Estudio de las propiedades eléctricas de materiales magnéticos basados en fe por medio de los modelos de Debye y Cole-Cole

dc.contributor.advisorRosales Rivera, Andres
dc.contributor.authorClavijo Ceballos, Manuel Alejandro
dc.contributor.cvlacClavijo Ceballos, Manuel Alejandro [0001636283]spa
dc.contributor.researchgroupMagnetismo y Materiales Avanzadosspa
dc.date.accessioned2024-02-15T14:17:01Z
dc.date.available2024-02-15T14:17:01Z
dc.date.issued2023
dc.descriptiongraficas, tablasspa
dc.description.abstractEn esta tesis se presenta un estudio de las propiedades de impedancia y función dieléctrica de los vidrios metálicos Fe70Nb10B20 y [(Fe50Co50)75B20Si5]96Nb4mediante el uso de la resonancia ferromagnética de una pequeña bobina. Para este fin la muestra se colocó dentro de la bobina pequeña y éste conjunto a su vez se colocó en el centro de una bobina de Helmholtz. Las medidas de impedancia se realizaron en el rango de frecuencia 0 < 30 < MHz para diferentes campos magnéticos a temperatura ambiente. El campo AC generado por el pequeño solenoide es del orden de 3 Oe RMS y el campo generado por la bobina de Helmholtz fue de HDC = 0, 5, 10, 20, 30 y 40 Oe. A partir de las medidas experimentales se determinó un circuito equivalente constituido por una inductancia principal conectada en serie con una resistencia, un capacitor y una inductancia secundaria que están conectadas en paralelo entre ellas. Además, para el tratamiento de datos experimentales se desarrolló en Matlab un algoritmo de ajuste numérico por inteligencia artificial. Se realizó un estudio estadístico del sistema de medición constituidos por bobina y (bobina y baquela), encontrando una variación de las medidas de impedancia por debajo del 1.5% en todo el rango de frecuencia utilizado, para los diferentes campos DC empleados. Inicialmente se caracterizó la respuesta de la bobina ante el campo magnético DC y la frecuencia. Se encontró que presenta el fenómeno de resonancia ferromagnética, posteriormente se usó un postamuestras constituido de baquelita que se colocó al interior de la pequeña bobina para formar el sistema (bobina y baquela). Se encontró que esta baquelita anula la resonancia ferromagnética de la bobina. Una vez caracterizado el sistema de medición se realizaron las mediciones de impedancia de los materiales anteriormente mencionados. Se encontró que ambos restituyen la resonancia ferromagnética de la bobina, lo cual refleja que ellos exhiben una resonancia natural. El circuito equivalente describe bien la respuesta de impedancia de ambas muestras en el rango de frecuencia donde se presenta la resonancia principal (0 ≤ ω ≤ 5 ∙E7 rad/s). Usando la relación entre la función dieléctrica y la impedancia se determinó un intervalo de frecuencia en donde la función dieléctrica de las muestras es descrita apropiadamente por un diagrama de Cole-Cole (2MHz ≤ f ≤ 2.9MHz) (Texto tomado de la fuente)spa
dc.description.abstractIn this thesis a study of the impedance properties and dielectric function of the metallic glasses Fe70Nb10B20 and [(Fe50Co50)75B20Si5]96Nb4 is presented by using the ferromagnetic resonance of a small coil. For this purpose, the sample was placed inside the small coil and this set was placed in the centre of a Helmholtz coil. Impedance measurements were made in the frequency range 0 < 30 < MHz for different magnetic fields at room temperature. The AC field generated by the small solenoid is of the order of 3 Oe RMS and the field generated by the Helmholtz coil was HDC = 0, 5, 10, 20, 30 y 40 Oe. From the experimental measurements, an equivalent circuit was determined consisting of a main inductance connected in series with a resistance, a capacitor and a secondary inductance that are connected in parallel between them. In addition, for the treatment of experimental data, a numerical adjustment algorithm by artificial intelligence was developed in Matlab. A statistical study of the measurement system constituted by coil and (coil and drum) was carried out, finding a variation of the impedance measurements below 1.5% in the entire frequency range used, for the different DC fields used. Initially, the response of the coil to the DC magnetic field and frequency was characterized. It was found that it presents the phenomenon of ferromagnetic resonance, later a Bakelite post-sample was used, which was placed inside the small coil to form the system (coil and Bakelite). This Bakelite was found to nullify the ferromagnetic resonance of the coil. Once the measurement system was characterized, the impedance measurements of the aforementioned materials were performed. Both were found to restore the ferromagnetic resonance of the coil, which reflects that they exhibit a natural resonance. The equivalent circuit describes well the impedance response of both samples in the frequency range where the main resonance occurs (0≤𝜔≤5∙10 7rad/s). Using the relationship between the dielectric function and the impedance, a frequency range was determined where the dielectric function of the samples is appropriately described by a Cole-Cole diagram (2MHz≤𝑓≤2.9MHz)eng
dc.description.curricularareaCiencias Naturales.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.researchareaMagnetismospa
dc.format.extentix, 45 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85706
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ciencias Exactas y Naturalesspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ciencias Exactas y Naturales - Maestría en Ciencias - Físicaspa
dc.relation.referencesM. Vah, “Giant magneto-impedance in soft magnetic`Wiresamagnetic`Wiresa,” 2001.spa
dc.relation.referencesF. L. A. Machado, C. S. Martins, and S. M. Rezende, “Giant magnetoimpedance in the ferromagnetic alloy Co75-Fe Si15+10.”spa
dc.relation.referencesL. V. Panina and K. Mohri, “Magneto-impedance effect in amorphous wires,” Appl Phys Lett, vol. 65, no. 9, pp. 1189–1191, 1994, doi: 10.1063/1.112104.spa
dc.relation.referencesA. Yelon, D. Ménard, M. Britel, and P. Ciureanu, “Calculations of giant magnetoimpedance and of ferromagnetic resonance response are rigorously equivalent,” Appl Phys Lett, vol. 69, no. 20, pp. 3084–3085, Nov. 1996, doi: 10.1063/1.117312.spa
dc.relation.referencesD. Gomez, “Estudio de las propiedades magneto – eléctricas de materiales magnéticamente blandos en forma de cintas, basados en hierro.,” Universidad Nacional de Colombia, Manizales, 2015.spa
dc.relation.referencesD. J. Griffiths, Introduction to Electrodynamics, 4th ed. Cambridge University Press, 2017.spa
dc.relation.referencesJ. Reitz, Foundations of Electromagnetic Theory, 4th ed. Addison Wesley Publishing Co., 1960.spa
dc.relation.referencesM. Alonso and Finn Edward J, Fundamental University Physics, 1st Ed., vol. II. Addison Wesley Publishing Company, 1967.spa
dc.relation.referencesN. Ashcroft and D. Mermin, Solid State Physics, 1st Ed. New York: Holt, Rinehart and Winston, 1976.spa
dc.relation.referencesR. P. Suvarna, R. Rao, and K. Subbarangaiah, “A simple technique for a.c. conductivity measurements,” 2002.spa
dc.relation.referencesP. J. Debye, Polar Molecules. New York: The Chemical Catalog Company, Inc., 1929.spa
dc.relation.referencesA. V. Andrade-Neto, “Dielectric function for free electron gas: Comparison between Drude and Lindhard models,” Revista Brasileira de Ensino de Fisica, vol. 39, no. 2, 2017, doi: 10.1590/1806-9126-RBEF-2016-0206.spa
dc.relation.referencesM. Sadiku, Elements of Electromagnetics, 3rd ed. New York: Oxford University Press, 2001.spa
dc.relation.referencesA. Zhukov, L. Gonzalez-Legarreta, M. Ipatov, P. Corte-Leon, J. M. Blanco, and V. Zhukova, “Giant magnetoimpedance effect at GHz frequencies in amorphous microwires,” AIP Adv, vol. 9, no. 12, Dec. 2019, doi: 10.1063/1.5129891.spa
dc.relation.referencesZ. M. Wu et al., “Magnetoelastic resonance enhancement of longitudinally driven giant magnetoimpedance effect in FeCuNbSiB ribbons,” Physica B Condens Matter, vol. 405, no. 1, pp. 327–330, Jan. 2010, doi: 10.1016/j.physb.2009.08.088.spa
dc.relation.referencesS. Blundell, Magnetism in Condensed Matter. New York: Oxford University Press, 2001.spa
dc.relation.referencesJ. Wunderlich, B. Kaestner, J. Sinova, and T. Jungwirth, “Experimental Observation of the Spin-Hall Effect in a Two-Dimensional Spin-Orbit Coupled Semiconductor System,” Phys Rev Lett, vol. 94, no. 4, p. 047204, Feb. 2005, doi: 10.1103/PhysRevLett.94.047204.spa
dc.relation.referencesE. Barsoukov and R. Macdonald, Impedance spectroscopy : theory, experiment, and applications, 2nd Ed. N.J.: Wiley-Interscience, 2005.spa
dc.relation.referencesK. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics I. Alternating current characteristics,” J Chem Phys, vol. 9, no. 4, pp. 341–351, 1941, doi: 10.1063/1.1750906.spa
dc.relation.referencesR. H. Cole, “Dielectric absorption in polar media and the local field,” J Chem Phys, vol. 6, no. 7, pp. 385–391, 1938, doi: 10.1063/1.1750273.spa
dc.relation.referencesK. S. Cole and R. H. Cole, “Dispersion and absorption in dielectrics: II. Direct current characteristics,” J Chem Phys, vol. 10, no. 2, pp. 98–105, 1942, doi: 10.1063/1.1723677.spa
dc.relation.referencesA. Rosales-Rivera, “Static critical exponents, anisotropy, Hall and magnetocaloric effects, and magnetic interactions in FeCr, FeCo, and MnFe-based alloy ribbons,” Rev Acad Colomb Cienc Exactas Fis Nat, vol. 46, no. 180, pp. 656–674, Jul. 2022, doi: 10.18257/raccefyn.1686.spa
dc.relation.referencesA. Rosales-Rivera et al., “Magnetic Critical Behavior, Hall and Magneto-Impedance Effects in Fe-Co-Based Metallic Glasses,” IEEE Trans Magn, vol. 57, no. 2, Feb. 2021, doi: 10.1109/TMAG.2020.3013294.spa
dc.relation.referencesZ. C. Wang et al., “Longitudinally driven giant magnetoimpedance effect in stress-annealed Fe-based nanocrystalline ribbons,” J Appl Phys, vol. 87, no. 9 II, pp.4819–4821, 2000, doi: 10.1063/1.373170.spa
dc.relation.referencesC. Kang, T. Wang, C. Jiang, K. Chen, and G. Chai, “Investigation of the giant magneto-impedance effect of single crystalline YIG based on the ferromagnetic resonance effect,” J Alloys Compd, vol. 865, Jun. 2021, doi: 10.1016/j.jallcom.2021.158903.spa
dc.relation.referencesJ. Xiang, D. Cheng, F. S. Schlindwein, and N. B. Jones, “On the adequacy of identified Cole-Cole models,” Comput Geosci, vol. 29, no. 5, pp. 647–654, 2003, doi: 10.1016/S0098-3004(03)00032-3.spa
dc.relation.referencesY. Zhang, D. Chen, and C. Ye, Toward deep neural networks: WASD neuronet models, algorithms, and applications, 1st Ed. Boca Raton: CRC Press, Taylor & Francis Group, 2019.spa
dc.relation.referencesN. Derebasi, O. Caylak, and N. Derebasi, “Prediction of giant magneto impedance on As-cast and post production treated Fe4.3Co68.2Si12.5B15 amorphous wires using neural network Investigation of Magnetic Domains and its effect to the Grain- oriented Fe-3%si steel. View project Prediction of giant magneto impedance on As-cast and post production treated Fe 4.3 Co 68.2 Si 12.5 B 15 amorphous wires using neural network,” 2008. [Online]. Available: https://www.researchgate.net/publication/289567871spa
dc.relation.referencesN. Derebasi, “Giant magnetoimpedance effect: Concept and prediction in amorphous materials,” in Journal of Superconductivity and Novel Magnetism, Apr. 2013, pp. 1075–1078. doi: 10.1007/s10948-012-1923-4.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalMateriales magnéticosspa
dc.subject.proposalVidrios metálicosspa
dc.subject.proposalImpedanciaspa
dc.subject.proposalFunción dieléctricaspa
dc.subject.proposalModelo de Cole-Colespa
dc.subject.proposalResonancia ferromagnética de bobinaspa
dc.subject.proposalMagnetic materialseng
dc.subject.proposalMetallic glasseseng
dc.subject.proposalImpedanceeng
dc.subject.proposalDielectric functioneng
dc.subject.proposalCole-Cole modeleng
dc.subject.proposalCoil ferromagnetic resonanceeng
dc.subject.unescoPropiedades dieléctricasspa
dc.subject.unescoMateriales magnéticosspa
dc.titleEstudio de las propiedades eléctricas de materiales magnéticos basados en fe por medio de los modelos de Debye y Cole-Colespa
dc.title.translatedStudy of the electric properties of magnetic materials based on fe using the Debye and Cole-Cole modelseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
10537981258.2024.pdf
Tamaño:
4.64 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Física

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: