Análisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)

dc.contributor.authorAranzazu Osorio, Jainer Enriquespa
dc.date.accessioned2020-02-14T21:06:09Zspa
dc.date.available2019spa
dc.date.available2020-02-14T21:06:09Zspa
dc.date.issued2019spa
dc.description.abstractThe development of a plant starts in germination, determined by various processes such as water absorption and adsorption, gene replication and expression, hormonal and enzymatic activity, among others. These processes have been studied, seeking sensitivity, directly or indirectly to the magnetic treatment of seeds, however it is still necessary to investigate the modified processes in biological, biochemical and biophysical variables. This is why corn seeds were exposed to a magnetic flux density of 100 mT, times between 55 s and 543 s and water volumes between 12.2 mL and 23.8 mL. In the first instance, germination parameter responses were evaluated (maximum germination percentage, germination time of 50 % of seeds (t50) and times t1, t10, t25, t75 and t90) and enzymatic activity by spectrophotometry of both alpha amylase and proteases, at a wavelength of 500 nm and 660 nm respectively. To advance the understanding of the processes modified by the action of the magnetic treatment (MT) of corn seeds, the germination parameters were correlated with the enzymatic activity. The effect of MT is mainly reported in t50 and Gmax, obtaining reductions up to 31 % in t50 and increase of 16 % in Gmax. Enzyme activity increased in alpha amylases and proteases up to 68 % and 85.81 %, respectively. The correlation of the alpha amylases activity with the germination variables was direct with Gmax and inverse in t50, in proteases an inverse correlation with t50 was found. It is concluded that the magnetic treatment in corn seeds directly affects germination and increases the enzymatic activity of alpha amylases and proteases. The obtained results allow to contribute to the understanding of the processes modified by the MT action in corn seeds and consequently on the mobilization of reserve substances. At a biotechnological level, the MT makes it possible to optimize the germination process in an environmentally reliable, affordable and low cost; also the use of the MT can be considered as a useful tool to improve the performance of the processes where hydrolytic enzymes act.spa
dc.description.abstractEl desarrollo de una planta parte en la germinación, determinada por diversos procesos como la absorción y adsorción de agua, la replicación y expresión génica, la actividad hormonal y enzimática, entre otros. Estos procesos han sido estudiados, buscando la sensibilidad, de manera directa o indirecta al tratamiento magnético de semillas, sin embargo aún es necesario investigar los procesos modificados en variables biológicas, bioquímicas y biofísicas. Por esto se expusieron semillas de maíz a densidad de flujo magnético de 100 mT, tiempos entre 55 s y 543 s y volúmenes de agua entre 12.2 mL y 23.8 mL. Se evaluaron, en primera instancia respuestas de parámetros de germinación (porcentaje de germinación máximo (Gmáx), el tiempo de germinación del 50 % de las semillas (t50) y los tiempos t1, t10, t25, t75 y t90) y actividad enzimática por espectrofotometría tanto de la alfa amilasa como proteasas, a una longitud de onda de 500 nm y 660 nm respectivamente. Para avanzar en el entendimiento de los procesos modificados por la acción del tratamiento magnético (TM) de semillas de maíz, los parámetros de germinación se correlacionaron con la actividad enzimática. Se reporta el efecto del TM principalmente en t50 y Gmáx, obteniendo reducciones hasta 31 % en t50 y aumento de 16 % en Gmáx. La actividad enzimática aumento en la alfa amilasa y proteasas hasta 68 % y 85.81 %, respectivamente. La correlación de la actividad de la alfa amilasa con las variables de germinación fue directa con Gmáx e inversa en t50, en proteasas se encontró correlación inversa con t50. Se concluye que el tratamiento magnético en semillas de maíz afecta directamente la germinación e incrementa la actividad enzimática de la alfa amilasa y proteasas. Los resultados obtenidos son una contribución para comprender los procesos modificados por la acción del TM en semillas de maiz y en consecuencia sobre la movilización de sustancias de reserva. Desde el punto de vista biotecnológico el TM hace posible optimizar el proceso de germinación de forma ambientalmente fiable, asequible y de bajo costo; además el uso del TM se puede considerar como una herramienta útil para mejorar el rendimiento de los procesos donde actúan enzimas hidrolíticas.spa
dc.description.additionalMagister en Ciencias - Biotecnologíaspa
dc.description.degreelevelMaestríaspa
dc.format.extent97spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/75611
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.relation.referencesS. Pietruszewski and E. Martínez, “Magnetic field as a method of improving the quality of sowing material: a review,” Int. Agrophysics, vol. 29, no. 3, pp. 377–389, 2015.spa
dc.relation.referencesJ. Torres, A. Socorro, and E. Hincapié, “Effect of homogeneous static magnetic treatment on the adsorption capacity in maize seeds (Zea mays L.),” Bioelectromagnetics, no. February, 2018spa
dc.relation.referencesJ. A. Teixeira and J. Dobránszki, “How do magnetic fields affect plants in vitro?,” Vitr. Cell. Dev. Biol. - Plant, vol. 51, no. 3, pp. 233–240, 2015spa
dc.relation.referencesN. Katsenios et al., “Role of pulsed electromagnetic field on enzyme activity, germination, plant growth and yield of durum wheat,” Biocatal. Agric. Biotechnol., vol. 6, pp. 152–158, 2016.spa
dc.relation.referencesJ. I. Torres-Osorio, J. E. Aranzazu-Osorio, and M. V. Carbonell-Padrino, “Efecto del campo magnético estático homogéneo en la germinación y absorción de agua en semillas de soja,” Tecno Lógicas, vol. 18, no. 35, pp. 11–20, 2015.spa
dc.relation.referencesH. Feizi, H. Sahabi, R. Parviz, N. Shahtahmassebi, O. Gallehgir, and S. Amirmoradi, “Impact of Intensity and Exposure Duration of Magnetic Field on Seed Germination of Tomato (Lycopersicon esculentum L.),” Not. Sci. Biol., vol. 4, no. 1, pp. 116–120, 2012.spa
dc.relation.referencesM.-O. Zepeda-Bautista, Hernández-Aguilar, Domínguez-Pacheco, Cruz-Orea, Godina-Nava, “Electromagnetic field and seed vigour of corn hybrids,” Int. Agrophysics, vol. 24, pp. 329–332, 2010.spa
dc.relation.referencesM. Iqbal, Z. U. Haq, Y. Jamil, and M. R. Ahmad, “Effect of presowing magnetic treatment on properties of pea,” Int. Agrophysics, vol. 26, no. 1, pp. 25–31, 2012.spa
dc.relation.referencesV. Madhu, “Nuclear magnetic resonance (H1-Nmr) spectroscopy and imaging of water uptake and distribution in sunflower (Helianthus Annus L.) seeds exposed to magnetic field,” Int. J. Chem. Phys. Sci. Nucl., vol. 3, no. 5, pp. 95–104, 2014.spa
dc.relation.referencesA. Vashisth and S. Nagarajan, “Characterization of water distribution and activities of enzymes during germination in magnetically-exposed maize (Zea mays L) seeds.,” Indian J. Biochem. Biophys., vol. 47, no. 5, pp. 311–318, 2010spa
dc.relation.referencesA. Vashisth and S. Nagarajan, “Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field,” J. Plant Physiol., vol. 167, no. 2, pp. 149–156, 2010spa
dc.relation.referencesJ. Bhardwaj, A. Anand, and S. Nagarajan, “Biochemical and biophysical changes associated with magnetopriming in germinating cucumber seeds,” Plant Physiol. Biochem., vol. 57, pp. 67–73, 2012spa
dc.relation.referencesM. Rochalska and K. Grabowska, “Influence of magnetic fields on the activity of enzymes: α- and β-amylase and glutathione S-transferase (GST) in wheat plants,” Int. Agrophysics, vol. 21, pp. 185–188, 2007spa
dc.relation.referencesR. Radhakrishnan, T. Leelapriya, and B. D. R. Kumari, “Effects of pulsed magnetic field treatment of soybean seeds on calli growth, cell damage, and biochemical changes under salt stress,” Bioelectromagnetics, vol. 33, no. 8, pp. 670–681, 2012.spa
dc.relation.referencesM. S. Sankhla, M. Kumari, K. Sharma, and R. S. Kushwah, “Water contamination through pesticide & their toxic effect on human health,” Int. J. Res. Appl. Sci. Eng. Technol., vol. 6, no. 1, pp. 967–970, 2018.spa
dc.relation.referencesR. N. Chibbar, S. Jaiswal, M. Gangola, and M. Båga, “Carbohydrate Metabolism,” in Encyclopedia of Food Grains: Second Edition, vol. 2, 201AD, pp. 161–173spa
dc.relation.referencesD’Astre, “Influence physiologique de l’etat magnitique, In: Biological Effect on Magnetic Fields (Ed. M.F. Barnothy).,” Plenum Press. Paris, Fr., 1882.spa
dc.relation.referencesÇ. Atak, Ö. Emiroğlu, S. Alikamanoğlu, and A. Rzakoulieva, “Stimulation of regeneration by magnetic field in soybean (Glycine max L. Merrill) tissue cultures,” J. Cell Mol. Biol., vol. 2, pp. 113–119, 2003.spa
dc.relation.referencesA. De souza, E. Porras, and R. Casate, “Efecto del Tratamiento Magnético de Semillas de Tomate (Lycopersicon esculentum Mill.) Sobre la Germinación y el Crecimiento de las Plántulas,” Invest. Agr. Prod. Prot. Veg., vol. 14, no. 3, pp. 437–444, 1999.spa
dc.relation.referencesA. Majd, A. Shabrangi, M. Bahar, and S. Abdi, “Effect of AC and DC Magnetic Fields on Seed Germination and Early Vegetative Growth in Brassica napus L.,” Prog. Electromagn. Res. Symp. Moscow, Russ. August 18-21, pp. 710–714, 2009.spa
dc.relation.referencesA. Majd and A. Shabrangi, “Effect of seed pretreatment by magnetic fields on seed germination and ontogeny growth of agricultural plants,” Prog. Electromagn. Res. Symp. Beijing, China, March 23-27, pp. 1137–1141, 2009.spa
dc.relation.referencesC. Torres, J. Díaz, and P. Cabal, “Efecto de campos magnéticos en la germinación de semillas de arroz (Oryza sativa L.) y tomate (Solanum lycopersicum L.),” Agron. Colomb., vol. 26, no. 2, pp. 177–185, 2008.spa
dc.relation.referencesM. Blank and R. Goodman, “Do electromagnetic fields interact directly with DNA?,” Bioelectromagnetics, vol. 18, pp. 111–115, 1997spa
dc.relation.referencesE. M. Goodman, B. Greenebaum, and M. T. Marron, “Effects of electromagnetic fields on molecules and cells.,” Int. Rev. Cytol., vol. 158, pp. 279–338, 1995.spa
dc.relation.referencesM. Yamashita, K. Tomita-Yokotani, H. Hashimoto, M. Takai, M. Tsushima, and T. Nakamura, “Experimental concept for examination of biological effects of magnetic field concealed by gravity,” Adv. Sp. Res., vol. 34, pp. 1575–1578, 2004.spa
dc.relation.referencesB. C. Stange, R. E. Rowland, B. I. Rapley, and J. V. Podd, “ELF Magnetic Fields Increase Amino Acid Uptake into Vicia faba L. Roots and Alter Ion Movement Across the Plasma Membrane,” Bioelectromagnetics, vol. 23, no. 5, pp. 347–354, 2002.spa
dc.relation.referencesA. Vashisth and D. K. Joshi, “Growth characteristics of maize seeds exposed to magnetic field,” Bioelectromagnetics, vol. 38, no. 2, pp. 151–157, 2017.spa
dc.relation.referencesA. De Souza, D. García, L. Sueiro, L. Licea, and E. Porras, “Pre-sowing magnetic treatment of tomato seeds: effects on the growth and yield of plants cultivated late in the season,” Spanish J. Agric. Res., vol. 3, no. 1, p. 113, 2005.spa
dc.relation.referencesJ. Podleoeny, S. Pietruszewski, and A. Podlesna, “Efficiency of the magnetic treatment of broad bean seeds cultivated under experimental plot conditions,” Int. Agrophysics ·, vol. 18, pp. 65–71, 2004.spa
dc.relation.referencesM. V. Carbonell, E. Martinez, and J. M. Amaya, “Stimulation of germination in rice (Oryza Sativa L.) by a static magnetic field,” Electro- and magnetobiology, vol. 19, no. 1, pp. 121–128, 2000.spa
dc.relation.referencesB. L. Maheshwari and H. S. Grewal, “Magnetic treatment of irrigation water: Its effects on vegetable crop yield and water productivity,” Agric. Water Manag., vol. 96, no. 8, pp. 1229–1236, 2009.spa
dc.relation.referencesM. Hozayn and A. M. Saeed, “Irrigation with magnetized water enhances growth, chemical constituent and yield of chickpea (Cicer arietinum L.),” Agric. Biol. J. North Am., vol. 1, no. 4, pp. 671–676, 2010.spa
dc.relation.referencesA. Aladjadjiyan and A. Zahariev, “Influence of Stationary Magnetic Field on the Absorption Spectra of the Photosynthetic Apparatus of Some Ornamental Perennial Species,” Bulg. J. Phys, vol. 29, no. 3–4, pp. 179–183, 2002spa
dc.relation.referencesB. Camps-Raga, S. Gyawali, and N. E. Islam, “Germination rate studies of soybean under static and low-frequency magnetic fields,” IEEE Trans. Dielectr. Electr. Insul., vol. 16, no. 5, pp. 1317–1321, 2009.spa
dc.relation.referencesA. Vashisth and S. Nagarajan, “Germination Characteristics of Seeds of Maize (Zea mays L.) Exposed to Magnetic Fields under Accelerated Ageing Condition,” J. Agric. Phys., vol. 9, pp. 50–58, 2009.spa
dc.relation.referencesA. Aladjadjiyan and T. Ylieva, “Influence of stationary magnetic field on the early stages of the development of tobacco seeds (Nicotiana tabacum L.),” J. Cent. Eur. Agric., vol. 4, no. April 2003, pp. 131–138, 2003spa
dc.relation.referencesA. Domínguez Pacheco, C. Hernández Aguilar, A. Cruz Orea, A. Carballo Carballo, R. Zepeda Bautista, and E. M. Martínez Ortíz, “Semilla de maíz bajo la influencia de irradiación de campos electromagnéticos,” Rev. Fitotec. Mex., vol. 33, no. 2, pp. 183–188, 2010.spa
dc.relation.referencesY. Yao, Y. Li, Y. Yang, and C. Li, “Effect of seed pretreatment by magnetic field on the sensitivity of cucumber (Cucumis sativus) seedlings to ultraviolet-B radiation,” Environ. Exp. Bot., vol. 54, no. 3, pp. 286–294, 2005.spa
dc.relation.referencesJ. Podleoeny, S. Pietruszewski, and a Podleoena, “Influence of magnetic stimulation of seeds on the formation of morphological features and yielding of the pea,” Int. Agrophysics, vol. 19, pp. 61–68, 2005spa
dc.relation.referencesC. Atak, Ö. Çelik, A. Olgun, S. Alikamanoglu, and A. Rzakoulieva, “Effect of magnetic field on peroxidase activities of soybean tissue culture,” Biotechnol. Biotechnol. Equip., vol. 21, no. 2, pp. 166–171, 2007spa
dc.relation.referencesR. Hołubowicz, L. Kubisz, M. Gauza, Y. Tong, and D. Hojan-Jezierska, “Effect of low frequency magnetic field (LFMF) on the germination of seeds and selected useful characters of onion (Allium cepa L .),” Not. Bot. Horti Agrobot., vol. 42, no. 1, pp. 168–172, 2014spa
dc.relation.referencesM. B. Shine, K. . Guruprasad, and A. Anand, “Effect of stationary magnetic field strengths of 150 and 200 mT on reactive oxygen species production in soybean,” Bioelectromagnetics, vol. 33, no. 5, pp. 428–437, 2012.spa
dc.relation.referencesM. F. Garcia, E. M. Ramirez, and M. V. C. Padrino, “Germination of grass seeds subjected to stationary magnetic field,” Ing. Recur. Nat. y del Ambient., vol. 7, no. 7, pp. 12–17, 2008spa
dc.relation.referencesS. Kataria, L. Baghel, and K. N. Guruprasad, “Pre-treatment of seeds with static magnetic field improves germination and early growth characteristics under salt stress in maize and soybean,” Biocatal. Agric. Biotechnol., vol. 10, no. February, pp. 83–90, 2017.spa
dc.relation.referencesL. Pourakbar, “Effect of Static Magnetic Field on Germination , Growth Characteristics and Activities of Some Enzymes in Chamomile Seeds (Matricaria Chamomilla L.),” vol. 4, no. 9, pp. 2335–2340, 2013spa
dc.relation.referencesM. Iqbal, Z. ul Haq, Y. Jamil, and J. Nisar, “Pre-sowing seed magnetic field treatment influence on germination, seedling growth and enzymatic activities of melon (Cucumis melo L.),” Biocatal. Agric. Biotechnol., vol. 6, pp. 176–183, 2016spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddcPlantasspa
dc.subject.proposalgerminaciónspa
dc.subject.proposalAlfa amilasasspa
dc.subject.proposalProteasasspa
dc.subject.proposalMagnetic treatmenteng
dc.titleAnálisis del efecto del tratamiento magnético sobre la actividad enzimática en semillas de maíz (Zea mays L.)spa
dc.typeDocumento de trabajospa
dc.type.coarhttp://purl.org/coar/resource_type/c_8042spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/workingPaperspa
dc.type.redcolhttp://purl.org/redcol/resource_type/WPspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053699399.2020.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: