Tree-level recursive self-dual Yang-Mills and self-dual Gravity

dc.contributor.advisorLopez Arcos, Cristhiam Manuel
dc.contributor.advisorQuintero Velez, Alexander
dc.contributor.authorHerrera Correa, Daniel
dc.contributor.orcidHerrera Correa, Daniel [0009-0002-1521-9921]spa
dc.date.accessioned2025-04-22T23:02:53Z
dc.date.available2025-04-22T23:02:53Z
dc.date.issued2025
dc.description.abstractThis work studies the quantization of gauge theories in the sense of the Batalin-Vilkovisky (BV) formalism by using the language of dg-manifolds, introduced initially by Schwarz, Kontsevich, et. al., and some mathematical consequences of this language, with an emphasis on the fact that the underlying structure of the quantizable theory is a symplectic dg-manifold called QP-manifold. These structures give rise to homotopy Lie algebras such as L_infinity-algebras so that the classical BV formalism is translated into a Maurer-Cartan theory for a cyclic L_infinity-algebra that already recovers all the information of the associated gauge theory. The advantage of this language when describing the physics of particular models is that the L_infinity-algebra allows one to produce a generating function of tree-level amplitudes by directly implementing the so-called Berends-Giele currents. We tested this approach by explicitly calculating Berends-Giele currents from the L_infinity-structure of different theories, such as Yang-Mills theory, self-dual Yang-Mills, and self-dual Gravity, constructing the last one as the double-copy of self-dual Yang-Mills. (Tomado de la fuente)eng
dc.description.abstractEste trabajo estudia la cuantización de las teorías gauges por medio del formalismo de Batalin-Vilkovisky en el lenguaje de las variedades diferenciales graduadas, introducido inicialmente por Schwarz, Kontsevich, et. al. [AKSZ97], y algunas de las consecuencias matemáticas de este lenguaje, enfatizando el hecho de que la estructura geométrica subyacente a una teoría gauge cuantizable es una variedad simpléctica graduada equipada con un campo vectorial homológico. Estas estructuras inducen álgebras de Lie homotópicas, como las álgebras L_infinito, de manera que el formalismo de Batalin-Vilkovisky clásico puede ser traducido en una teoría de Maurer-Cartan homotópica que codifica la teoría gauge. La ganancia conceptual de este lenguaje en la física que describen es que el álgebra L_infinito permite construir funciones generatrices de amplitudes de dispersión a nivel de árbol, mediante la implementación de las corrientes de Berends-Giele. Probamos esta aproximación calculando las corrientes de Berends-Giele en el álgebra L_infinito de distintas teorías, como la teoría de Yang-Mills, Yang-Mills autodual, y gravedad autodual, construyendo esta última como la doble copia de la previa.spa
dc.description.curricularareaMatemáticas.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaFísica matemáticaspa
dc.format.extent97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88079
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesM. Alexandrov, M. Kontsevich, A. Schwarz, and O. Zaboronsky. The Geometry of the master equation and topological quantum field theory. Int. J. Mod. Phys. A, 12:1405– 1429, 1997.spa
dc.relation.referencesLuigi Alfonsi and Charles A. S. Young. Towards non-perturbative bv-theory via derived differential geometry, 2023.spa
dc.relation.referencesZvi Bern. Perturbative quantum gravity and its relation to gauge theory. Living Reviews in Relativity, 5(1), July 2002spa
dc.relation.referencesFrits A. Berends and W. T. Giele. Recursive Calculations for Processes with n Gluons. Nucl. Phys. B, 306:759–808, 1988.spa
dc.relation.referencesRutger H. Boels, Reinke Sven Isermann, Ricardo Monteiro, and Donal O’Connell. Colour-kinematics duality for one-loop rational amplitudes. Journal of High Energy Physics, 2013(4), April 2013.spa
dc.relation.referencesC Becchi, A Rouet, and R Stora. Renormalization of gauge theories. Annals of Physics, 98(2):287–321, 1976.spa
dc.relation.referencesI. A. Batalin and G. A. Vilkovisky. Gauge Algebra and Quantization. Phys. Lett. B, 102:27–31, 1981.spa
dc.relation.referencesI. A. Batalin and G. a. Vilkovisky. FEYNMAN RULES FOR REDUCIBLE GAUGE THEORIES. Phys. Lett. B, 120:166–170, 1983.spa
dc.relation.referencesI. A. Batalin and G. A. Vilkovisky. Quantization of Gauge Theories with Linearly Dependent Generators. Phys. Rev. D, 28:2567–2582, 1983. [Erratum: Phys.Rev.D 30, 508 (1984)].spa
dc.relation.referencesDaniel Cangemi. Self-dual yang-mills theory and one-loop maximally helicity violating multi-gluon amplitudes. Nuclear Physics B, 484(1–2):521–537, January 1997.spa
dc.relation.referencesJohn Joseph M. Carrasco. Tasi 2014: Lectures on gauge and gravity amplitude relations. In Journeys Through the Precision Frontier: Amplitudes for Colliders. WORLD SCIENTIFIC, September 2015.spa
dc.relation.referencesClaude Chevalley and Samuel Eilenberg. Cohomology Theory of Lie Groups and Lie Algebras. Trans. Am. Math. Soc., 63:85–124, 1948spa
dc.relation.referencesKevin Costello and Owen Gwilliam. Factorization Algebras in Quantum Field Theory. New Mathematical Monographs (41). Cambridge University Press, 9 2021.spa
dc.relation.referencesDaniel Herrera Correa, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. Tree and one-loop-level double copy for the (anti)self-dual sectors of Yang-Mills and gravity theories. Phys. Rev. D, 111:065001, Mar 2025.spa
dc.relation.referencesAlberto S. Cattaneo and Nima Moshayedi. Introduction to the bv-bfv formalism. Reviews in Mathematical Physics, 32(09):2030006, April 2020.spa
dc.relation.referencesAlberto S. Cattaneo, Pavel Mnev, and Michele Schiavina. Bv quantization. 2023.spa
dc.relation.referencesMiguel Campiglia and Silvia Nagy. A double copy for asymptotic symmetries in the self-dual sector. Journal of High Energy Physics, 2021(3), March 2021.spa
dc.relation.referencesP. Deligne, P. Etingof, D. S. Freed, L. C. Jeffrey, D. Kazhdan, J. W. Morgan, D. R. Morrison, and Edward Witten, editors. Quantum fields and strings: A course for mathematicians. Vol. 1, 2. 1999.spa
dc.relation.referencesP. A. M. DIRAC. The lagrangian in quantum mechanics. Physikalische Zeitschrift der Sowjetunion., pages 64–72, 1932.spa
dc.relation.referencesG. de Rham. Differentiable Manifolds: Forms, Currents, Harmonic Forms. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete. Springer-Verlag, 1984.spa
dc.relation.referencesAna Cannas da Silva. Symplectic geometry, 2005.spa
dc.relation.referencesA. Einstein. Die Feldgleichungen der Gravitation, page 844–847. 1915.spa
dc.relation.referencesNathaniel Eldredge. Analysis and probability on infinite-dimensional spaces, 2016.spa
dc.relation.referencesPavel Etingof. Mathematical ideas and notions of quantum field theory, 2024.spa
dc.relation.referencesL. D. Faddeev and V. N. Popov. Feynman Diagrams for the Yang-Mills Field. Phys. Lett. B, 25:29–30, 1967.spa
dc.relation.referencesValentina Guarín Escudero, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. Homotopy double copy and the kawai–lewellen–tye relations for the non-abelian and tensor navier–stokes equations. Journal of Mathematical Physics, 64(3), March 2023.spa
dc.relation.referencesHumberto Gomez, Renann Lipinski Jusinskas, Cristhiam Lopez-Arcos, and Alexander Quintero Vélez. One-loop off-shell amplitudes from classical equations of motion. Physical Review Letters, 130(8), February 2023.spa
dc.relation.referencesMaxim Grigoriev and Dmitry Rudinsky. Notes on the l_∞-approach to local gauge field theories, 2023.spa
dc.relation.referencesWalter Greiner. Quantum mechanics. Springer - verlog, Berlin, 4th ed. edition, 2004.spa
dc.relation.referencesMark Hamilton, J. D. Mathematical Gauge Theory: With Applications to the Standard Model of Particle Physics. Universitext. Springer International Publishing, Cham, 2017.spa
dc.relation.referencesRobin Hartshorne. Algebraic Geometry, volume 52 of Graduate Texts in Mathematics. Springer, 1977.spa
dc.relation.referencesD. Hilbert. Die grundlagen der physik . (erste mitteilung.). Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1915:395–408, 1915.spa
dc.relation.referencesNigel J. Hitchin. The Selfduality equations on a Riemann surface. Proc. Lond. Math. Soc., 55:59–131, 1987.spa
dc.relation.referencesM. Z. Iofa and I. V. Tyutin. Gauge Invariance of Spontaneously Broken Nonabelian Theories in the Bogolyubov-Parasiuk-HEPP-Zimmerman Method. Teor. Mat. Fiz., 27:38–47, 1976.spa
dc.relation.referencesBranislav Jurco, Tommaso Macrelli, Lorenzo Raspollini, Christian Saemann, and Martin Wolf. l∞-algebras, the bv formalism, and classical fields. 3 2019.spa
dc.relation.referencesBranislav Jurčo, Tommaso Macrelli, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. ‐algebras, the bv formalism, and classical fields: Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik, 67(8–9), June 2019.spa
dc.relation.referencesBranislav Jurčo, Lorenzo Raspollini, Christian Sämann, and Martin Wolf. L∞‐algebras of classical field theories and the batalin–vilkovisky formalism. Fortschritte der Physik, 67(7), July 2019.spa
dc.relation.referencesTornike Kadeishvili. Structure of a(∞)-algebra and hochschild and harrison cohomology, 2002.spa
dc.relation.referencesJ. Kalkman. BRST model for equivariant cohomology and representatives for the equivariant Thom class. Commun. Math. Phys., 153:447–463, 1993.spa
dc.relation.referencesH. Kawai, D.C. Lewellen, and S.-H.H. Tye. A relation between tree amplitudes of closed and open strings. Nuclear Physics B, 269(1):1–23, 1986.spa
dc.relation.referencesMaxim Kontsevich. Deformation quantization of poisson manifolds. Letters in Mathematical Physics, 66(3):157–216, December 2003.spa
dc.relation.referencesAlexei Kotov and Thomas Strobl. Characteristic classes associated to q-bundles, 2007.spa
dc.relation.referencesCORNELIUS LANCZOS. The Variational Principles of Mechanics. University of Toronto Press, 1962.spa
dc.relation.referencesCristhiam Lopez-Arcos and Alexander Quintero Vélez. L∞-algebras and the perturbiner expansion. Journal of High Energy Physics, 2019(11), November 2019.spa
dc.relation.referencesD. A. Leites. Introduction to the theory of supermanifolds. Russ.Math. Surveys, 35(1):1– 64, 1980.spa
dc.relation.referencesM. Manetti. Lie Methods in Deformation Theory. Springer Monographs in Mathematics. Springer Nature Singapore, 2022.spa
dc.relation.referencesTim Maudlin. Philosophy of Physics: Quantum Theory, volume 33. Princeton University Press, 2019.spa
dc.relation.referencesJames Clerk Maxwell. A Treatise on Electricity and Magnetism. Cambridge Library Collection - Physical Sciences. Cambridge University Press, 2010.spa
dc.relation.referencesEckhard Meinrenken. Clifford Algebras and Lie Theory, volume 58. 01 2013spa
dc.relation.referencesPavel Mnev. Lectures on Batalin-Vilkovisky formalism and its applications in topological quantum field theory. 7 2017.spa
dc.relation.referencesRicardo Monteiro and Donal O’Connell. The kinematic algebra from the self-dual sector. Journal of High Energy Physics, 2011(7), July 2011.spa
dc.relation.referencesD. McDuff and D. Salamon. Introduction to Symplectic Topology. Oxford mathematical monographs. Clarendon Press, 1998.spa
dc.relation.referencesSebastian Mizera and Barbara Skrzypek. Perturbiner methods for effective field theories and the double copy. Journal of High Energy Physics, 2018(10), October 2018.spa
dc.relation.referencesTommaso Macrelli, Christian Sämann, and Martin Wolf. Scattering amplitude recursion relations in batalin-vilkovisky–quantizable theories. Physical Review D, 100(4), August 2019.spa
dc.relation.referencesE. Noether. Invariante variationsprobleme. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 1918:235–257, 1918.spa
dc.relation.referencesEric Poisson. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. Cambridge University Press, 2004.spa
dc.relation.referencesJ. Polchinski. String theory. Vol. 1: An introduction to the bosonic string. Cambridge Monographs on Mathematical Physics. Cambridge University Press, 12 2007.spa
dc.relation.referencesLorenzo Raspollini. Higher gauge theory, BV formalism and self-dual theories from twistor space. PhD thesis, Surrey U., 2021.spa
dc.relation.referencesBen Reinhold. L ∞ -algebras and their cohomology. Emergent Scientist, 3:4, 2019.spa
dc.relation.referencesKatarzyna Rejzner. Batalin-vilkovisky formalism in locally covariant field theory, 2013.spa
dc.relation.referencesKasia Rejzner. Perturbative Algebraic Quantum Field Theory: An Introduction for Mathematicians. Mathematical Physics Studies. Springer, New York, 2016.spa
dc.relation.referencesA.A. Rosly and K.G. Selivanov. On amplitudes in the self-dual sector of yang-mills theory. Physics Letters B, 399(1–2):135–140, April 1997.spa
dc.relation.referencesA. A. Rosly and K. G. Selivanov. What we think about multiparticle amplitudes, 1998.spa
dc.relation.referencesM. Salmhofer. Renormalization: An Introduction. Theoretical and Mathematical Physics. Springer Berlin Heidelberg, 2013.spa
dc.relation.referencesAlbert Schwarz. Geometry of batalin-vilkovisky quantization, 1992.spa
dc.relation.referencesAlbert Schwarz. Semiclassical approximation in batalin-vilkovisky formalism. Communications in Mathematical Physics, 158(2):373–396, November 1993.spa
dc.relation.referencesK. Selivanov. Self-dual perturbiner in yang-mills theory, 1997.spa
dc.relation.referencesPavol Severa. Some title containing the words ”homotopy” and ”symplectic”, e.g. this one, 2001.spa
dc.relation.referencesJim Stasheff. Homological reduction of constrained poisson algebras, 1996.spa
dc.relation.referencesJim Stasheff. The (secret?) homological algebra of the batalin-vilkovisky approach, 1997.spa
dc.relation.referencesRichard J. Szabo. Equivariant Cohomology and Localization of Path Integrals, volume 63. 2000.spa
dc.relation.referencesRoberto Tellez Domínguez. The Severa-Roytenberg correspondence. Master’s thesis, Universidad Autónoma de Madrid, 2020.spa
dc.relation.referencesIvo Terek. A Guide to Symplectic Geometry, 2021.spa
dc.relation.referencesTheodore Th. Voronov. Graded geometry, q‐manifolds, and microformal geometry: Lms/epsrc durham symposium on higher structures in m‐theory. Fortschritte der Physik, 67(8–9), May 2019.spa
dc.relation.referencesCharles A. Weibel. An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 1994.spa
dc.relation.referencesH. Weyl. Quantenmechanik und gruppentheorie. Zeitschrift für Physik, 1:1–46, 1927.spa
dc.relation.referencesEdward Witten. Notes on supermanifolds and integration, 2016.spa
dc.relation.referencesC. N. Yang and R. L.Mills. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev., 96:191–195, Oct 1954.spa
dc.relation.referencesBarton Zwiebach. Closed string field theory: Quantum action and the batalinvilkovisky master equation. Nuclear Physics B, 390(1):33–152, January 1993.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.ddc530 - Física::539 - Física modernaspa
dc.subject.lembFísica matemática
dc.subject.lembPerturbación (Matemáticas)
dc.subject.lembAlgebras lineales
dc.subject.lembAlgebra diferencial
dc.subject.lembVariedades diferenciales
dc.subject.proposalmathematical physicseng
dc.subject.proposalquantum field theoryeng
dc.subject.proposalBatalin-Vilkovisky formalismeng
dc.subject.proposalL_infinity algebraseng
dc.subject.proposalYang-Mills theoryeng
dc.subject.proposalGauge theoryeng
dc.subject.proposalPerturbinereng
dc.subject.proposalFormalismo Batalin-Vilkoviskyspa
dc.subject.proposalAlgebra L infinitospa
dc.subject.proposalTeoría de Yang-Millsspa
dc.titleTree-level recursive self-dual Yang-Mills and self-dual Gravityeng
dc.title.translatedTeoría de Yang-Mills y Gravedad auto-duales recursivas a nivel de árbolspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037666690.2025.pdf
Tamaño:
8.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: