Coocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19

dc.contributor.advisorGrajales Buitrago, Marco Antonio
dc.contributor.advisorCamacho Rodríguez, Bernardo Armando
dc.contributor.advisorAngarita de Botero, María del Pilar
dc.contributor.advisorSánchez Pedraza, Ricardo
dc.contributor.authorBurbano Gutiérrez, Juan Felipe
dc.contributor.researcherAmador Rodríguez, Mónica Patricia
dc.contributor.researcherGaviria García, Paula Andrea
dc.contributor.researcherGrass Guáqueta, Jeser Santiago
dc.contributor.researcherDeantonio Paéz, Danna Valentina
dc.date.accessioned2022-02-01T19:45:25Z
dc.date.available2022-02-01T19:45:25Z
dc.date.issued2021
dc.descriptionilustracionesspa
dc.description.abstractLa infección por SARSCoV-2 causa la enfermedad por coronavirus del 2019 (COVID-19), considerada como pandemia, con complicaciones hematológicas derivadas de síndromes hiperinflamatorios y autoinmunidad en pacientes de alto riesgo y ancianos que desarrollan una infección grave por COVID-19. Una de las complicaciones documentadas es la anemia hemolítica autoinmune (AHAI), que está mediada por la emergencia de autoanticuerpos contra los eritrocitos del huésped. El diagnóstico de AHAI a menudo no se realiza, lo que conduce a resultados clínicos deficientes debido a anemia, disfunción endotelial e hipoperfusión tisular. Se realizó un estudio observacional de corte transversal por período para evaluar la coocurrencia de anemia y prueba de antiglobulina directa (PAD) positiva, en pacientes hospitalizados por COVID-19 en dos hospitales de Bogotá, Colombia, del 18 de marzo al 29 de abril. 2021. La asociación sustantiva entre anemia y PAD positiva se estimó por medio del coeficiente de agrupamiento o de cluster; Las variables de confusión que se sabe están asociadas con la anemia y PAD (p. ej., inflamación, gravedad de COVID-19, sangrado mayor y tratamiento con antibióticos) se controlaron mediante regresión logística multivariable. Se evaluaron 185 pacientes, 84 (45,4%) eran mujeres y la edad media fue 59,7 ± 14,7. Cien (54,1%) ingresaron a la unidad de cuidados intensivos, 67 (36,2%) con disfunción multiorgánica (medida por qSOFA ≥2). La prevalencia de anemia y PAD positiva fue del 19,4% (intervalo de confianza [IC] del 95%, 13,8 a 25,2). El coeficiente de cluster fue de 1,55, lo que demuestra una asociación sustancial no coincidencial. La disfunción multiorgánica, la PAD positiva y la terapia con antibióticos se asociaron significativamente con anemia durante la hospitalización (OR: 5,11 (IC 95%: 2,46 - 10,60), 2,72 (IC 95%: 1,32 – 5,60) y 2,48 (IC 95% 1,10 - 5,57), respectivamente. En conclusión, la coocurrencia de anemia y PAD positiva en pacientes hospitalizados con infección por SARS-CoV-2 no es una coincidencia y se asocia a insuficiencia multiorgánica y terapia con antibióticos. Para el médico, la anemia de nueva aparición después o durante la hospitalización debido a un COVID-19 grave debe despertar sospechas de AHAI. (texto tomado de la fuente)spa
dc.description.abstractHematologic complications derived from hyperinflammatory syndromes and autoimmunity can be seen in high-risk and elderly patients who develop severe COVID-19 infection. One of the reported complications is autoimmune hemolytic anemia (AIHA), which is mediated by the emergency of autoantibodies against host erythrocytes. The diagnosis of AIHA is often unrecognized leading to poor clinical outcomes due to anemia, endothelial dysfunction, and tissue hypoperfusion. Herein, we conducted a cross-sectional, observational study to evaluate the prevalence of anemia and a positive Direct Antiglobulin Test (DAT), among hospitalized patients with COVID-19 in two hospitals in Bogota, Colombia during COVID surge from March 18 to April 29, 2021. The association between anemia and a positive DAT was estimated by cluster coefficient; confounding variables known to be associated with anemia (eg, inflammation, COVID-19 severity, mayor bleeding and antibiotic therapy) were controlled by multivariate logistic regression. One hundred and eighty-five patients were evaluated, 84 (45,4%) were female, and the mean age was 59,7 ± 14,7. One hundred (54,1%) were admitted to intensive care unit, 67 (36,2%) with multi-organ dysfunction (measured by qSOFA ≥2). The prevalence of anemia and positive DAT was 19.4% (95% confidence interval [CI], 13.8 to 25.2). Cluster coefficient was 1.55 showing a substantive non coincidental association. Multi-organic dysfunction, positive DAT and antibiotic therapy were significantly associated with anemia that occurred during hospitalization (OR:5,11 (95% CI 2,46 – 10,60), 2,72 (95% CI 1,32 – 5,60) and 2,48 (95% CI 1,10 – 5,57), respectively In summary, the prevalence of anemia and positive DAT in hospitalized patients with SARS-CoV-2 infection is not coincidental and it is associated to multiple organ failure and antibiotic therapy. For the clinician, new onset anemia following hospitalization due to severe COVID-19 should raise suspicion for AIHA.eng
dc.description.degreelevelEspecialidades Médicasspa
dc.description.degreenameEspecialista en Hematologíaspa
dc.description.researchareaHematologíaspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/80841
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Medicina Internaspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.programBogotá - Medicina - Especialidad en Hematologíaspa
dc.relation.indexedLaReferenciaspa
dc.relation.references1. Organización Mundial de la Salud. WHO Coronavirus Disease (COVID-19) Dashboard. Published 2020. Accessed August 30, 2021. https://covid19.who.int/spa
dc.relation.references2. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5spa
dc.relation.references3. Giannis D, Ziogas IA, Gianni P. Coagulation disorders in coronavirus infected patients: COVID-19, SARS-CoV-1, MERS-CoV and lessons from the past. J Clin Virol. 2020;127(January):104362. doi:10.1016/j.jcv.2020.104362spa
dc.relation.references4. Zulfiqar A-A, Lorenzo-Villalba N, Hassler P, Andrès E. Immune Thrombocytopenic Purpura in a Patient with Covid-19. N Engl J Med. 2020;382(18):e43. doi:10.1056/NEJMc2010472spa
dc.relation.references5. Toscano G, Palmerini F, Ravaglia S, et al. Guillain–Barré Syndrome Associated with SARS-CoV-2. N Engl J Med. 2020;382(26):2574-2576. doi:10.1056/NEJMc2009191spa
dc.relation.references6. Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with Covid-19. N Engl J Med. 2020;382(17):e38. doi:10.1056/NEJMc2007575spa
dc.relation.references7. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794spa
dc.relation.references8. Berzuini A, Bianco C, Paccapelo C, et al. Red cell–bound antibodies and transfusion requirements in hospitalized patients with COVID-19. Blood. 2020;136(6):766-768. doi:10.1182/blood.2020006695spa
dc.relation.references9. Hendrickson JE, Tormey CA. COVID-19 and the Coombs test. Blood. 2020;136(6):655-656. doi:10.1182/blood.2020007483spa
dc.relation.references10. Gammazza AM, Légaré S, Lo Bosco G, et al. Human molecular chaperones share with SARS-CoV-2 antigenic epitopes potentially capable of eliciting autoimmunity against endothelial cells: possible role of molecular mimicry in COVID-19. Cell Stress Chaperones. 2020;25(5):737-741. doi:10.1007/s12192-020-01148-3spa
dc.relation.references11. Angileri F, Légaré S, Marino Gammazza A, Conway de Macario E, Macario AJL, Cappello F. Is molecular mimicry the culprit in the autoimmune haemolytic anaemia affecting patients with COVID-19? Br J Haematol. 2020;190(2):e92-e93. doi:10.1111/bjh.16883spa
dc.relation.references12. Algassim AA, Elghazaly AA, Alnahdi AS, et al. Prognostic significance of hemoglobin level and autoimmune hemolytic anemia in SARS-CoV-2 infection. Ann Hematol. 2021;100(1):37-43. doi:10.1007/s00277-020-04256-3spa
dc.relation.references13. Sterne JAC, Murthy S, Diaz J V., et al. Association Between Administration of Systemic Corticosteroids and Mortality Among Critically Ill Patients With COVID-19. JAMA. 2020;324(13):1330. doi:10.1001/jama.2020.17023spa
dc.relation.references14. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med. 2020;382(8):727-733. doi:10.1056/nejmoa2001017spa
dc.relation.references15. Shi Y, Wang G, Cai X, et al. An overview of COVID-19. J Zhejiang Univ B. 2020;21(5):343-360. doi:10.1631/jzus.B2000083spa
dc.relation.references16. Klompas M, Baker MA, Rhee C. Airborne Transmission of SARS-CoV-2. JAMA. 2020;324(5):441. doi:10.1001/jama.2020.12458spa
dc.relation.references17. Chu DK, Akl EA, Duda S, et al. Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis. Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9spa
dc.relation.references18. He X, Lau EHY, Wu P, et al. Temporal dynamics in viral shedding and transmissibility of COVID-19. Nat Med. 2020;26(5):672-675. doi:10.1038/s41591- 020-0869-5spa
dc.relation.references19. Rhee C, Kanjilal S, Baker M, Klompas M. Duration of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infectivity: When Is It Safe to Discontinue Isolation? Clin Infect Dis. 2020;0(0):1-14. doi:10.1093/cid/ciaa1249spa
dc.relation.references20. World Health Organization. Criteria for releasing COVID-19 patients from isolation. Sci Br. 2020;(17 June):1-5. https://www.who.int/publications/i/item/criteria-forreleasing-covid-19-patients-from-isolationspa
dc.relation.references21. Lauer SA, Grantz KH, Bi Q, et al. The incubation period of coronavirus disease 2019 (CoVID-19) from publicly reported confirmed cases: Estimation and application. Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504spa
dc.relation.references22. Meng X, Deng Y, Dai Z, Meng Z. COVID-19 and anosmia: A review based on upto-date knowledge. Am J Otolaryngol - Head Neck Med Surg. 2020;41(5):102581. doi:10.1016/j.amjoto.2020.102581spa
dc.relation.references23. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1054-1062. doi:10.1016/S0140-6736(20)30566-3spa
dc.relation.references24. Gandhi RT, Lynch JB, del Rio C. Mild or Moderate Covid-19. N Engl J Med. 2020;383(18):1757-1766. doi:10.1056/nejmcp2009249spa
dc.relation.references25. Ranieri VM, Rubenfeld GD, Thompson BT, et al. Acute respiratory distress syndrome: The Berlin definition. JAMA - J Am Med Assoc. 2012;307(23):2526- 2533. doi:10.1001/jama.2012.5669spa
dc.relation.references26. Thompson BT, Chambers RC, Liu KD. Acute Respiratory Distress Syndrome. Drazen JM, ed. N Engl J Med. 2017;377(6):562-572. doi:10.1056/NEJMra1608077spa
dc.relation.references27. Berlin DA, Gulick RM, Martinez FJ. Severe Covid-19. N Engl J Med. Published online 2020:1-10. doi:10.1056/nejmcp2009575spa
dc.relation.references28. Wu Z, McGoogan JM. Characteristics of and Important Lessons from the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases from the Chinese Center for Disease Control and Prevention. JAMA - J Am Med Assoc. 2020;323(13):1239-1242. doi:10.1001/jama.2020.2648spa
dc.relation.references29. Zhang X, Tan Y, Ling Y, et al. Viral and host factors related to the clinical outcome of COVID-19. Nature. 2020;583(7816):437-440. doi:10.1038/s41586-020-2355-0spa
dc.relation.references30. Severe Covid-19 GWAS Group, Ellinghaus D, Degenhardt F, et al. Genomewide Association Study of Severe Covid-19 with Respiratory Failure. N Engl J Med. 2020;383(16):1522-1534. doi:10.1056/NEJMoa2020283spa
dc.relation.references31. Kaser A. Genetic Risk of Severe Covid-19. N Engl J Med. 2020;383(16):1590-1591. doi:10.1056/nejme2025501spa
dc.relation.references32. Bosch BJ, van der Zee R, de Haan CAM, Rottier PJM. The Coronavirus Spike Protein Is a Class I Virus Fusion Protein: Structural and Functional Characterization of the Fusion Core Complex. J Virol. 2003;77(16):8801-8811. doi:10.1128/JVI.77.16.8801-8811.2003spa
dc.relation.references33. Yuki K, Fujiogi M, Koutsogiannaki S. COVID-19 pathophysiology: A review. Clin Immunol. 2020;215(January):108427. doi:10.1016/j.clim.2020.108427spa
dc.relation.references34. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The proximal origin of SARS-CoV-2. Nat Med. 2020;26(4):450-452. doi:10.1038/s41591-020-0820-9spa
dc.relation.references35. Hoffmann M, Kleine-Weber H, Pöhlmann S. A Multibasic Cleavage Site in the Spike Protein of SARS-CoV-2 Is Essential for Infection of Human Lung Cells. Mol Cell. 2020;78(4):779-784.e5. doi:10.1016/j.molcel.2020.04.022spa
dc.relation.references36. Kuba K, Imai Y, Rao S, Jiang C, Penninger JM. Lessons from SARS: Control of acute lung failure by the SARS receptor ACE2. J Mol Med. 2006;84(10):814-820. doi:10.1007/s00109-006-0094-9spa
dc.relation.references37. Ou J, Zhou Z, Dai R, et al. Emergence of SARS-CoV-2 spike RBD mutants that enhance viral infectivity through increased human ACE2 receptor binding affinity. bioRxiv. Published online January 1, 2020:2020.03.15.991844. doi:10.1101/2020.03.15.991844spa
dc.relation.references38. Wölfel R, Corman VM, Guggemos W, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020;581(7809):465-469. doi:10.1038/s41586- 020-2196-xspa
dc.relation.references39. Bernheim A, Mei X, Huang M, et al. Chest CT Findings in Coronavirus Disease-19 (COVID-19): Relationship to Duration of Infection. Radiology. 2020;295(3):200463. doi:10.1148/radiol.2020200463spa
dc.relation.references40. Matheson NJ, Lehner PJ. How does SARS-CoV-2 cause COVID-19? Science (80- ). 2020;369(6503):510-511. doi:10.1126/science.abc6156spa
dc.relation.references41. loganathan S, Kuppusamy M, Wankhar W, et al. Angiotensin-converting enzyme 2 (ACE2): COVID 19 gate way to multiple organ failure syndromes. Respir Physiol Neurobiol. 2021;283(September 2020):103548. doi:10.1016/j.resp.2020.103548spa
dc.relation.references42. Zhang C, Wu Z, Li J, Zhao H, Wang G. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int J Antimicrob Agents. 2020;55(5):105954. doi:10.1016/j.ijantimicag.2020.105954spa
dc.relation.references43. Wang C, Zhou X, Wang M, Chen X. The Impact of SARS-CoV-2 on the Human Immune System and Microbiome. Infect Microbes Dis. 2021;3(1):14-21. doi:10.1097/IM9.0000000000000045spa
dc.relation.references44. Michalak SS, Olewicz-Gawlik A, Rupa-Matysek J, Wolny-Rokicka E, Nowakowska E, Gil L. Autoimmune hemolytic anemia: current knowledge and perspectives. Immun Ageing. 2020;17(1):38. doi:10.1186/s12979-020-00208-7spa
dc.relation.references45. Barcellini W, Fattizzo B, Zaninoni A. Current and emerging treatment options for autoimmune hemolytic anemia. Expert Rev Clin Immunol. 2018;14(10):857-872. doi:10.1080/1744666X.2018.1521722spa
dc.relation.references46. Jäger U, Barcellini W, Broome CM, et al. Diagnosis and treatment of autoimmune hemolytic anemia in adults: Recommendations from the First International Consensus Meeting. Blood Rev. 2020;41(xxxx):100648. doi:10.1016/j.blre.2019.100648spa
dc.relation.references47. Smirnova SJ, Sidorova J V., Tsvetaeva N V., et al. Expansion of CD8+ cells in autoimmune hemolytic anemia. Autoimmunity. 2016;49(3):147-154. doi:10.3109/08916934.2016.1138219spa
dc.relation.references48. Xu L, Zhang T, Liu Z, Li Q, Xu Z, Ren T. Critical role of Th17 cells in development of autoimmune hemolytic anemia. Exp Hematol. 2012;40(12):994-1004.e4. doi:10.1016/j.exphem.2012.08.008spa
dc.relation.references49. Howie HL, Hudson KE. Murine models of autoimmune hemolytic anemia. Curr Opin Hematol. 2018;25(6):473-481. doi:10.1097/MOH.0000000000000459spa
dc.relation.references50. Brodsky RA. Warm Autoimmune Hemolytic Anemia. Solomon CG, ed. N Engl J Med. 2019;381(7):647-654. doi:10.1056/NEJMcp1900554spa
dc.relation.references51. Berentsen S. New Insights in the Pathogenesis and Therapy of Cold AgglutininMediated Autoimmune Hemolytic Anemia. Front Immunol. 2020;11(April):12-14. doi:10.3389/fimmu.2020.00590spa
dc.relation.references52. McNicholl F. Clinical syndromes associated with cold agglutinins. Transfus Sci. 2000;22(1-2):125-133. doi:10.1016/S0955-3886(00)00033-3spa
dc.relation.references53. Hill A, Hill QA. Autoimmune hemolytic anemia. Hematology. 2018;2018(1):382-389. doi:10.1182/asheducation-2018.1.382spa
dc.relation.references54. Koffas A, Dolman GE, Kennedy PTF. Hepatitis B virus reactivation in patients treated with immunosuppressive drugs: a practical guide for clinicians. Clin Med (Northfield Il). 2018;18(3):212-218. doi:10.7861/clinmedicine.18-3-212spa
dc.relation.references55. Barcellini W, Zaninoni A, Fattizzo B, et al. Predictors of refractoriness to therapy and healthcare resource utilization in 378 patients with primary autoimmune hemolytic anemia from eight Italian reference centers. Am J Hematol. 2018;93(9):E243-E246. doi:10.1002/ajh.25212spa
dc.relation.references56. Coombs RRA, Mourant AE, Race RR. A new test for the detection of weak and incomplete Rh agglutinins. Br J Exp Pathol. 1945;26:255-266. http://www.ncbi.nlm.nih.gov/pubmed/21006651spa
dc.relation.references57. Parker V, Tormey CA. The Direct Antiglobulin Test: Indications, Interpretation, and Pitfalls. Arch Pathol Lab Med. 2017;141(2):305-310. doi:10.5858/arpa.2015-0444- RSspa
dc.relation.references58. Borge PD, Mansfield PM. The Positive Direct Antiglobulin Test and ImmuneMediated Hemolysis. In: Cohn CS, Delaney M, Johnson ST, Katz LM, eds. Technical Manual AABB. 20th ed. ; 2020:429-452.spa
dc.relation.references59. Capes A, Bailly S, Hantson P, Gerard L, Laterre PF. COVID-19 infection associated with autoimmune hemolytic anemia. Ann Hematol. 2020;99(7):1679-1680. doi:10.1007/s00277-020-04137-9spa
dc.relation.references60. Wahlster L, Weichert-Leahey N, Trissal M, Grace RF, Sankaran VG. COVID-19 presenting with autoimmune hemolytic anemia in the setting of underlying immune dysregulation. Pediatr Blood Cancer. 2020;67(9):1-2. doi:10.1002/pbc.28382spa
dc.relation.references61. Li M, Nguyen CB, Yeung Z, Sanchez K, Rosen D, Bushan S. Evans syndrome in a patient with COVID-19. Br J Haematol. 2020;190(2):e59-e61. doi:10.1111/bjh.16846spa
dc.relation.references62. Lopez C, Kim J, Pandey A, Huang T, DeLoughery TG. Simultaneous onset of COVID-19 and autoimmune haemolytic anaemia. Br J Haematol. 2020;190(1):31- 32. doi:10.1111/bjh.16786spa
dc.relation.references63. Huscenot T, Galland J, Ouvrat M, Rossignol M, Mouly S, Sène D. SARS-CoV-2- associated cold agglutinin disease: a report of two cases. Ann Hematol. 2020;99(8):1943-1944. doi:10.1007/s00277-020-04129-9spa
dc.relation.references64. Cappello F. COVID-19 and molecular mimicry: The Columbus’ egg? J Clin Neurosci. 2020;77(April):246. doi:10.1016/j.jocn.2020.05.015spa
dc.relation.references65. Levin A, Stevens PE, Bilous RW, et al. Kidney disease: Improving global outcomes (KDIGO) CKD work group. KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int Suppl. 2013;3(1):1-150. doi:10.1038/kisup.2012.73spa
dc.relation.references66. Huang Y, Tu M, Wang S, et al. Clinical characteristics of laboratory confirmed positive cases of SARS-CoV-2 infection in Wuhan, China: A retrospective single center analysis. Travel Med Infect Dis. 2020;36:101606. doi:10.1016/j.tmaid.2020.101606spa
dc.relation.references67. Fleiss JL, Levin B, Paik MC. Statistical Methods for Rates and Proportions. Third. John Wiley & Sons, Inc.; 2003. doi:10.1002/0471445428spa
dc.relation.references68. Newcombe RG. Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med. 1998;17(8):857-872. doi:10.1002/(SICI)1097-0258(19980430)17:8<857::AID-SIM777>3.0.CO;2-Espa
dc.relation.references69. Hsieh FY, Bloch DA, Larsen MD. A simple method of sample size calculation for linear and logistic regression. Stat Med. 1998;17(14):1623-1634. doi:10.1002/(SICI)1097-0258(19980730)17:14<1623::AID-SIM871>3.0.CO;2-Sspa
dc.relation.references70. Organización Panamericana de la Salud. Requerimientos para uso de equipos de protección personal (EPP) para el nuevo coronavirus (2019-nCoV) en establecimientos de salud. Bioseguridad y Transp nCoV. 2020;1:1-4. https://iris.paho.org/handle/10665.2/51976spa
dc.relation.references71. Organización Panamerica de la Salud. Directrices provisionales de bioseguridad de laboratorio para el manejo y transporte de muestras asociadas al nuevo coronavirus 20191 (2019-nCoV). Bioseguridad y Transp nCoV. 2020;1:1-10. https://www.cdc.gov/coronavirus/2019-nCoV/lab/lab-biosafety-guidelines.htmlspa
dc.relation.references72. Batstra L, Bos EH, Neeleman J. Quantifying psychiatric comorbidity. Soc Psychiatry Psychiatr Epidemiol. 2002;37(3):105-111. doi:10.1007/s001270200001spa
dc.relation.references73. Coutelier JP, Detalle L, Musaji A, Meite M, Izui S. Two-Step Mechanism of Virusinduced Autoimmune Hemolytic Anemia. Ann N Y Acad Sci. 2007;1109(1):151-157. doi:10.1196/annals.1398.018spa
dc.relation.references74. Getts DR, Chastain EML, Terry RL, Miller SD. Virus infection, antiviral immunity, and autoimmunity. Immunol Rev. 2013;255(1):197-209. doi:10.1111/imr.12091spa
dc.relation.references75. Smatti MK, Cyprian FS, Nasrallah GK, Al Thani AA, Almishal RO, Yassine HM. Viruses and Autoimmunity: A Review on the Potential Interaction and Molecular Mechanisms. Viruses. 2019;11(8):762. doi:10.3390/v11080762spa
dc.relation.references76. Taherifard E, Taherifard E, Movahed H, Mousavi MR. Hematologic autoimmune disorders in the course of COVID-19: a systematic review of reported cases. Hematology. 2021;26(1):225-239. doi:10.1080/16078454.2021.1881225spa
dc.relation.references77. Motta JC, Novoa DJ, Gómez CC, et al. Factores pronósticos en pacientes hospitalizados con diagnóstico de infección por SARS-CoV-2 en Bogotá, Colombia. Biomédica. 2020;40(Supl. 2):116-130. doi:10.7705/biomedica.5764spa
dc.relation.references78. Matsunaga N, Hayakawa K, Terada M, et al. Clinical Epidemiology of Hospitalized Patients With Coronavirus Disease 2019 (COVID-19) in Japan: Report of the COVID-19 Registry Japan. Clin Infect Dis. Published online September 28, 2020. doi:10.1093/cid/ciaa1470spa
dc.relation.references79. Hindilerden F, Yonal-Hindilerden I, Akar E, Yesilbag Z, Kart-Yasar K. Severe autoimmune hemolytic Anemia in COVID-19 İnfection, safely treated with steroids. Mediterr J Hematol Infect Dis. 2020;12(1):4-7. doi:10.4084/MJHID.2020.053spa
dc.relation.references80. Maslov D V., Simenson V, Jain S, Badari A. COVID-19 and Cold Agglutinin Hemolytic Anemia. TH Open. 2020;04(03):e175-e177. doi:10.1055/s-0040- 1715791spa
dc.relation.references81. Patil NR, Herc ES, Girgis M. Cold agglutinin disease and autoimmune hemolytic anemia with pulmonary embolism as a presentation of COVID-19 infection. Hematol Oncol Stem Cell Ther. 2020;(January):19-21. doi:10.1016/j.hemonc.2020.06.005spa
dc.relation.references82. Hannon JL. Management of Blood Donors and Blood Donations From Individuals Found to Have a Positive Direct Antiglobulin Test. Transfus Med Rev. 2012;26(2):142-152. doi:10.1016/j.tmrv.2011.08.004spa
dc.relation.references83. Froissart A, Rossi B, Ranque B, et al. Effect of a Red Blood Cell Transfusion on Biological Markers Used to Determine the Cause of Anemia: A Prospective Study. Am J Med. 2018;131(3):319-322. doi:10.1016/j.amjmed.2017.10.005spa
dc.relation.references84. Cid J, Ortín X, Beltran V, et al. The direct antiglobulin test in a hospital setting. Immunohematology. 2020;19(1):16-18. doi:10.21307/immunohematology-2019- 468spa
dc.relation.references85. Hill QA, Stamps R, Massey E, Grainger JD, Provan D, Hill A. The diagnosis and management of primary autoimmune haemolytic anaemia. Br J Haematol. 2017;176(3):395-411. doi:10.1111/bjh.14478spa
dc.relation.references86. Lai M, Visconti E, D’Onofrio G, Tamburrini E, Cauda R, Leone G. Lower hemoglobin levels in human immunodeficiency virus-infected patients with a positive direct antiglobulin test (DAT): relationship with DAT strength and clinical stages. Transfusion. 2006;46(7):1237-1243. doi:10.1111/j.1537-2995.2006.00876.xspa
dc.relation.references87. Lazarian G, Quinquenel A, Bellal M, et al. Autoimmune haemolytic anaemia associated with COVID-19 infection. Br J Haematol. 2020;190(1):29-31. doi:10.1111/bjh.16794spa
dc.relation.references88. Raghuwanshi B. Serological Blood Group Discrepancy and Cold Agglutinin Autoimmune Hemolytic Anemia Associated With Novel Coronavirus. Cureus. Published online November 15, 2020. doi:10.7759/cureus.11495spa
dc.relation.references89. Hassanein H, Hajdenberg J. High Thermal Amplitude Red Blood Cell Agglutinating Cold Type Autoantibodies in a Case of Severe Acute Respiratory Syndrome Coronavirus 2 Pneumonia and Multiorgan Failure. J Med Cases. 2021;12(1):16-17. doi:10.14740/jmc3608spa
dc.relation.references90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078spa
dc.relation.references90. Huda Z, Jahangir A, Sahra S, et al. A Case of COVID-19-Associated Autoimmune Hemolytic Anemia With Hyperferritinemia in an Immunocompetent Host. Cureus. Published online June 30, 2021. doi:10.7759/cureus.16078spa
dc.relation.references92. Bordallo B, Bellas M, Cortez AF, Vieira M, Pinheiro M. Severe COVID-19: what have we learned with the immunopathogenesis? Adv Rheumatol. 2020;60(1):50. doi:10.1186/s42358-020-00151-7spa
dc.relation.references93. Rodríguez Y, Novelli L, Rojas M, et al. Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 2020;114:102506. doi:10.1016/j.jaut.2020.102506spa
dc.relation.references94. van den Akker M, Buntinx F, Knottnerus JA. Comorbidity or multimorbidity. Eur J Gen Pract. 1996;2(2):65-70. doi:10.3109/13814789609162146spa
dc.relation.references95. Langford BJ, So M, Raybardhan S, et al. Antibiotic prescribing in patients with COVID-19: rapid review and meta-analysis. Clin Microbiol Infect. 2021;27(4):520- 531. doi:10.1016/j.cmi.2020.12.018spa
dc.relation.references96. Roy CN. Anemia of Inflammation. Hematology. 2010;2010(1):276-280. doi:10.1182/asheducation-2010.1.276spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.otherInfecciones por Coronavirus
dc.subject.otherCoronavirus Infections
dc.subject.otherAnemia
dc.subject.otherAnemia Hemolítica Autoinmune
dc.subject.otherAnemia, Hemolytic, Autoimmune
dc.subject.proposalCOVID-19spa
dc.subject.proposalSARS-CoV-2spa
dc.subject.proposalAnemiaspa
dc.subject.proposalAnemia hemolítica autoinmunespa
dc.subject.proposalPrueba antiglobulínica directaspa
dc.subject.proposalAutoimmune hemolytic anemiaeng
dc.subject.proposalDirect antiglobulin testeng
dc.titleCoocurrencia de anemia y prueba antiglobulínica directa (PAD) positiva en pacientes hospitalizados por COVID-19spa
dc.title.translatedPrevalence of anemia and positive direct antiglobulin test (DAT) in hospitalized patients with COVID-19eng
dc.typeTrabajo de grado - Especialidad Médicaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Burbano hematologia 2021 - Juan Felipe Burbano Gutierrez.pdf
Tamaño:
1.2 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de especialidad medica en Hematología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: