Problema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando múltiples operarios, vehículos con capacidad heterogénea, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo

dc.contributor.advisorCorrea Espinal, Alexander Albertospa
dc.contributor.advisorGómez Montoya, Rodrigo Andrésspa
dc.contributor.authorCano Arenas, José Alejandrospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupMODELAMIENTO PARA LA GESTIÓN DE OPERACIONES (GIMGO)spa
dc.date.accessioned2020-07-27T21:59:41Zspa
dc.date.available2020-07-27T21:59:41Zspa
dc.date.issued2020-07-24spa
dc.description.abstractThis doctoral thesis aims to solve the multi-objective order batching, batch sequencing, batch assignment, and picker routing problem (PMCLSARP), considering heterogeneous vehicles, multi-block 3D warehouses, customer orders with dynamic arrivals (online) and due-windows. For this, a systematic literature review is performed to characterize the complexity and reality of order picking systems. Then, a mathematical formulation is proposed for the PMCLSARP, showing this problem is classified as NP-Hard due to its complexity. To solve the online PMCLSARP, an algorithm called AGOG + AGOI is designed and developed by nesting two genetic algorithms, and the parameters of these algorithms are validated to find the combination that provides the best performance for the objective function and computing time. The performance of the AGOG + AGOI is validated through different experimental scenarios and it is compared with the results provided by two benchmarks, obtaining average savings in the objective function of 25.2% and 18.6% when comparing AGOG + AGOI with the algorithms FCFS-SS3D and EDD-SS3D respectively. Consequently, the AGOG + AGOI provides satisfactory solutions for warehouse operating environments regarding operational efficiency (picking time), customer service (tardiness and earliness), and reasonable computing time, which can vary between 34 seconds and 2,8 minutes for each run of the algorithm.spa
dc.description.abstractEsta tesis de doctorado tiene como objetivo solucionar el problema multiobjetivo de conformación de lotes, secuenciación, asignación y ruteo del picking (PMCLSARP), considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas (en línea) y fechas de entrega con ventanas de tiempo. Para esto, se realizó una revisión sistemática de la literatura que caracterizó los componentes principales para una aproximación a la complejidad y realidad de la preparación de pedidos (picking) en almacenes y centros de distribución. A través de la formulación matemática del PMCLSARP se logra la modelación del problema a abordar en la tesis, el cual se clasifica como NP-Hard debido a su complejidad. Para solucionar el PMCLSARP en línea, se diseña y desarrolla un algoritmo denominado AGOG+AGOI que anida dos algoritmos genéticos, y a dichos algoritmos se les realiza una validación de parámetros para encontrar la combinación que brinde mejor desempeño para la función objetivo y tiempos de computación. El desempeño del AGOG+AGOI se valida a través de diferentes escenarios de operación de almacenes y centros de distribución, y se compara con los resultados obtenidos con dos puntos de referencia, obteniendo ahorros promedio en la función objetivo del 25,2% y 18,6% al comparar el AGOG+AGOI con los algoritmos FCFS-SS3D y EDD-SS3D, respectivamente. Por lo tanto, el AGOG+AGOI brinda soluciones satisfactorias en eficiencia operativa (tiempo de picking) y servicio al cliente (tardanza y prontitud), y en tiempos de computación razonables para ambientes operativos de almacén, que pueden variar entre 34 segundos y 2,8 minutos para cada corrida del AGOG+AGOI.spa
dc.description.degreelevelDoctoradospa
dc.format.extent165spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationCano, J.A. (2020). Problema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo. (Doctoral thesis), Universidad Nacional de Colombia - Sede Medellín, Colombia.spa
dc.identifier.citationCano, J.A. (2020). Problema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando vehículos heterogéneos, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempo. (Tesis de Doctorado), Universidad Nacional de Colombia - Sede Medellín, Colombia.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77859
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Ingeniería de la Organizaciónspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Industria y Organizacionesspa
dc.relation.referencesAlbareda-Sambola, M., Alonso-Ayuso, A., Molina, E., & De Blas, C. S. (2009). Variable neighborhood search for order batching in a warehouse. Asia-Pacific Journal of Operational Research, 26(5), 655–683. https://doi.org/10.1142/S0217595909002390spa
dc.relation.referencesArdjmand, E., Sanei, O., & Youssef, E. (2019). Using list-based simulated annealing and genetic algorithm for order batching and picker routing in put wall based picking systems. Applied Soft Computing Journal, 75, 106–119. https://doi.org/10.1016/j.asoc.2018.11.019spa
dc.relation.referencesAzadnia, A. H., Taheri, S., Ghadimi, P., Mat Saman, M. Z., & Wong, K. Y. (2013). Order batching in warehouses by minimizing total tardiness: A hybrid approach of weighted association rule mining and genetic algorithms. The Scientific World Journal, 2013(2013), 1–13. https://doi.org/10.1155/2013/246578spa
dc.relation.referencesBartholdi, J. J., & Hackman, S. T. (2014). Warehouse & Distribution Science Release 0.96 (0.96). Atlanta: Georgia Institute of Technology, School of Industrial and Systems Engineering, The Supply Chain and Logistics Institute. Retrieved from http://www2.isye.gatech.edu/~jjb/wh/book/editions/wh-sci-0.96.pdfspa
dc.relation.referencesBriant, O., Cambazard, H., Cattaruzza, D., Catusse, N., Ladier, A. L., & Ogier, M. (2020). An efficient and general approach for the joint order batching and picker routing problem. European Journal of Operational Research. https://doi.org/10.1016/j.ejor.2020.01.059spa
dc.relation.referencesCano, J. A. (2019). Parameters for a Genetic Algorithm: An Application for the Order Batching Problem. IBIMA Business Review, 2019(2019), Article ID 802597. https://doi.org/10.5171/2019.802597spa
dc.relation.referencesCano, J. A. (2020b). Order Picking Optimization Based on a Picker Routing Heuristic: Minimizing Total Traveled Distance in Warehouses. In G. Ç. Ceyhun (Ed.), Handbook of Research on the Applications of International Transportation and Logistics for World Trade (pp. 74–96). PA, USA: IGI Global. https://doi.org/10.4018/978-1-7998-1397-2.ch00spa
dc.relation.referencesCano, J. A., Correa-Espinal, A. A., & Gómez-Montoya, R. A. (2018a). A review of research trends in order batching, sequencing and picker routing problems. Espacios, 39(4), 3. Retrieved from https://www.revistaespacios.com/a18v39n04/18390403.htmlspa
dc.relation.referencesCano, J. A., Correa-Espinal, A. A., Gómez-Montoya, R. A., & Cortés, P. (2019). Genetic Algorithms for the Picker Routing Problem in Multi-block Warehouses. In W. Abramowicz & R. Corchuelo (Eds.), Lecture Notes in Business Information Processing (Vol. 353, pp. 313–322). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-030-20485-3_24spa
dc.relation.referencesCano, J. A., Correa-Espinal, A., & Gómez-Montoya, R. (2020). Using genetic algorithms for order batching in multi-parallel-aisle picker-to-parts systems. International Journal of Applied Decision Sciences, In press. https://doi.org/10.1504/IJADS.2020.10028086spa
dc.relation.referencesCano, J. A., Correa-espinal, A., Gómez, R. A., & Cortés, P. (2019). Distance and travel time modeling in high-level picker-to-part systems (3-D warehouses). Journal of Southwest Jiaotong University, 54(6).spa
dc.relation.referencesChen, F., Wang, H., Qi, C., & Xie, Y. (2013). An ant colony optimization routing algorithm for two order pickers with congestion consideration. Computers and Industrial Engineering, 66(1), 77–85. https://doi.org/10.1016/j.cie.2013.06.013spa
dc.relation.referencesChen, F., Wei, Y., & Wang, H. (2017). A heuristic based batching and assigning method for online customer orders. Flexible Services and Manufacturing Journal, 1–46. https://doi.org/10.1007/s10696-017-9277-7spa
dc.relation.referencesChirici, L., & Wang, K. S. (2014). Tackling the storage problem through genetic algorithms. Advances in Manufacturing, 2(3), 203–211. https://doi.org/10.1007/s40436-014-0074-1spa
dc.relation.referencesDavarzani, H., & Norrman, A. (2015). Toward a relevant agenda for warehousing research: literature review and practitioners’ input. Logistics Research, 8(1), 1–18. https://doi.org/10.1007/s12159-014-0120-1spa
dc.relation.referencesDunke, F., & Nickel, S. (2016). Evaluating the quality of online optimization algorithms by discrete event simulation. Central European Journal of Operations Research, 1–28. https://doi.org/10.1007/s10100-016-0455-6spa
dc.relation.referencesGademann, N., & van de Velde, S. (2005). Order batching to minimize total travel time in a parallel-aisle warehouse. IIE Transactions, 37(1), 63–75. https://doi.org/10.1080/07408170590516917spa
dc.relation.referencesGómez, R. A. (2015). Problemas de conformación de lotes con ruteo en el acomodo y la preparación de pedidos considerando K equipos heterogéneos. Universidad Nacional de Colombia. Retrieved from http://www.bdigital.unal.edu.co/50619/1/1017126155.2015.pdfspa
dc.relation.referencesHenn, S. (2012). Algorithms for on-line order batching in an order picking warehouse. Computers and Operations Research, 39(11), 2549–2563. https://doi.org/10.1016/j.cor.2011.12.019spa
dc.relation.referencesHo, Y.-C., & Tseng, Y.-Y. (2006). A study on order-batching methods of order-picking in a distribution centre with two cross-aisles. International Journal of Production Research, 44(17), 3391–3417. https://doi.org/10.1080/00207540600558015spa
dc.relation.referencesHong, S. (2015). Order Batch Formations for Less Picker Blocking in a Narrow-Aisle Picking System. INDUSTRIAL ENGINEERING AND MANAGEMENT SYSTEMS, 14(3), 289–298. https://doi.org/10.7232/iems.2015.14.3.289spa
dc.relation.referencesHsu, C.-M., Chen, K.-Y., & Chen, M.-C. (2005). Batching orders in warehouses by minimizing travel distance with genetic algorithms. Computers in Industry, 56(2), 169–178. https://doi.org/10.1016/j.compind.2004.06.001spa
dc.relation.referencesKitchenham, B. (2004). Procedures for performing systematic reviews. Joint Technical Report (Vol. 33). Australia: Department of Computer Science. https://doi.org/10.1.1.122.3308spa
dc.relation.referencesKulak, O., Sahin, Y., & Taner, M. E. (2012). Joint order batching and picker routing in single and multiple-cross-aisle warehouses using cluster-based tabu search algorithms. Flexible Services and Manufacturing Journal, 24(1), 52–80. https://doi.org/10.1007/s10696-011-9101-8spa
dc.relation.referencesLi, J., Huang, R., & Dai, J. B. (2017). Joint optimisation of order batching and picker routing in the online retailer’s warehouse in China. International Journal of Production Research, 55(2), 447–461. https://doi.org/10.1080/00207543.2016.1187313spa
dc.relation.referencesMa, T., & Zhao, P. (2014). A Review of Algorithms for Order Batching Problem in Distribution Center. In International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2014) (pp. 172–175). Shenyang, China.spa
dc.relation.referencesMatusiak, M., De Koster, R., & Saarinen, J. (2017). Utilizing individual picker skills to improve order batching in a warehouse. European Journal of Operational Research, 263(3), 888–899. https://doi.org/10.1016/j.ejor.2017.05.002spa
dc.relation.referencesMuter, I., & Öncan, T. (2015). An exact solution approach for the order batching problem. IIE Transactions (Institute of Industrial Engineers), 47(7), 728–738. https://doi.org/10.1080/0740817X.2014.991478spa
dc.relation.referencesÖncan, T. (2013). A Genetic Algorithm for the Order Batching Problem in low-level picker-to-part warehouse systems. In Lecture Notes in Engineering and Computer Science (Vol. 2202, pp. 19–24). Kowloon: Newswood Limited. Retrieved from http://www.scopus.com/inward/record.url?eid=2-s2.0-84880080871&partnerID=40&md5=996c6eb5b552b7895672105ab9f46becspa
dc.relation.referencesPan, J. C.-H., Shih, P.-H., & Wu, M.-H. (2015). Order batching in a pick-and-pass warehousing system with group genetic algorithm. Omega, 57(B), 238–248. https://doi.org/10.1016/j.omega.2015.05.004spa
dc.relation.referencesPferschy, U., & Schauer, J. (2018). Order Batching and Routing in a Non-Standard Warehouse. Electronic Notes in Discrete Mathematics, 69, 125–132. https://doi.org/10.1016/j.endm.2018.07.017spa
dc.relation.referencesRubrico, J. I. U., Ota, J., Tamura, H., Akiyoshi, M., & Higashi, T. (2004). Route generation for warehouse management using fast heuristics. In IEEE/RSJ international conference proceedings on intelligent robots and systems (pp. 2093–2098). Sendai, Japan. https://doi.org/10.1109/IROS.2004.1389706spa
dc.relation.referencesScholz, A., Schubert, D., & Wäscher, G. (2017). Order picking with multiple pickers and due dates –Simultaneous solution of order batching, batch assignment and sequencing, and picker routing problems. European Journal of Operational Research, 263(2), 461–478. https://doi.org/10.1016/j.ejor.2017.04.038spa
dc.relation.referencesTheys, C., Bräysy, O., Dullaert, W., & Raa, B. (2010). Using a TSP heuristic for routing order pickers in warehouses. European Journal of Operational Research, 200(3), 755–763. https://doi.org/10.1016/j.ejor.2009.01.036spa
dc.relation.referencesValle, C. A., Beasley, J. E., & da Cunha, A. S. (2017). Optimally solving the joint order batching and picker routing problem. European Journal of Operational Research, 262(3), 817–834. https://doi.org/10.1016/j.ejor.2017.03.069spa
dc.relation.referencesVan Gils, T., Caris, A., Ramaekers, K., Braekers, K., & Koster, R. B. M. De. (2019). Designing efficient order picking systems: The effect of real-life features on the relationship among planning problems. Transportation Research Part E, 125, 47–73. https://doi.org/10.1016/j.tre.2019.02.010spa
dc.relation.referencesWang, Y., Fu, C., Ma, M., & Wang, L. (2012). Routing optimization of high-level order picking truck based on swarm intelligent algorithm. Applied Mechanics and Materials, 101–102, 414–417. https://doi.org/10.4028/www.scientific.net/AMM.101-102.414spa
dc.relation.referencesZhang, J., Wang, X., Chan, F. T. S., & Ruan, J. (2017). On-line order batching and sequencing problem with multiple pickers: A hybrid rule-based algorithm. Applied Mathematical Modelling, 45(1), 271–284. https://doi.org/10.1016/j.apm.2016.12.012spa
dc.relation.referencesZhang, J., Wang, X., & Huang, K. (2017). On-line scheduling of order picking and delivery with multiple zones and limited vehicle capacity. Omega, 79, 104–115. https://doi.org/10.1016/j.omega.2017.08.004spa
dc.relation.referencesZhao, Z., & Yang, P. (2017). Improving order-picking performance by optimizing order batching in multiple-cross-aisle warehouse systems: A case study from e-commerce in China. In 2017 4th International Conference on Industrial Engineering and Applications (ICIEA) (pp. 158–162). Nagoya, Japan: IEEE. https://doi.org/10.1109/IEA.2017.7939198spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afinesspa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.proposalorder pickingeng
dc.subject.proposalruteo del pickingspa
dc.subject.proposalorder batchingeng
dc.subject.proposalpickingspa
dc.subject.proposalalgoritmos genéticosspa
dc.subject.proposalpicker routingeng
dc.subject.proposalgestión de almacenesspa
dc.subject.proposalgenetic algorithmseng
dc.subject.proposalModelo multiobjetivospa
dc.subject.proposalwarehouse managementeng
dc.titleProblema multiobjetivo de conformación de lotes, secuenciación y ruteo del picking, considerando múltiples operarios, vehículos con capacidad heterogénea, almacenes 3D multibloques, pedidos con llegadas dinámicas y fechas de entrega con ventanas de tiempospa
dc.title.alternativeMulti-objective order batching, sequencing and routing picking problem considering on-line orders, multiple pickers, heterogeneous vehicles, multi-block 3D warehouses, and due-windowsspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
8026769.2020-2.pdf
Tamaño:
2.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ingeniería - Industria y Organizaciones

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: