Relación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociados

dc.contributor.advisorOrtiz Reyes, Adriana
dc.contributor.advisorRomero-Tabarez, Magally
dc.contributor.authorMejia Torres, Maria Camila
dc.contributor.researchgroupSabio Sustancias Activas y Biotecnologiaspa
dc.coverage.citySantander, Colombia
dc.date.accessioned2022-08-25T19:42:42Z
dc.date.available2022-08-25T19:42:42Z
dc.date.issued2020-02-15
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractColonias de Tetragonisca angustula en Cimitarra, Santander presentaron señales progresivas de deterioro que conllevó a su muerte. Dado que tras realizar la evaluación correspondiente para múltiples patógenos conocidos para otras especies de abejas no fue posible identificar el causante del daño, se decidió hacer un análisis extensivo sobre los microorganismos asociados a las colonias de T. angustula y establecer si existe relación entre el avance del deterioro y algún patógeno cultivable o una posible disbiosis en la colonia. Se aislaron bacterias de adultos, inmaduros y partes estructurales del nido utilizando métodos de siembra convencionales, se morfotiparon las colonias obtenidas y aquellas más abundantes y con aparente relación con el deterioro de las colonias fueron identificadas por técnicas moleculares. Se publica un listado detallado de las bacterias identificadas por cada fuente muestreada como aporte al conocimiento de la microbiota de esta especie de abeja sin aguijón. Se observó en todas las fuentes aumento en la abundancia bacteriana principalmente de Actino bacterias, Bacillus y Enterobacterias durante la etapa temprana del deterioro seguida por una reducción de esta en la etapa tardía, aunque los análisis estadísticos no permitieron establecer si alguna de las bacterias actúa como patógeno de la colonia o si estos cambios en la microbiota son los causantes del deterioro. Bacterias como L. saprophyticus o L. massiliensis son potencialmente patógenas, y sería interesante estudiar más a fondo su acción sobre T. angustula. Dado que los microorganismos que aumentaron tienen propiedades antifúngicas y que los hongos pueden establecer interacción con las bacterias, se recomienda evaluar las muestras para determinar la presencia de hongos que puedan estar modificando la microbiota de las abejas o causando cambios en el comportamiento de la colonia. (texto tomado de la fuente)spa
dc.description.abstractColonies of Tetragonisca angustula in Cimitarra, Santander showed progressive signs of deterioration that led to their death. Given that after carrying out the corresponding evaluation for multiple known pathogens for other species of bees it was not possible to identify the cause of the damage, it was decided to carry out an extensive analysis on the microorganisms associated with the colonies of T. angustula and to establish if there is a relationship between the advance of deterioration and some cultivable pathogen, or a possible dysbiosis in the colony. Bacteria were isolated from adults, immature and structural parts of the nest using conventional seeding methods, the colonies obtained were morphotyped and those more abundant and with an apparent relationship with the deterioration of the colonies were identified by molecular techniques. A detailed list of the bacteria identified by each sampled source is published as a contribution to the knowledge of the microbiota of this species of stingless bee. An increase in bacterial abundance was observed in all the sampled sources, mainly of Actinobacteria, Bacillus and Enterobacteria during the early stage of deterioration followed by a reduction of this in the late stage, although the statistical analysis did not allow to establish whether any of the bacteria acts as a pathogen of the colony or if these changes in the microbiota are causing the deterioration. Bacteria such as L. saprophyticus or L. massiliensis are potentially pathogenic, and it would be interesting to further study their action on T. angustula. Given that some microorganisms that increased have antifungal properties and that fungi can establish interaction with bacteria, it is recommended to evaluate the samples to determine the presence of fungi that may be modifying the microbiota of the bees or causing changes in the behaviour of the colony.eng
dc.description.curricularareaÁrea Curricular en Ciencias Naturalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Entomologíaspa
dc.description.researchareaEcología de insectosspa
dc.format.extentxviii, 125 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82114
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de ciencias naturalesspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Entomologíaspa
dc.relation.referencesMichener, C. D. (2007). Tribe Meliponini. In The bees of the world (pp. 803–829). The John Hopckins University Press.spa
dc.relation.referencesMiller, D. L., Smith, E. A., & Newton, I. L. G. (2020). A bacterial symbiont protects honey bees from fungal disease. BioRxiv, 812, 2020.01.21.914325. https://doi.org/10.1101/2020.01.21.914325spa
dc.relation.referencesMills, T. J. T. (2018). Diversity and bioactivity of microorganisms associated with Australian Stingless bee species (Issue August). The University of New South Wales.spa
dc.relation.referencesMiorin, P. L., Levy, N. C., Custodio, A. R., Bretz, W. A., & Marcucci, M. C. (2003). Antibacterial activity of honey and propolis from Apis mellifera and Tetragonisca angustula against Staphylococcus aureus. Journal of Applied Microbiology, 95(5), 913–920. https://doi.org/10.1046/j.1365-2672.2003.02050.xspa
dc.relation.referencesMohr, K. I., & Tebbe, C. C. (2006). Diversity and phylotype consistency of bacteria in the guts of three bee species (Apoidea) at an oilseed rape field. Environmental Microbiology, 8(2), 258–272. https://doi.org/10.1111/j.1462-2920.2005.00893.xspa
dc.relation.referencesMoran, N. A., Hansen, A. K., Powell, J. E., & Sabree, Z. L. (2012). Distinctive gut microbiota of honey bees assessed using deep sampling from individual worker bees. PLoS ONE, 7(4), 1–10. https://doi.org/10.1371/journal.pone.0036393spa
dc.relation.referencesMoran, N. A., & Sloan, D. B. (2015). The Hologenome Concept: Helpful or Hollow? PLoS Biology, 13(12), 1–10. https://doi.org/10.1371/journal.pbio.1002311spa
dc.relation.referencesMotta, E. V. S., Raymann, K., & Moran, N. A. (2018). Glyphosate perturbs the gut microbiota of honey bees. Proceedings of the National Academy of Sciences of the United States of America, 115(41), 10305–10310. https://doi.org/10.1073/pnas.1803880115spa
dc.relation.referencesMoure, J. S. (1946). Contribuição para o conhecimento dos Meliponinae (Hym.,Apoidea). Rev. Entomol., 17(3), 437–443. http://moure.cria.org.br/catalogue?id=34161spa
dc.relation.referencesNafis, A., Elhidar, N., Oubaha, B., Samri, S. E., Niedermeyer, T., Ouhdouch, Y., Hassani, L., & Barakate, M. (2018). Screening for non-polyenic antifungal produced by actinobacteria from Moroccan habitats: Assessment of antimycin A19 production by Streptomyces albidoflavus AS25. International Journal of Molecular and Cellular Medicine, 7(2), 133–145. https://doi.org/10.22088/IJMCM.BUMS.7.2.133spa
dc.relation.referencesNaiem, E. S., Hrassnigg, N., & Crailsheim, K. (1999). Nurse bees support the physiological development of young bees (Apis mellifera L.). Journal of Comparative Physiology - B Biochemical, Systemic, and Environmental Physiology, 169(4–5), 271–279. https://doi.org/10.1007/s003600050221spa
dc.relation.referencesNakamura, L. K. (2000). Phylogeny of Bacillus sphaericus- like organisms. International Journal of Systematic and Evolutionary Microbiology, 50(2000), 1715–1722spa
dc.relation.referencesNaranjo, E. J., Dirzo, R., López, C., Jaime, A., Adrián, R. O., Gutiérrez-granados, G., Dirzo, R., Ballesté, A. M., Mandujano, C., Prieto, I., Manuel, H., Macías, H., & Mendoza, R. (2009). Impacto de los factores antropogénicos de afectación directa a las poblaciones silvestres de flora y fauna. Capital Natural de México, II(September 2019), 247–276.spa
dc.relation.referencesNates-Parra, G. (2001a). Guía para la cría y manejo de la abeja angelita. Convenio Andrés Bello. https://books.google.com.co/books?id=SLOMX2cfmcIC&printsec=frontcover&source =gbs_ge_summary_r&cad=0#v=onepage&q&f=falsespa
dc.relation.referencesNates-Parra, G. (2001b). Las abejas sin aguijón (Hymenoptera: Apidae: Meliponini) de Colombia. Biota Colombiana, 2(3), 233–248. http://teca.fao.org/sites/default/files/comments/files/77-259-1-PB.pdfspa
dc.relation.referencesNates-Parra, G. (2005). Abejas corbiculadas de Colombia. Universidad Nacional de Colombiaspa
dc.relation.referencesNates-Parra, G. (2009). Abejas silvestres y polinización. Manejo Integrado de Plagas y Agroecología ( Costa Rica ), N o . 7 5(Roubik 1995), 7–20.spa
dc.relation.referencesNates-Parra, G., & Lopera, A. V. (1989). Ciclo de desarrollo de Trigona (Tetragonisca) angustula, Latreille 1811 (Hymenoptera, Trigonini). Acta Biológica Colombiana, 1(5), 91–98.spa
dc.relation.referencesNates-Parra, G., Rodríguez-c, Á., & Vélez, E. D. (2006). Abejas sin aguijón (Hymenoptera: Apidae: Meliponini) en cementerios de la cordillera oriental de Colombia. Acta Biológica Colombiana, 11(1), 25–35.spa
dc.relation.referencesNates-Parra, G., & Rosso-Londoño, J. M. (2013). Diversidad de abejas sin aguijón (Hymenoptera : Meliponini) utilizadas en meliponicultura en Colombia. Acta Biológica Colombiana, 18(3), 415–425spa
dc.relation.referencesNates-Parra, G., & Roubik, D. W. (1990). Sympatry among Subspecies of Melipona favosa in Colombia and a Taxonomic Revision. Journal of the Kansas Entomological Society, 63(1), 200–203.spa
dc.relation.referencesNgalimat, M. S., Rahman, R. N. Z. R. A., Yusof, M. T., Syahir, A., & Sabri, S. (2019). Characterisation of bacteria isolated from the stingless bee, Heterotrigona itama, honey, bee bread and propolis. PeerJ, 2019(8), 1–20. https://doi.org/10.7717/peerj.7478spa
dc.relation.referencesNishiwaki, H., Nakashima, K., Ishida, C., Kawamura, T., & Matsuda, K. (2007). Cloning, functional characterization, and mode of action of a novel insecticidal pore-forming toxin, sphaericolysin, produced by Bacillus sphaericus. Applied and Environmental Microbiology, 73(10), 3404–3411. https://doi.org/10.1128/AEM.00021-07spa
dc.relation.referencesNogueira-Neto. (1954). Notas bionômicas sôbre Meliponineos III – Sôbre a enxameagem (Hym. Apoidea). Arquivos Do Museu Nacional, 42, 419–452.spa
dc.relation.referencesNogueira-Neto, P. (1997). Vida e Criação de Abelhas Indígenas Sem Ferrão. Parma LTDA.spa
dc.relation.referencesNunes-Silva, P., Imperatriz-Fonseca, V. L., & Gonçalves, L. S. (2009). Hygienic behavior of the stingless bee Plebeia remota (Holmberg, 1903) (Apidae, Meliponini). Genetics and Molecular Research, 8(2), 649–654. https://doi.org/10.4238/vol8-2kerr026spa
dc.relation.referencesNunes-Silva, P., Piot, N., Meeus, I., Blochtein, B., & Smagghe, G. (2016). Absence of Leishmaniinae and Nosematidae in stingless bees. Scientific Reports, 6, 2–6. https://doi.org/10.1038/srep32547spa
dc.relation.referencesO’Hara, C. M., Steigerwalt, A. G., Hill, B. C., Farmer, J. J., Fanning, G. R., & Brenner, D. J. (1989). Enterobacter hormaechei, a new species of the family Enterobacteriaceae formerly known as Enteric Group 75. Journal of Clinical Microbiology, 27(9), 2046– 2049spa
dc.relation.referencesOlaitan, P. B., Adeleke, O. E., & Ola, I. O. (2007). Honey: A reservoir for microorganisms and an inhibitory agent for microbes. African Health Sciences, 7(3), 159–165. https://doi.org/10.5555/afhs.2007.7.3.159spa
dc.relation.referencesOlaya, Y., Gutierrez, C., & Hernandez, C. (2014). Comparación entre la Calidad Microbiológica de Miel de Tetragonisca Angustula y de Apis Mellifera. Rev.Fac.Nal.Agr.Medellín 67, 2(MAY 2014), 754–756spa
dc.relation.referencesOliveira, R. de C., Nunes, F. D. M. F., Campos, A. P. S., de Vasconcelos, S. M., Roubik, D. W., Goulart, L. R., & Kerr, W. E. (2004). Genetic divergence in Tetragonisca angustula Latreille, 1811 (Hymenoptera, Meliponinae,Trigonini) based on rapd markers. Genetics and Molecular Biology, 27(2), 181–186. https://doi.org/10.1590/S1415-47572004000200009spa
dc.relation.referencesOlofsson, T. C., & Vásquez, A. (2008). Detection and identification of a novel lactic acid bacterial flora within the honey stomach of the honeybee Apis mellifera. Current Microbiology, 57(4), 356–363. https://doi.org/10.1007/s00284-008-9202-0spa
dc.relation.referencesOtterstatter, M. C., Whidden, T. L., & Owen, R. E. (2002). Contrasting frequencies of parasitism and host mortality among phorid and conopid parasitoids of bumble-bees. Ecological Entomology, 27(2), 229–237. https://doi.org/10.1046/j.1365- 2311.2002.00403.xspa
dc.relation.referencesPailan, S., Gupta, D., Apte, S., Krishnamurthi, S., & Saha, P. (2015). Degradation of organophosphate insecticide by a novel Bacillus aryabhattai strain SanPS1, isolated from soil of agricultural field in Burdwan, West Bengal, India. International Biodeterioration and Biodegradation, 103, 191–195. https://doi.org/10.1016/j.ibiod.2015.05.006spa
dc.relation.referencesPalacios-López, O. A., González-Rangel, M. O., Rivera-Chavira, B. E., & Nevárez- Moorillón, G. V. (2011). El papel de los antimicrobianos en la estructura de las comunidades microbianas en la naturaleza. Tecnociencia Chihuahua, V(1), 1–8spa
dc.relation.referencesPark, Y. G., Mun, B. G., Kang, S. M., Hussain, A., Shahzad, R., Seo, C. W., Kim, A. Y., Lee, S. U., Oh, K. Y., Lee, D. Y., Lee, I. J., & Yun, B. W. (2017). Bacillus aryabhattai SRB02 tolerates oxidative and nitrosative stress and promotes the growth of soybean by modulating the production of phytohormones. PLoS ONE, 12(3), 1–28. https://doi.org/10.1371/journal.pone.0173203spa
dc.relation.referencesPaul, J., Sarkar, A., & Varma, A. (1986). In vitro studies of cellulose digesting properties of Staphylococcus saprophyticus isolated from termite gut. Current Science, December, 710–714.spa
dc.relation.referencesPereira, K. de S., Meeus, I., & Smagghe, G. (2019). Honey bee-collected pollen is a potential source of Ascosphaera apis infection in managed bumble bees. Scientific Reports, 9(1), 1–9. https://doi.org/10.1038/s41598-019-40804-2spa
dc.relation.referencesPérez-pérez, E. M., Esthe Suarez, Peña-Vera, M. J., González, A. C., & Vit, P. (2013). Antioxidant activity and microorganisms in nest products of Tetragonisca Laboratorio de Biología Molecular , Facultad de Farmacia y Bioanálisis , Apiterapia y Bioactividad , Departamento Ciencia de los Alimentos , Facultad de Farmacia y Bioanálisis ,. In P. Vit & D. W. Roubik (Eds.), Stingless Bee Process Honey and Pollen in Cerumen Pots (pp. 1–8).spa
dc.relation.referencesPorrini, M. P., Porrini, L. P., Garrido, P. M., de Melo e Silva Neto, C., Porrini, D. P., Muller, F., Nuñez, L. A., Alvarez, L., Iriarte, P. F., & Eguaras, M. J. (2017). Nosema ceranae in South American Native Stingless Bees and Social Wasp. Microbial Ecology, 74(4), 761–764. https://doi.org/10.1007/s00248-017-0975-1spa
dc.relation.referencesPowell, J. E., Martinson, V. G., Urban-Mead, K., & Moran, N. A. (2014). Routes of acquisition of the gut microbiota of Apis mellifera. Applied and Environmental Microbiology, 80(23), 7378–7387. https://doi.org/10.1128/AEM.01861-14spa
dc.relation.referencesPrado, S. S., Hung, K. Y., Daugherty, M. P., & Almeida, R. P. P. (2010). Indirect effects of temperature on stink bug fitness, via maintenance of gut-associated symbionts. Applied and Environmental Microbiology, 76(4), 1261–1266. https://doi.org/10.1128/AEM.02034-09spa
dc.relation.referencesPraet, J., Parmentier, A., Schmid-hempel, R., Meeus, I., Smagghe, G., & Vandamme, P. (2018). Underestimated Bacterial Species Diversity Capable of Pathogen Inhibition. Environmental Microbiology, 20(1), 214–227. https://doi.org/10.1111/emi.13973spa
dc.relation.referencesPriest, F. G., Goodfellow, M., Shute, L. A., & Berkeley, C. W. (1987). Bacillus amyloliquefaciens sp. nov. rev. International Journal of Systematic Bacteriology, 37(1), 69–71spa
dc.relation.referencesVit, P., & Pedro, S. R. M. (2013). Pot-Honey: A legacy of stingless bee. https://doi.org/10.1007/978-1-4614-4960-7spa
dc.relation.referencesVojvodic, S., Rehan, S. M., & Anderson, K. E. (2013). Microbial Gut Diversity of Africanized and European Honey Bee Larval Instars. PLoS ONE, 8(8). https://doi.org/10.1371/journal.pone.0072106spa
dc.relation.referencesVoulgari-Kokota, A., Ankenbrand, M. J., Grimmer, G., Steffan-Dewenter, I., & Keller, A. (2019). Linking pollen foraging of megachilid bees to their nest bacterial microbiota. Ecology and Evolution, 9(18), 10788–10800. https://doi.org/10.1002/ece3.5599spa
dc.relation.referencesWang, L. T., Lee, F. L., Tai, C. J., & Kuo, H. P. (2008). Bacillus velezensis is a later heterotypic synonym of Bacillus amyloliquefaciens. International Journal of Systematic and Evolutionary Microbiology, 58(3), 671–675. https://doi.org/10.1099/ijs.0.65191-0spa
dc.relation.referencesWarnecke, F., Luginbühl, P., Ivanova, N., Ghassemian, M., Richardson, T. H., Stege, J. T., Cayouette, M., McHardy, A. C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S. G., Podar, M., Martin, H. G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., ... Leadbetter, J. R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature, 450(November), 560–565. https://doi.org/10.1038/nature06269spa
dc.relation.referencesWatanabe, Y., Shinzato, N., & Fukatsu, T. (2003). Isolation of actinomycetes from termites’ guts. Bioscience, Biotechnology and Biochemistry, 67(8), 1797–1801. https://doi.org/10.1271/bbb.67.1797spa
dc.relation.referencesWei, G., Lai, Y., Wang, G., Chen, H., Li, F., & Wang, S. (2017). Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences of the United States of America, 114(23), 5994–5999. https://doi.org/10.1073/pnas.1703546114spa
dc.relation.referencesWerner, W. (1933). Botanische Beschreibung haufiger am Buttersaureabbau beteiligter sporenbildender Bakterienspezies. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg., 87, 446–475.spa
dc.relation.referencesWerren, J. H., Baldo, L., & Clark, M. E. (2008). Wolbachia: master manipulators of invertebrate biology. Nature Rev Microbiol, 6(10), 741–751. https://doi.org/10.1038/nrmicro1969spa
dc.relation.referencesWerren, John H. (2012). Symbionts provide pesticide detoxification. Proceedings of the National Academy of Sciences of the United States of America, 109(22), 8364–8365. https://doi.org/10.1073/pnas.1206194109spa
dc.relation.referencesWille, A. (1983). Biology of the Stingless Bees. Annual Review of Entomology, 28(1), 41– 64. https://doi.org/10.1146/annurev.en.28.010183.000353spa
dc.relation.referencesWong, A. C. N., Wang, Q. P., Morimoto, J., Senior, A. M., Lihoreau, M., Neely, G. G., Simpson, S. J., & Ponton, F. (2017). Gut Microbiota Modifies Olfactory-Guided Microbial Preferences and Foraging Decisions in Drosophila. Current Biology, 27(15), 2397-2404.e4. https://doi.org/10.1016/j.cub.2017.07.022spa
dc.relation.referencesXavier, V. M. V. M., Message, D., Picanço, M. C., Bacci, L., Silva, G. A., & Da Silva Benevenute, J. (2010). Impact of botanical insecticides on indigenous stingless bees. Sociobiology, 56(3), 713–723spa
dc.relation.referencesXi-Biao, J., Sun, R.-J., Jian-Qing, Z., Zheng-Jun, X., Zhu, L., Quiang, W., & Xiao-Ying, Y. (2012). Isolation and identification of B altitudinis ZJ 186 from Marine Soil Samples and its antifungal activity against Magnaporthe oryzae. Current Research in Bacteriology, 5(1), 13–23.spa
dc.relation.referencesXiang, N., Lawrence, K. S., Kloepper, J. W., Donald, P. A., & Mcinroy, J. A. (2017). Biological Control of Meloidogyne incognita by Spore-forming Plant Growth- promoting Rhizobacteria on Cotton. 101(5), 774–784. https://doi.org/10.1094/PDIS- 09-16-1369-REspa
dc.relation.referencesYaman, M., & Dem, E. (2016). Investigation of bacterial pathogens of Chrysomela ( Melasoma ) populi ( Coleoptera : Chrysomelidae ). 56(1), 77–83spa
dc.relation.referencesYang, J., Yang, Y., Wu, W. M., Zhao, J., & Jiang, L. (2014). Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environmental Science and Technology, 48(23), 13776–13784. https://doi.org/10.1021/es504038aspa
dc.relation.referencesYoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K., & Park, Y. H. (2003). Bacillus marisflavi sp. nov. and Bacillus aquimaris sp. nov., isolated from sea water of a tidal flat of the Yellow Sea in Korea. International Journal of Systematic and Evolutionary Microbiology, 53(5), 1297–1303. https://doi.org/10.1099/ijs.0.02365-0spa
dc.relation.referencesYoshiyama, M., & Kimura, K. (2009). Bacteria in the gut of Japanese honeybee, Apis cerana japonica, and their antagonistic effect against Paenibacillus larvae, the causal agent of American foulbrood. Journal of Invertebrate Pathology, 102(2), 91– 96. https://doi.org/10.1016/j.jip.2009.07.005spa
dc.relation.referencesYun, J. H., Roh, S. W., Whon, T. W., Jung, M. J., Kim, M. S., Park, D. S., Yoon, C., Nam, Y. Do, Kim, Y. J., Choi, J. H., Kim, J. Y., Shin, N. R., Kim, S. H., Lee, W. J., & Bae, J. W. (2014). Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Applied and Environmental Microbiology, 80(17), 5254–5264. https://doi.org/10.1128/AEM.01226-14spa
dc.relation.referencesZheng, H., Nishida, A., Kwong, W. K., Koch, H., Engel, P., Steele, M. I., & Moran, N. A. (2016). Metabolism of toxic sugars by strains of the bee gut symbiont Gilliamella apicola. MBio, 7(6), 1–9. https://doi.org/10.1128/mBio.01326-16spa
dc.relation.referencesZheng, H., Powell, J. E., Steele, M. I., Dietrich, C., & Moran, N. A. (2017). Honeybee gut microbiota promotes host weight gain via bacterial metabolism and hormonal signaling. Proceedings of the National Academy of Sciences, 114(18), 4775–4780. https://doi.org/10.1073/pnas.1701819114spa
dc.relation.referencesZheng, H., Steele, M. I., Leonard, S. P., Motta, E. V. S., & Moran, N. A. (2018). Honey bees as models for gut microbiota research. Lab Animal, 47(November), 317–325. https://doi.org/10.1038/s41684-018-0173-xspa
dc.relation.referencesZouache, K., Raharimalala, F. N., Raquin, V., Tran-Van, V., Raveloson, L. H. R., Ravelonandro, P., & Mavingui, P. (2011). Bacterial diversity of field-caught mosquitoes, Aedes albopictus and Aedes aegypti, from different geographic regions of Madagascar. FEMS Microbiology Ecology, 75(3), 377–389. https://doi.org/10.1111/j.1574-6941.2010.01012.xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::577 - Ecologíaspa
dc.subject.ddc590 - Animalesspa
dc.subject.lembAbejas - Enfermedades y plagasspa
dc.subject.proposalAbejas sin aguijónspa
dc.subject.proposalBacterias cultivablesspa
dc.subject.proposalDisbiosisspa
dc.subject.proposalMeliponinosspa
dc.subject.proposalPatógenospa
dc.subject.proposalDeteriorospa
dc.subject.proposalStingless beeseng
dc.subject.proposalCulturable bacteriaeng
dc.subject.proposalDysbiosiseng
dc.subject.proposalMeliponinaeeng
dc.subject.proposalPathogeneng
dc.subject.proposalDeteriorationeng
dc.titleRelación del estado de deterioro de colonias de abejas meliponinas Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) con los microorganismos asociadosspa
dc.title.translatedRelationship of the state of deterioration of colonies of meliponin bees Tetragonisca angustula (Hymenoptera, Apidae, Meliponini) with their associated microorganismseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020715471.2020.pdf
Tamaño:
3.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Entomología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: