Propiedades de algunos sistemas de polinomios ortogonales Sobolev en varias variables

dc.contributor.advisorDueñas Ruiz, Herbert Alonso
dc.contributor.authorSalazar Morales, Omar
dc.contributor.researchgroupGrupo de Investigación en Polinomios Ortogonales y Aplicacionesspa
dc.date.accessioned2022-08-09T21:04:55Z
dc.date.available2022-08-09T21:04:55Z
dc.date.issued2022-02-01
dc.descriptionTexto, ecuaciones, fórmulasspa
dc.descriptionformúlas matemáticasspa
dc.description.abstractEn este trabajo estudiamos algunas propiedades algebraicas y analíticas de los polinomios ortogonales en varias variables reales con respecto a un producto interno Sobolev continuo-discreto. Consideramos los polinomios Sobolev sobre diferentes dominios, a saber: un dominio producto; la bola unitaria; el simplex; y el cono. Nuestros principales resultados consisten en un método iterativo de construcción de los polinomios ortogonales con respecto al producto interno, propiedades que involucran su parte principal (continua), una fórmula de conexión, y algunos resultados sobre ecuaciones diferenciales parciales. Con el fin de ilustrar nuestras principales ideas, al final de este trabajo presentamos varios ejemplos numéricos en dos variables. Además, discutimos algunos problemas abiertos.spa
dc.description.abstractIn this work we study some algebraic and analytical properties of the orthogonal polynomials in several real variables with respect to a continuous-discrete Sobolev inner product. We consider the Sobolev polynomials on different domains, namely: a product domain; the unit ball; the simplex; and the cone. Our main results consist of an iterative method for constructing the orthogonal polynomials, properties that involve the main (continuous) part of this inner product, a connection formula, and some results on partial differential equations. In order to illustrate our main ideas, at the end of this work we present some numerical examples in two variables. In addition, we discuss some open problems.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias - Matemáticasspa
dc.description.researchareaPolinomios ortogonales en varias variablesspa
dc.description.sponsorshipFacultad de Ciencias, Sede Bogotáspa
dc.format.extentvii, 137 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81829
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesAbramowitz, Milton and Stegun, Irene Ann, eds. Handbook of mathematical functions: with formulas, graphs, and mathematical tables. Applied mathematics series - 55. Washington, D.C.: National Bureau of Standards, June 1964.spa
dc.relation.referencesAktas, Rabia and Xu, Yuan. “Sobolev orthogonal polynomials on a simplex”. In: Int. Math. Res. Not. IMRN 2013.13 (2012), pp. 3087–3131.spa
dc.relation.referencesAlfaro, Manuel, Alvarez de Morales, Maria, and Rezola, M. Luisa. “Orthogonality of the Jacobi polynomials with negative integer parameters”. In: J. Comput. Appl. Math. 145.2 (2002), pp. 379–386.spa
dc.relation.referencesAlfaro, Manuel, Lopez, Guillermo, and Rezola, M. Luisa. “Some properties of zeros of Sobolev-type orthogonal polynomials”. In: J. Comput. Appl. Math. 69.1 (1996), pp. 171–179.spa
dc.relation.referencesAlfaro, Manuel, Marcellan, Francisco, Peña, Ana, and Rezola, M. Luisa. “On linearly related orthogonal polynomials and their functionals”. In: J. Math. Anal. Appl. 287.1 (2003), pp. 307–319.spa
dc.relation.referencesAlfaro, Manuel, Perez, Teresa E., Piñar, Miguel A., and Rezola, M. Luisa. “Sobolev orthogonal polynomials: the discrete-continuous case”. In: Methods Appl. Anal. 6.4 (1999), pp. 593–616.spa
dc.relation.referencesAlthammer, Peter. “Eine Erweiterung des Orthogonalitätsbegriffes bei Polynomen und deren Anwendung auf die beste Approximation”. In: J. Reine Angew. Math. 211 (Apr. 1962), pp. 192–204.spa
dc.relation.referencesAlvarez de Morales, Maria, Perez, Teresa E., and Piñar, Miguel A. “Sobolev orthogonality for the Gegenbauer polynomials {C_n^{−N+1/2}}n≥0”. In: J. Comput. Appl. Math. 100.1 (1998), pp. 111–120.spa
dc.relation.referencesAlvarez-Nodarse, Renato. Polinomios hipergeométricos clásicos y q-polinomios. Monografías del seminario matemático García de Galdeano. Prensas Universitarias de Zaragoza. Departamento de Matemáticas, Universidad de Zaragoza, 2003.spa
dc.relation.referencesAlvarez-Nodarse, Renato and Marcellan, Francisco. “A generalization of the class Laguerre polynomials: asymptotic properties and zeros”. In: Appl. Anal. 62.3–4 (1996), pp. 349–366.spa
dc.relation.referencesAlvarez-Nodarse, Renato and Moreno-Balcazar, Juan Jose. “Asymptotic properties of generalized Laguerre orthogonal polynomials”. In: Indag. Math. (N.S.) 15.2 (2004), pp. 151–165.spa
dc.relation.referencesArvesu, Jorge, Alvarez-Nodarse, Renato, Marcellan, Francisco, and Pan, Ke-Lin. “Jacobi-Sobolev-type orthogonal polynomials: Second-order differential equation and zeros”. In: J. Comput. Appl. Math. 90.2 (1998), pp. 135–156.spa
dc.relation.referencesAtkinson, Kendall and Hansen, Olaf. “Solving the nonlinear Poisson equation on the unit disk”. In: J. Integral Equations Appl. 17.3 (2005), pp. 223–241.spa
dc.relation.referencesBavinck, Herman and Meijer, Hendrik Gerrit. “Orthogonal polynomials with respect to a symmetric inner product involving derivatives”. In: Appl. Anal. 33.1–2 (1989), pp. 103–117.spa
dc.relation.referencesBavinck, Herman and Meijer, Hendrik Gerrit. “On orthogonal polynomials with respect to an inner product involving derivatives: zeros and recurrence relations”. In: Indag. Math. (N.S.) 1.1 (1990), pp. 7–14.spa
dc.relation.referencesBerti, Andrea C., Bracciali, Cleonice F., and Sri Ranga, Alagacone. “Orthogonal polynomials associated with related measures and Sobolev orthogonal polynomials”. In: Numer. Algorithms 34 (2003), pp. 203–216.spa
dc.relation.referencesBerti, Andrea C. and Sri Ranga, Alagacone. “Companion orthogonal polynomials: some applications”. In: Appl. Numer. Math. 39.2 (2001), pp. 127– 149.spa
dc.relation.referencesBracciali, Cleonice F., Delgado, Antonia M., Fernandez, Lidia, Perez, Teresa E., and Piñar, Miguel A. “New steps on Sobolev orthogonality in two variables”. In: J. Comput. Appl. Math. 235.4 (2010), pp. 916–926.spa
dc.relation.referencesBrenner, J. “Über eine Erweiterung des Orthogonaltätsbegriffes bei Polynomen”. In: Proceedings of the Conference on Constructive Theory of Functions. Ed. by Alexits, G. and Stechkin, S. B. Budapest: Akademiai Kiado, Aug. 1972, pp. 77–83.spa
dc.relation.referencesBurris, Stanley and Sankappanavar, Hanamantagouda P. A Course in Universal Algebra. Vol. 78. Graduate Texts in Mathematics. New York: Springer- Verlag, 1981.spa
dc.relation.referencesChihara, Theodore S. An introduction to orthogonal polynomials. Gordon and Breach, Science Publishers, Inc., 1978.spa
dc.relation.referencesCohen, Edgar A. “Zero distribution and behavior of orthogonal polynomials in the Sobolev space W^{1,2}[-1,1]”. In: SIAM J. Math. Anal. 6.1 (1975), pp. 105– 116.spa
dc.relation.referencesDai, Feng and Xu, Yuan. “Polynomial approximation in Sobolev spaces on the unit sphere and the unit ball”. In: J. Approx. Theory 163.10 (2011), pp. 1400– 1418.spa
dc.relation.referencesDai, Feng and Xu, Yuan. Approximation theory and harmonic analysis on spheres and balls. Springer monographs in mathematics. New York: Springer, 2013.spa
dc.relation.referencesDe Bruin, Marcel G. “A tool for locating zeros of orthogonal polynomials in Sobolev inner product spaces”. In: J. Comput. Appl. Math. 49 (1993), pp. 27– 35.spa
dc.relation.referencesDe Bruin, Marcel G. and Meijer, Hendrik Gerrit. “Zeros of orthogonal polynomials in a non-discrete Sobolev space”. In: Special functions (Torino, 1993). Vol. 2. Ann. Numer. Math. 1–4. 1995, pp. 233–246.spa
dc.relation.referencesde Jesus, Marcio Dinis do Nascimento, Marcellan, Francisco, Petronilho, Jose Carlos, and Pinzon-Cortes, Natalia C. “(M, N )-coherent pairs of order (m, k) and Sobolev orthogonal polynomials”. In: J. Comput. Appl. Math. 256 (2014), pp. 16–35.spa
dc.relation.referencesde Jesus, Marcio Dinis do Nascimento and Petronilho, Jose Carlos. “On linearly related sequences of derivatives of orthogonal polynomials”. In: J. Math. Anal. Appl. 347.2 (2008), pp. 482–492.spa
dc.relation.referencesde Jesus, Marcio Dinis do Nascimento and Petronilho, Jose Carlos. “Sobolev orthogonal polynomials and (M, N )-coherent pairs of measures”. In: J. Comput. Appl. Math. 237.1 (2013), pp. 83–101.spa
dc.relation.referencesDelgado, Antonia M., Fernandez, Lidia, Lubinsky, Doron S., Perez, Teresa E., and Piñar, Miguel A. “Sobolev orthogonal polynomials on the unit ball via outward normal derivatives”. In: J. Math. Anal. Appl. 440.2 (2016), pp. 716– 740.spa
dc.relation.referencesDelgado, Antonia M. and Marcellan, Francisco. “Companion linear functionals and Sobolev inner products: A case study”. In: Methods Appl. Anal. 11.2 (2004), pp. 237–266.spa
dc.relation.referencesDelgado, Antonia M., Perez, Teresa E., and Piñar, Miguel A. “Sobolev-type orthogonal polynomials on the unit ball”. In: J. Approx. Theory 170 (2013), pp. 94–106.spa
dc.relation.referencesDimitrov, Dimitar K., Marcellan, Francisco, and Rafaeli, Fernando R. “Monotonicity of zeros of Laguerre-Sobolev-type orthogonal polynomials”. In: J. Math. Anal. Appl. 368.1 (2010), pp. 80–89.spa
dc.relation.referencesDimitrov, Dimitar K., Mello, Mirela V., and Rafaeli, Fernando R. “Monotonicity of zeros of Jacobi-Sobolev type orthogonal polynomials”. In: Appl. Numer. Math. 60.3 (2010), pp. 263–276.spa
dc.relation.referencesDueñas, Herbert A. and Garza, Luis E. “Jacobi-Sobolev-type orthogonal polynomials: holonomic equation and electrostatic interpretation - a non-diagonal case”. In: Integral Transforms Spec. Funct. 24.1 (2013), pp. 70–83.spa
dc.relation.referencesDueñas, Herbert A., Garza, Luis E., and Piñar, Miguel A. “A higher order Sobolev-type inner product for orthogonal polynomials in several variables”. In: Numer. Algorithms 68.1 (2015), pp. 35–46.spa
dc.relation.referencesDueñas, Herbert A., Huertas, Edmundo J., and Marcellan, Francisco. “Asymptotic properties of Laguerre-Sobolev type orthogonal polynomials”. In: Numer. Algorithms 60.1 (2012), pp. 51–73.spa
dc.relation.referencesDueñas, Herbert A. and Marcellan, Francisco. “The Laguerre-Sobolev-type orthogonal polynomials”. In: J. Approx. Theory 162.2 (2010), pp. 421–440.spa
dc.relation.referencesDueñas, Herbert A. and Marcellan, Francisco. “The holonomic equation of the Laguerre-Sobolev-type orthogonal polynomials: a non-diagonal case”. In: J. Difference Equ. Appl. 17.6 (2011), pp. 877–887.spa
dc.relation.referencesDueñas, Herbert A. and Marcellan, Francisco. “The Laguerre-Sobolev-type orthogonal polynomials. Holonomic equation and electrostatic interpretation”. In: Rocky Mountain J. Math. 41.1 (2011), pp. 95–131.spa
dc.relation.referencesDueñas, Herbert A., Pinzon-Cortes, Natalia, and Salazar-Morales, Omar. “Sobolev orthogonal polynomials of high order in two variables defined on product domains”. In: Integral Transforms Spec. Funct. 28.12 (Oct. 2017), pp. 988– 1008.spa
dc.relation.referencesDueñas, Herbert A., Salazar-Morales, Omar, and Piñar, Miguel A. “Sobolev orthogonal polynomials of several variables on product domains”. In: Mediterr. J. Math. 18.5 (2021). Article 227, pp. 1–21.spa
dc.relation.referencesDuistermaat, Johannes Jisse and Kolk, Johan A. C. Distributions: theory and applications. Cornerstones. Birkhauser Basel, 2010.spa
dc.relation.referencesDunkl, Charles F. and Xu, Yuan. Orthogonal polynomials of several variables. 2nd ed. Vol. 155. Encyclopedia of mathematics and its applications. Cambridge, United Kingdom: Cambridge University Press, 2014.spa
dc.relation.referencesDuran, Antonio J. “A generalization of Favard’s theorem for polynomials satisfying a recurrence relation”. In: J. Approx. Theory 74.1 (1993), pp. 83– 109.spa
dc.relation.referencesEvans, W. D., Littlejohn, Lance L., Marcellan, Francisco, Markett, Clemens, and Ronveaux, Andre. “On recurrence relations for Sobolev orthogonal polynomials”. In: SIAM J. Math. Anal. 26.2 (1995), pp. 446–467.spa
dc.relation.referencesEveritt, William Norrie, Kwon, Kil Hyun, Littlejohn, Lance L., and Wellman, Richard. “On the spectral analysis of the Laguerre polynomials L_n^{-k}(x) for positive integers k”. In: Spectral theory and computational methods of Sturm-Liouville problems (Knoxville, TN, 1996). Ed. by Hinton, Don and Schaefer, Philip W. Vol. 191. Lect. Notes Pure Appl. Math. New York: Marcel Dekker, Inc., 1997, pp. 251–283.spa
dc.relation.referencesEveritt, William Norrie, Littlejohn, Lance L., and Wellman, Richard. “The Sobolev orthogonality and spectral analysis of the Laguerre polynomials L_n^{-k} for positive integers k”. In: J. Comput. Appl. Math. 171.1–2 (Oct. 2004), pp. 199–234.spa
dc.relation.referencesFernandez, Lidia, Marcellan, Francisco, Perez, Teresa E., Piñar, Miguel A., and Xu, Yuan. “Sobolev orthogonal polynomials on product domains”. In: J. Comput. Appl. Math. 284 (2015), pp. 202–215.spa
dc.relation.referencesFernandez, Lidia, Perez, Teresa E., and Piñar, Miguel A. “Orthogonal polynomials in two variables as solutions of higher order partial differential equations”. In: J. Approx. Theory 163 (2011), pp. 84–97.spa
dc.relation.referencesGrobner, Wolfgang. “Orthogonale Polynomsysteme, die gleichzeitig mit f (x) auch deren Ableitung f′(x) approximieren”. In: Funktionalanalysis, Approximationstheorie, Numerische Mathematik. Vol. 7. International series of numerical mathematics. Springer Basel AG, 1967, pp. 24–32.spa
dc.relation.referencesGuo, Ben-Yu, Shen, Jie, and Wang, Li-Lian. “Generalized Jacobi polynomials/functions and their applications”. In: Appl. Numer. Math. 59.5 (2009), pp. 1011–1028.spa
dc.relation.referencesHorn, Roger A. and Johnson, Charles R. Matrix analysis. Cambridge University Press, 1985.spa
dc.relation.referencesHorn, Roger A. and Johnson, Charles R. Topics in matrix analysis. Cambridge University Press, 1991.spa
dc.relation.referencesHuertas, Edmundo J., Marcellan, Francisco, and Rafaeli, Fernando R. “Zeros of orthogonal polynomials generated by canonical perturbations of measures”. In: Appl. Math. Comput. 218.13 (2012), pp. 7109–7127.spa
dc.relation.referencesIserles, Arieh, Koch, Per Erik, Norsett, Syvert Paul, and Sanz-Serna, Jesus Marıa. “On polynomials orthogonal with respect to certain Sobolev inner products”. In: J. Approx. Theory 65.2 (1991), pp. 151–175.spa
dc.relation.referencesJung, Il Hyo, Kwon, Kil Hyun, and Lee, Jeong Keun. “Sobolev orthogonal polynomials relative to λp(c)q(c)+ <τ, p′(x)q′(x)> ”. In: Commun. Korean Math. Soc. 12.3 (1997), pp. 603–617.spa
dc.relation.referencesKim, D. H., Kwon, Kil Hyun, Marcellan, Francisco, and Yoon, Gang Joon. “Sobolev orthogonality and coherent pairs of moment functionals: An inverse problem”. In: Int. Math. J. 2.9 (2002), pp. 877–888.spa
dc.relation.referencesKim, D. H., Kwon, Kil Hyun, Marcellan, Francisco, and Yoon, Gang Joon. “Zeros of Jacobi-Sobolev orthogonal polynomials”. In: Int. Math. J. 4.5 (2003), pp. 413–422.spa
dc.relation.referencesKoekoek, J. and Koekoek, Roelof. “Differential equations for generalized Jacobi polynomials”. In: J. Comput. Appl. Math. 126.1–2 (2000), pp. 1–31.spa
dc.relation.referencesKoekoek, J., Koekoek, Roelof, and Bavinck, Herman. “On differential equations for Sobolev-type Laguerre polynomials”. In: Trans. Amer. Math. Soc. 350.1 (1998), pp. 347–393.spa
dc.relation.referencesKoekoek, Roelof. “Generalizations of Laguerre polynomials”. In: J. Math. Anal. Appl. 153.2 (1990), pp. 576–590.spa
dc.relation.referencesKoekoek, Roelof. “The search for differential equations for certain sets of orthogonal polynomials”. In: J. Comput. Appl. Math. 49 (1993), pp. 111–119.spa
dc.relation.referencesKoekoek, Roelof and Meijer, Hendrik Gerrit. “A generalization of Laguerre polynomials”. In: SIAM J. Math. Anal. 24.3 (1993), pp. 768–782.spa
dc.relation.referencesKoornwinder, Tom H. “Orthogonal polynomials with weight function (1-x)^a(1 + x)^b + Mδ(x + 1) + Nδ(x-1)”. In: Canad. Math. Bull. 27.2 (1984), pp. 205–214.spa
dc.relation.referencesKrall, Allan M. “Orthogonal polynomials satisfying fourth order differential equations”. In: Proc. Roy. Soc. Edinburgh Sect. A 87.3–4 (1981), pp. 271–288.spa
dc.relation.referencesKrall, Harry LeVern. “On orthogonal polynomials satisfying a certain fourth order differential equation”. In: Pennsylvania State College Studies 1940.6 (1940), pp. 1–24.spa
dc.relation.referencesKrall, Harry LeVern and Sheffer, Isador Mitchell. “Orthogonal polynomials in two variables”. In: Ann. Mat. Pura Appl. 76.4 (1967), pp. 325–376.spa
dc.relation.referencesKwon, Kil Hyun, Lee, J. H., and Marcellan, Francisco. “Generalized coherent pairs”. In: J. Math. Anal. Appl. 253.2 (2001), pp. 482–514.spa
dc.relation.referencesKwon, Kil Hyun and Littlejohn, Lance L. “The orthogonality of the Laguerre polynomials {L_n^{−k}(x)} for positive integers k”. In: Special functions (Torino, 1993). Vol. 2. Ann. Numer. Math. 1–4. 1995, pp. 289–303.spa
dc.relation.referencesKwon, Kil Hyun and Littlejohn, Lance L. “Sobolev orthogonal polynomials and second-order differential equations”. In: Rocky Mountain J. Math. 28.2 (1998), pp. 547–594.spa
dc.relation.referencesLee, Jeong Keun and Littlejohn, Lance L. “Sobolev orthogonal polynomials in two variables and second order partial differential equations”. In: J. Math. Anal. Appl. 322.2 (2006), pp. 1001–1017.spa
dc.relation.referencesLewis, Daniel C. “Polynomial least square approximations”. In: Amer. J. Math. 69.2 (Apr. 1947), pp. 273–278.spa
dc.relation.referencesLi, Huiyuan and Shen, Jie. “Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle”. In: Math. Comp. 79.271 (2010), pp. 1621–1646.spa
dc.relation.referencesLi, Huiyuan and Xu, Yuan. “Spectral approximation on the unit ball”. In: SIAM J. Numer. Anal. 52.6 (2014), pp. 2647–2675.spa
dc.relation.referencesMarcellan, Francisco, Branquinho, Amilcar, and Petronilho, Jose Carlos. “Classical orthogonal polynomials: a functional approach”. In: Acta Appl. Math. 34.3 (1994), pp. 283–303.spa
dc.relation.referencesMarcellan, Francisco, Martınez-Finkelshtein, Andrei, and Moreno-Balcazar, Juan Jose. “k-coherence of measures with non-classical weights”. In: Margarita mathematica en memoria de Jose Javier (Chicho) Guadalupe Hernandez. Ed. by Español, Luis and Varona, Juan L. Universidad de La Rioja. Logroño, Spain: Servicio de Publicaciones, 2001, pp. 77–83.spa
dc.relation.referencesMarcellan, Francisco, Perez, Teresa E., and Piñar, Miguel A. “Gegenbauer-Sobolev Orthogonal Polynomials”. In: Nonlinear Numerical Methods and Rational Approximation II. Ed. by Cuyt, Annie. Vol. 296. Mathematics and Its Applications. Dordrecht: Springer, 1994, pp. 71–82.spa
dc.relation.referencesMarcellan, Francisco, Perez, Teresa E., and Piñar, Miguel A. “Orthogonal polynomials on weighted Sobolev spaces: the semiclassical case”. In: Special functions (Torino, 1993). Vol. 2. Ann. Numer. Math. 1–4. 1995, pp. 93–122.spa
dc.relation.referencesMarcellan, Francisco, Perez, Teresa E., and Piñar, Miguel A. “Laguerre-Sobolev orthogonal polynomials”. In: J. Comput. Appl. Math. 71.2 (1996), pp. 245–265.spa
dc.relation.referencesMarcellan, Francisco and Petronilho, Jose Carlos. “Orthogonal polynomials and coherent pairs: the classical case”. In: Indag. Math. (N.S.) 6.3 (1995), pp. 287–307.spa
dc.relation.referencesMarcellan, Francisco and Pinzon-Cortes, Natalia C. “Higher order coherent pairs”. In: Acta Appl. Math. 121 (2012), pp. 105–135.spa
dc.relation.referencesMarcellan, Francisco and Pinzon-Cortes, Natalia C. “Generalized coherent pairs on the unit circle and Sobolev orthogonal polynomials”. In: Publ. Inst. Math. (Beograd) (N.S.) 96.110 (2014), pp. 193–210.spa
dc.relation.referencesMarcellan, Francisco and Rafaeli, Fernando R. “Monotonicity and asymptotics of zeros of Laguerre-Sobolev-type orthogonal polynomials of higher order derivatives”. In: Proc. Amer. Math. Soc. Vol. 139. 11. Nov. 2011, pp. 3929– 3936.spa
dc.relation.referencesMarcellan, Francisco and Ronveaux, Andre. “On a class of polynomials orthogonal with respect to a discrete Sobolev inner product”. In: Indag. Math. (N.S.) 1.4 (1990), pp. 451–464.spa
dc.relation.referencesMarcellan, Francisco and Xu, Yuan. “On Sobolev orthogonal polynomials”. In: Expo. Math. 33 (2015), pp. 308–352.spa
dc.relation.referencesMartınez, Clotilde and Piñar, Miguel A. “Orthogonal Polynomials on the Unit Ball and Fourth-Order Partial Differential Equations”. In: SIGMA Symmetry Integrability Geom. Methods Appl. 12 (2016). Paper No. 020, pp. 1–11.spa
dc.relation.referencesMartınez-Finkelshtein, Andrei. “Asymptotic properties of Sobolev orthogonal polynomials”. In: J. Comput. Appl. Math. 99 (1998), pp. 491–510.spa
dc.relation.referencesMartınez-Finkelshtein, Andrei. “Analytic aspects of Sobolev orthogonal polynomials revisited”. In: J. Comput. Appl. Math. 127 (2001), pp. 255–266.spa
dc.relation.referencesMeijer, Hendrik Gerrit. “Coherent pairs and zeros of Sobolev-type orthogonal polynomials”. In: Indag. Math. (N.S.) 4.2 (1993), pp. 163–176.spa
dc.relation.referencesMeijer, Hendrik Gerrit. “Sobolev orthogonal polynomials with a small number of real zeros”. In: J. Approx. Theory 77.3 (1994), pp. 305–313.spa
dc.relation.referencesMeijer, Hendrik Gerrit. “A short history of orthogonal polynomials in a Sobolev space. I. The non-discrete case”. In: 31st Dutch Mathematical Conference. Vol. 14. 1. Groningen, 1995: Nieuw Arch. Wiskd. (4), 1996, pp. 93–112.spa
dc.relation.referencesMeijer, Hendrik Gerrit. “Determination of all coherent pairs”. In: J. Approx. Theory 89.3 (1997), pp. 321–343.spa
dc.relation.referencesMello, Mirela V., Paschoa, Vanessa G., Perez, Teresa E., and Piñar, Miguel A. “Multivariate Sobolev-type orthogonal polynomials”. In: Jaen Journal on Approximation 3.2 (2011), pp. 241–259.spa
dc.relation.referencesMolano-Molano, Luis Alejandro. “On asymptotic properties of Laguerre-Sobolev type orthogonal polynomials”. In: Arab J. Math. Sci. 19.2 (2013), pp. 173–186.spa
dc.relation.referencesMolano-Molano, Luis Alejandro. “On Laguerre-Sobolev type orthogonal polynomials: zeros and electrostatic interpretation”. In: ANZIAM J. 55.1 (2013), pp. 39–54.spa
dc.relation.referencesPerez, Teresa E. and Piñar, Miguel A. “On Sobolev orthogonality for the generalized Laguerre polynomials”. In: J. Approx. Theory 86.3 (Sept. 1996), pp. 278–285.spa
dc.relation.referencesPerez, Teresa E., Piñar, Miguel A., and Xu, Yuan. “Weighted Sobolev orthogonal polynomials on the unit ball”. In: J. Approx. Theory 171 (2013), pp. 84–104.spa
dc.relation.referencesPinar, Miguel A. and Xu, Yuan. “Orthogonal polynomials and partial differential equations on the unit ball”. In: Proc. Amer. Math. Soc. 137.9 (Sept. 2009), pp. 2979–2987.spa
dc.relation.referencesSaint Raymond, Xavier. Elementary introduction to the theory of pseudodifferential operators. Studies in advanced mathematics. CRC Press, Inc., 1991.spa
dc.relation.referencesSalazar-Morales, Omar and Dueñas, Herbert A. “Laguerre-Gegenbauer-Sobolev orthogonal polynomials in two variables on product domains”. In: Rev. Colombiana Mat. (2021). Accepted. To appear.spa
dc.relation.referencesSalazar-Morales, Omar and Dueñas, Herbert A. “Partial differential equations for some families of Sobolev orthogonal polynomials”. Submitted to journal. 2022.spa
dc.relation.referencesSchafke, Friedrich Wilhelm. “Zu den Orthogonalpolynomen von Althammer”. In: J. Reine Angew. Math. 252 (1972), pp. 195–199.spa
dc.relation.referencesSchafke, Friedrich Wilhelm and Wolf, Gerhard. “Einfache verallgemeinerte klassische Orthogonalpolynome”. In: J. Reine Angew. Math. 262/263 (1973), pp. 339–355.spa
dc.relation.referencesSharapudinov, Idris Idrisovich. “Sobolev orthogonal polynomials associated with Chebyshev polynomials of the first kind and the Cauchy problem for ordinary differential equations”. In: Differ. Equ. 54.12 (2018), pp. 1602–1619.spa
dc.relation.referencesSharapudinov, Idris Idrisovich. “Sobolev orthogonal polynomials generated by Jacobi and Legendre polynomials, and special series with the sticking property for their partial sums”. In: Sb. Math. 209.9 (2018), pp. 1390–1417.spa
dc.relation.referencesSharapudinov, Idris Idrisovich. “Sobolev-orthogonal systems of functions associated with an orthogonal system”. In: Izv. Math. 82.1 (2018), pp. 212– 244.spa
dc.relation.referencesSharapudinov, Idris Idrisovich. “Sobolev-orthogonal systems of functions and the Cauchy problem for ODEs”. In: Izv. Math. 83.2 (2019), pp. 391–412.spa
dc.relation.referencesShen, Jie, Wang, Li-Lian, and Li, Huiyuan. “A triangular spectral element method using fully tensorial rational basis functions”. In: SIAM J. Numer. Anal. 47.3 (2009), pp. 1619–1650.spa
dc.relation.referencesSuetin, P. K. Orthogonal polynomials in two variables. Vol. 3. Analytical Methods and Special Functions. Gordon and Breach Science Publishers, 1988.spa
dc.relation.referencesSzego, Gabor. Orthogonal polynomials. 4th ed. Vol. 23. Amer. Math. Soc. Colloq. Publ. Providence, Rhode Island: American Mathematical Society, 1975.spa
dc.relation.referencesXu, Yuan. “A family of Sobolev orthogonal polynomials on the unit ball”. In: J. Approx. Theory 138 (2006), pp. 232–241.spa
dc.relation.referencesXu, Yuan. “Sobolev orthogonal polynomials defined via gradient on the unit ball”. In: J. Approx. Theory 152 (2008), pp. 52–65.spa
dc.relation.referencesXu, Yuan. “Approximation and orthogonality in Sobolev spaces on a triangle”. In: Constr. Approx. 46.2 (2017), pp. 349–434.spa
dc.relation.referencesXu, Yuan. “Orthogonal polynomials and Fourier orthogonal series on a cone”. In: J. Fourier Anal. Appl. 26.3 (2020). Paper 36, pp. 1–42spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.proposalPolinomios ortogonalesspa
dc.subject.proposalPolinomios Sobolevspa
dc.subject.proposalPolinomios en varias variablesspa
dc.subject.proposalProductos internosspa
dc.subject.proposalProductos internos Sobolevspa
dc.subject.proposalEcuaciones diferencialesspa
dc.subject.proposalEcuaciones diferenciales parcialesspa
dc.subject.proposalOrthogonal polynomialseng
dc.subject.proposalSobolev polynomialseng
dc.subject.proposalPolynomials in several variableseng
dc.subject.proposalInner productseng
dc.subject.proposalSobolev inner productseng
dc.subject.proposalDifferential equationseng
dc.subject.proposalPartial differential equationseng
dc.titlePropiedades de algunos sistemas de polinomios ortogonales Sobolev en varias variablesspa
dc.title.translatedProperties of some Sobolev orthogonal polynomial systems in several variableseng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPadres y familiasspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleSobre polinomios ortogonales en varias variables, polinomios ortogonales matriciales y pares coherentes de polinomios ortogonalesspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80102001.2022.pdf
Tamaño:
1002.18 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: