–578. Available at: https://doi.org/10.14196/MJIRI.31.98.spa
dc.relation.referencesDiStefano, J.K. et al. (2024) ‘Changes in proteomic cargo of circulating extracellular vesicles in response to lifestyle intervention in adolescents with hepatic steatosis’, Clinical Nutrition ESPEN, 60. Available at: https://doi.org/10.1016/j.clnesp.2024.02.024.spa
dc.relation.referencesDobaczewski, M., Chen, W. and Frangogiannis, N.G. (2011) ‘Transforming growth factor (TGF)-β signaling in cardiac remodeling’, Journal of Molecular and Cellular Cardiology. Available at: https://doi.org/10.1016/j.yjmcc.2010.10.033.spa
dc.relation.referencesDunkern, T.R. et al. (2003) ‘Resistance of p53 knockout cells to doxorubicin is related to reduced formation of DNA strand breaks rather than impaired apoptotic signaling’, DNA Repair, 2(1). Available at: https://doi.org/10.1016/S1568-7864(02)00185-4.spa
dc.relation.referencesEgerer, M. et al. (2024) ‘Extracellular Vesicles May Predict Response to Atezolizumab Plus Bevacizumab in Patients with Advanced Hepatocellular Carcinoma’, Cancers, 16(21). Available at: https://doi.org/10.3390/cancers16213651.spa
dc.relation.referencesElsner, C., Ergün, S. and Wagner, N. (2023) ‘Biogenesis and release of endothelial extracellular vesicles: Morphological aspects’, Annals of Anatomy, 245. Available at: https://doi.org/10.1016/j.aanat.2022.152006.spa
dc.relation.referencesEmam, S.E. et al. (2018) ‘Doxorubicin expands in vivo secretion of circulating exosome in mice’, Biological and Pharmaceutical Bulletin, 41(7). Available at: https://doi.org/10.1248/bpb.b18-00202.spa
dc.relation.referencesFeola, M. et al. (2011) ‘Cardiotoxicity after anthracycline chemotherapy in breast carcinoma: Effects on left ventricular ejection fraction, troponin i and brain natriuretic peptide’, International Journal of Cardiology, 148(2). Available at: https://doi.org/10.1016/j.ijcard.2009.09.564.spa
dc.relation.referencesFerlay J et al. (2024) Global Cancer Observatory: Cancer Today. Lyon,France. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf (Accessed: 5 October 2024).spa
dc.relation.referencesFerlay J, et al. (2024) Global Cancer Observatory - Colombia. Globocan 2022. Available at: https://gco.iarc.who.int/media/globocan/factsheets/populations/170-colombia-fact-sheet.pdf (Accessed: 13 October 2024).spa
dc.relation.referencesFilyak, Y. et al. (2008) ‘Doxorubicin inhibits TGF-β signaling in human lung carcinoma A549 cells’, European Journal of Pharmacology, 590(1–3). Available at: https://doi.org/10.1016/j.ejphar.2008.05.030.spa
dc.relation.referencesFitzgerald, W. et al. (2018) ‘A System of Cytokines Encapsulated in ExtraCellular Vesicles’, Scientific Reports, 8(1). Available at: https://doi.org/10.1038/s41598-018-27190-x.spa
dc.relation.referencesGómez-Grosso Luis Alberto and Novoa Herrán Susana (2019) ‘Aislamiento y caracterización parcial de vesículas extracelulares tipo exosomas de sobrenadantes de cultivos de células de melanoma expuestas a Doxorrubicina y su efecto sobre la viabilidad y acortamiento de cardiomiocitos aislados.’, Informe Final Científico-Técnico [Preprint].spa
dc.relation.referencesGraner, M.W. et al. (2009) ‘Proteomic and immunologic analyses of brain tumor exosomes’, The FASEB Journal, 23(5). Available at: https://doi.org/10.1096/fj.08-122184.spa
dc.relation.referencesGrant, B.D. and Donaldson, J.G. (2009) ‘Pathways and mechanisms of endocytic recycling’, Nature Reviews Molecular Cell Biology. Available at: https://doi.org/10.1038/nrm2755.spa
dc.relation.referencesGrupo de Vigilancia del Cáncer (2022) ‘Cáncer en Cifras, 2022’, Instituto Nacional de Cancerología, Colombia [Preprint]. Available at: https://www.cancer.gov.co/recursos_user/imagenes/Infografias/CANCER_EN_CIFRAS_2022_APROBADA.pdf (Accessed: 5 October 2024).spa
dc.relation.referencesGu, M. et al. (2025) ‘Synergistic in vivo anticancer effects of 1,7-heptanediol and doxorubicin co-loadedliposomes in highly aggressive breast cancer’, Journal of Controlled Release, 377, pp. 174–185. Available at: https://doi.org/https://doi.org/10.1016/j.jconrel.2024.11.012.spa
dc.relation.referencesGuerra, F. et al. (2019) ‘Modulation of RAB7A protein expression determines resistance to cisplatin through late endocytic pathway impairment and extracellular vesicular secretion’, Cancers, 11(1). Available at: https://doi.org/10.3390/cancers11010052.spa
dc.relation.referencesGupta, D., Zickler, A.M. and El Andaloussi, S. (2021) ‘Dosing extracellular vesicles’, Advanced Drug Delivery Reviews. Available at: https://doi.org/10.1016/j.addr.2021.113961.spa
dc.relation.referencesGurung, S. et al. (2021) ‘The exosome journey: from biogenesis to uptake and intracellular signalling’, Cell Communication and Signaling. Available at: https://doi.org/10.1186/s12964-021-00730-1.spa
dc.relation.referencesGyörgy, B. et al. (2011) ‘Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles’, Cellular and Molecular Life Sciences. Available at: https://doi.org/10.1007/s00018-011-0689-3.spa
dc.relation.referencesHessvik, N.P. and Llorente, A. (2018) ‘Current knowledge on exosome biogenesis and release’, Cellular and Molecular Life Sciences. Available at: https://doi.org/10.1007/s00018-017-2595-9.spa
dc.relation.referencesHoshino, A. et al. (2015) ‘Tumour exosome integrins determine organotropic metastasis’, Nature, 527(7578). Available at: https://doi.org/10.1038/nature15756.spa
dc.relation.referencesHurwitz, S.N. et al. (2016) ‘Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis’, Journal of Extracellular Vesicles, 5(1). Available at: https://doi.org/10.3402/jev.v5.31295.spa
dc.relation.referencesIkushima, H. and Miyazono, K. (2010) ‘Cellular context-dependent “colors” of transforming growth factor-β signaling’, Cancer Science. Available at: https://doi.org/10.1111/j.1349-7006.2009.01441.x.spa
dc.relation.referencesJadli, A.S. et al. (2021) ‘Exosomes in Cardiovascular Diseases: Pathological Potential of Nano-Messenger’, Frontiers in Cardiovascular Medicine. Available at: https://doi.org/10.3389/fcvm.2021.767488.spa
dc.relation.referencesKahlert, C. and Kalluri, R. (2013) ‘Exosomes in tumor microenvironment influence cancer progression and metastasis’, Journal of Molecular Medicine. Available at: https://doi.org/10.1007/s00109-013-1020-6.spa
dc.relation.referencesKokkotis, G. et al. (2024) ‘Oncostatin M Induces a Pro-inflammatory Phenotype in Intestinal Subepithelial Myofibroblasts’, Inflammatory Bowel Diseases, 30. Available at: https://doi.org/10.1093/ibd/izae098.spa
dc.relation.referencesKosaka, N. et al. (2010) ‘Secretory mechanisms and intercellular transfer of microRNAs in living cells’, Journal of Biological Chemistry, 285(23). Available at: https://doi.org/10.1074/jbc.M110.107821.spa
dc.relation.referencesKrylova, S. V. and Feng, D. (2023) ‘The Machinery of Exosomes: Biogenesis, Release, and Uptake’, International Journal of Molecular Sciences. Available at: https://doi.org/10.3390/ijms24021337.spa
dc.relation.referencesKurien, B.T. and Hal Scofield, R. (2015) Western blotting: Methods and protocols, Western Blotting: Methods and Protocols. Available at: https://doi.org/10.1007/978-1-4939-2694-7.spa
dc.relation.referencesLai, M. et al. (2021) ‘Acid ceramidase controls apoptosis and increases autophagy in human melanoma cells treated with doxorubicin’, Scientific Reports, 11(1). Available at: https://doi.org/10.1038/s41598-021-90219-1.spa
dc.relation.referencesLatifkar, A. et al. (2019) ‘New insights into extracellular vesicle biogenesis and function’, Journal of Cell Science. Available at: https://doi.org/10.1242/JCS.222406.spa
dc.relation.referencesLeBleu, V.S. and Kalluri, R. (2020) ‘Exosomes as a Multicomponent Biomarker Platform in Cancer’, Trends in Cancer. Available at: https://doi.org/10.1016/j.trecan.2020.03.007.spa
dc.relation.referencesLind, H. et al. (2020) ‘Dual targeting of TGF-β and PD-L1 via a bifunctional anti-PD-L1/TGF-βRII agent: Status of preclinical and clinical advances’, Journal for ImmunoTherapy of Cancer. Available at: https://doi.org/10.1136/jitc-2019-000433.spa
dc.relation.referencesLobb, R.J. et al. (2015) ‘Optimized exosome isolation protocol for cell culture supernatant and human plasma’, Journal of Extracellular Vesicles, 4(1). Available at: https://doi.org/10.3402/jev.v4.27031.spa
dc.relation.referencesDe Maio, A. (2011) ‘Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: A form of communication during injury, infection, and cell damage’, Cell Stress and Chaperones, 16(3). Available at: https://doi.org/10.1007/s12192-010-0236-4.spa
dc.relation.referencesMariachiara Di Cesare et al. (2023) World Heart Report 2023: Confronting the World’s Number One Killer., World Heart Federation. 2023. Geneva, Switzerland. Available at: https://world-heart-federation.org/wp-content/uploads/World-Heart-Report-2023.pdf (Accessed: 5 October 2024).spa
dc.relation.referencesMathieu, M. et al. (2019) ‘Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication’, Nature Cell Biology. Available at: https://doi.org/10.1038/s41556-018-0250-9.spa
dc.relation.referencesMathieu, M. et al. (2021) ‘Specificities of exosome versus small ectosome secretion revealed by live intracellular tracking of CD63 and CD9’, Nature Communications, 12(1). Available at: https://doi.org/10.1038/s41467-021-24384-2.spa
dc.relation.referencesMidekessa, G. et al. (2020) ‘Zeta Potential of Extracellular Vesicles: Toward Understanding the Attributes that Determine Colloidal Stability’, ACS Omega, 5(27). Available at: https://doi.org/10.1021/acsomega.0c01582.spa
dc.relation.referencesMinciacchi, V.R., Freeman, M.R. and Di Vizio, D. (2015) ‘Extracellular Vesicles in Cancer: Exosomes, Microvesicles and the Emerging Role of Large Oncosomes’, Seminars in Cell and Developmental Biology. Available at: https://doi.org/10.1016/j.semcdb.2015.02.010.spa
dc.relation.referencesMizushima, N. and Komatsu, M. (2011) ‘Autophagy: Renovation of cells and tissues’, Cell. Available at: https://doi.org/10.1016/j.cell.2011.10.026.spa
dc.relation.referencesNederveen, J.P. et al. (2021) ‘Extracellular Vesicles and Exosomes: Insights From Exercise Science’, Frontiers in Physiology. Available at: https://doi.org/10.3389/fphys.2020.604274.spa
dc.relation.referencesNgo, J.M. et al. (2025) ‘Extracellular Vesicles and Cellular Homeostasis’, Annual Review of Biochemistry [Preprint]. Available at: https://doi.org/https://doi.org/10.1146/annurev-biochem-100924-012717.spa
dc.relation.referencesVan Niel, G., D’Angelo, G. and Raposo, G. (2018) ‘Shedding light on the cell biology of extracellular vesicles’, Nature Reviews Molecular Cell Biology. Available at: https://doi.org/10.1038/nrm.2017.125.spa
dc.relation.referencesNovoa-Herrán Susana, Domínguez Yohana and Gómez-Grosso Luis Alberto (2019) ‘Efecto de medios condicionados y de vesículas extracelulares de células de melanoma tratadas con doxorrubicina, sobre la actividad MTT reductasa, longitud y generación del anión superóxido en cardiomiocitos individuales’, Biomédica, 21 November, p. 51.spa
dc.relation.referencesPickup, M., Novitskiy, S. and Moses, H.L. (2013) ‘The roles of TGFβ in the tumour microenvironment’, Nature Reviews Cancer. Available at: https://doi.org/10.1038/nrc3603spa
dc.relation.referencesVan Der Pol, E. et al. (2010) ‘Optical and non-optical methods for detection and characterization of microparticles and exosomes’, Journal of Thrombosis and Haemostasis. Available at: https://doi.org/10.1111/j.1538-7836.2010.04074.x.spa
dc.relation.referencesPopa, S.J., Stewart, S.E. and Moreau, K. (2018) ‘Unconventional secretion of annexins and galectins’, Seminars in Cell and Developmental Biology. Available at: https://doi.org/10.1016/j.semcdb.2018.02.022.spa
dc.relation.referencesRawat, P.S. et al. (2021) ‘Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management’, Biomedicine and Pharmacotherapy. Available at: https://doi.org/10.1016/j.biopha.2021.111708.spa
dc.relation.referencesRodda, D.J. and Yamazaki, H. (1994) ‘Poly(vinyl alcohol) as a blocking agent in enzyme immunoassays’, Immunological Investigations, 23(6–7). Available at: https://doi.org/10.3109/08820139409066836.spa
dc.relation.referencesROITT, I. (1992) ‘Essential Immunology’, Revista do Instituto de Medicina Tropical de São Paulo, 34(1). Available at: https://doi.org/10.1590/s0036-46651992000100014.spa
dc.relation.referencesSingal, P.K. and Iliskovic, N. (1998) ‘Doxorubicin-Induced Cardiomyopathy’, New England Journal of Medicine, 339(13), pp. 900–905. Available at: https://doi.org/10.1056/NEJM199809243391307.spa
dc.relation.referencesSS Novoa Herrán, JJ Osorio and LA Gomez Grosso (2021) ‘Galectina-3 es secretada yasociada a vesículas extracelulares obtenidas de células de melanoma A375y de cáncer de seno MDA-MB-231 y MCF7 tratadas con doxorrubicina’, Biomédica2021; 41(Supl.3):293 [Preprint].spa
dc.relation.referencesSung, B.H. et al. (2020) ‘A live cell reporter of exosome secretion and uptake reveals pathfinding behavior of migrating cells’, Nature Communications, 11(1). Available at: https://doi.org/10.1038/s41467-020-15747-2.spa
dc.relation.referencesSung, H. et al. (2021) ‘Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries’, CA: A Cancer Journal for Clinicians, 71(3), pp. 209–249. Available at: https://doi.org/10.3322/caac.21660.spa
dc.relation.referencesThomé, M.P. et al. (2016) ‘Ratiometric analysis of Acridine Orange staining in the study of acidic organelles and autophagy’, Journal of Cell Science, 129(24). Available at: https://doi.org/10.1242/jcs.195057.spa
dc.relation.referencesTian, C. et al. (2021) ‘Potential of exosomes as diagnostic biomarkers and therapeutic carriers for doxorubicin-induced cardiotoxicity’, International Journal of Biological Sciences. Available at: https://doi.org/10.7150/ijbs.58786.spa
dc.relation.referencesTkach, M. and Théry, C. (2016) ‘Communication by Extracellular Vesicles: Where We Are and Where We Need to Go’, Cell. Cell Press, pp. 1226–1232. Available at: https://doi.org/10.1016/j.cell.2016.01.043.spa
dc.relation.referencesTrajkovic, K. et al. (2008) ‘Ceramide triggers budding of exosome vesicles into multivesicular endosomes’, Science, 319(5867). Available at: https://doi.org/10.1126/science.1153124.spa
dc.relation.referencesVerweij, F.J. et al. (2018) ‘Quantifying exosome secretion from single cells reveals a modulatory role for GPCR signaling’, Journal of Cell Biology, 217(3). Available at: https://doi.org/10.1083/jcb.201703206.spa
dc.relation.referencesVillodre, E.S. et al. (2018) ‘Low Dose of Doxorubicin Potentiates the Effect of Temozolomide in Glioblastoma Cells’, Molecular Neurobiology, 55(5). Available at: https://doi.org/10.1007/s12035-017-0611-6.spa
dc.relation.referencesWang, S.E. (2020) ‘Extracellular vesicles and metastasis’, Cold Spring Harbor Perspectives in Medicine, 10(7). Available at: https://doi.org/10.1101/cshperspect.a037275.spa
dc.relation.referencesWelsh, J.A. et al. (2024) ‘Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches’, Journal of Extracellular Vesicles, 13(2). Available at: https://doi.org/10.1002/jev2.12404.spa
dc.relation.referencesWendler, F., Bota-Rabassedas, N. and Franch-Marro, X. (2013) ‘Cancer becomes wasteful: Emerging roles of exosomes in cell-fate determination’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.3402/jev.v2i0.22390.spa
dc.relation.referencesWu, Y., Deng, W. and Klinke, D.J. (2015) ‘Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers’, Analyst, 140(19). Available at: https://doi.org/10.1039/c5an00688k.spa
dc.relation.referencesYáñez-Mó, M. et al. (2015) ‘Biological properties of extracellular vesicles and their physiological functions’, Journal of Extracellular Vesicles. Available at: https://doi.org/10.3402/jev.v4.27066.spa
dc.relation.referencesYang, Y. et al. (2021) ‘Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma’, Journal of Translational Medicine, 19(1). Available at: https://doi.org/10.1186/s12967-021-02775-9.spa
dc.relation.referencesZamorano, J.L. et al. (2016) ‘2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines’, European Heart Journal. Available at: https://doi.org/10.1093/eurheartj/ehw211.spa
dc.relation.referencesvan der Zanden, S.Y., Qiao, X. and Neefjes, J. (2021) ‘New insights into the activities and toxicities of the old anticancer drug doxorubicin’, FEBS Journal. Available at: https://doi.org/10.1111/febs.15583.spa
dc.relation.referencesZhang, M. et al. (2021) ‘TGF-β Signaling and Resistance to Cancer Therapy’, Frontiers in Cell and Developmental Biology. Available at: https://doi.org/10.3389/fcell.2021.786728.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsMicroambiente Tumoralspa
dc.subject.decsTumor Microenvironmenteng
dc.subject.decsVesículas Extracelularesspa
dc.subject.decsExtracellular Vesicleseng
dc.subject.decsDoxorrubicinaspa
dc.subject.decsDoxorubicineng
dc.subject.decsCardiotoxicityeng
dc.subject.decsBiogénesis de Organelosspa
dc.subject.decsOrganelle Biogenesiseng
dc.subject.decsInmunohistoquímicaspa
dc.subject.decsImmunohistochemistryeng
dc.subject.decsCuerpos Multivesicularesspa
dc.subject.decsMultivesicular Bodieseng
dc.subject.decsCromatografía en Gelspa
dc.subject.decsChromatography, Geleng
dc.subject.decsNanopartículasspa
dc.subject.decsNanoparticleseng
dc.subject.decsCardiotoxicidadspa
dc.subject.proposalExosomasspa
dc.subject.proposalDoxorrubicinaspa
dc.subject.proposalVesículas Extracelularesspa
dc.subject.proposalBiogénesisspa
dc.subject.proposalMelanomaspa
dc.subject.proposalExosomeseng
dc.subject.proposalExtracellular vesicleseng
dc.subject.proposalDoxorubicineng
dc.subject.proposalBiogenesiseng
dc.subject.proposalMelanomaeng
dc.subject.proposalCuerpos Multivesicularesspa
dc.subject.proposalMultivesicular Bodieseng
dc.titleEvaluación del contenido proteico de vesículas extracelulares pequeñas derivadas de células de melanoma humano tratadas con Doxorrubicinaspa
dc.title.translatedEvaluation of the protein content of small extracellular vesicles derived from human melanoma cells treated with Doxorubicineng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameInstituto Nacional de Saludspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010227838.2025.pdf
Tamaño:
2.92 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: