En 4 día(s), 13 hora(s) y 5 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Obtención de un andamio con potencial uso en ingeniería de tejidos empleando policaprolactona en una impresora 3D.

dc.contributor.advisorPerilla Perilla, Jairo Ernesto
dc.contributor.advisorGodoy Silva, Rubén Darío
dc.contributor.authorFlórez Prieto, Miguel Ángel
dc.contributor.cvlacFLÓREZ PRIETO, MIGUEL ÁNGELspa
dc.contributor.researchgroupGrupo de Investigación en Procesos Químicos y Bioquímicosspa
dc.date.accessioned2023-10-10T21:55:57Z
dc.date.available2023-10-10T21:55:57Z
dc.date.issued2023-08-10
dc.description.abstractEl objetivo principal de este trabajo fue evaluar el efecto del tamaño de poro en las propiedades mecánicas de andamios fabricados empleando Ɛ-policaprolactona mediante el uso de tecnología aditiva, con el fin de verificar un posible uso en ingeniería de tejidos, específicamente en tejido óseo. El diseño metodológico involucró tres fases: la primera consistió en el desarrollo del diseño del andamio a utilizar, además de evaluar las condiciones de impresión que pueden afectar la resolución y forma de los andamios, para finalmente imprimir las muestras a evaluar. La segunda fase consistió en realizar pruebas de caracterización del polímero, como calorimetría diferencial de barrido y análisis termogravimétrico. Además, se llevaron a cabo pruebas mecánicas de tensión-deformación, compresión y flexión. Finalmente, en la tercera etapa se evaluó la biocompatibilidad del polímero para determinar si en un futuro puede ser aplicable para la regeneración ósea. Como resultado, luego de evaluar el efecto de la temperatura en la construcción de andamios de 500 µm, 750 µm y 1000 µm, se logró detectar que los cambios son poco significativos en las propiedades mecánicas al variar las condiciones de impresión en temperaturas de 175°C, 185°C, 195°C y 205°C, y en el lecho de: 50°C, 55°C, 60°C, 65°C y 70°C. Sin embargo, al variar el espaciamiento del filamento, las propiedades mecánicas de tensión y flexión aumentaron conforme disminuyó el espaciamiento. En el caso de las propiedades de compresión, los resultados no mostraron una variación considerable. La toxicidad del polímero es baja, lo que permite su uso en ingeniería de tejidos. (Texto tomado de la fuente)spa
dc.description.abstractThe overarching objective of this study was to assess the impact of pore size on the mechanical attributes of scaffolds produced using Ɛ-polycaprolactone via additive manufacturing, with the aim of validating its potential applicability in tissue engineering, particularly for bone tissue. The methodological design encompassed three phases: the first phase involved developing the scaffold design for deployment, along with evaluating the print conditions that could influence scaffold resolution and form, culminating in the printing of the samples for evaluation. The second phase entailed executing polymer characterization tests, including differential scanning calorimetry and thermogravimetric analysis. In addition to these, mechanical stress-strain, compression, and bending tests were performed. Lastly, during the third stage, the polymer's biocompatibility was examined to ascertain its prospective utility in future bone regeneration efforts. The outcomes indicated that, upon assessing the temperature's influence on the construction of scaffolds with pore sizes of 500 µm, 750 µm, and 1000 µm, the observed changes in mechanical properties exhibited minimal significance when the print conditions were altered at temperatures of 175°C, 185°C, 195°C, and 205°C, as well as the bed temperature variations of 50°C, 55°C, 60°C, 65°C, and 70°C. However, in instances of modifying filament spacing, mechanical tensile and bending properties were found to escalate inversely with spacing reduction. As for compression properties, the results displayed nominal variance. The polymer's toxicity was found to be low, thus facilitating its utilization in tissue engineering applications.eng
dc.description.abstractilustraciones, diagramas, fotografíasspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.methodsLa investigación se basa en un desarrollo experimental que se da en diferentes etapas, la primera fue el diseño del andamio para poder verificar las condiciones de impresión optimas que permitieran una resolución adecuada, segundo un analisis de variacion de condiciones de impresión para determinar el efecto en la resolución, todo ello apoyado con programas de analisis de imagen, tercero, elaboración de pruebas mecánicas: tensión, compresión y flexión a los andamios. Cuarto modificación de tamaño de poro con el fin de evaluar las propiedades mecánicas y determinar su efecto. y Finalmente de evaluó la citotoxicidad del material.spa
dc.description.researchareaIngeniería de tejidos.spa
dc.description.researchareaBioprocesosspa
dc.format.extentxxi, 168 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84793
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesAbdelhamid, M. M., Eid, G., Othman, M. H. M., Ibrahim, H., Elsers, D., Elyounsy, M., Kwon, S. Y., Kim, M., Kim, D., Kim, J.-W., Ryu, J., El-Radi, M. A., & Fetih, T. N. (2023). The Evaluation of Cartilage Regeneration Efficacy of Three-Dimensionally Biofabricated Human-Derived Biomaterials on Knee Osteoarthritis: A Single-Arm, Open Label Study in Egypt. Journal of Personalized Medicine, 13(5), 748. https://doi.org/10.3390/jpm13050748spa
dc.relation.referencesAbdul Haq, R. H., Saidin, W., & Mat, U. W. (2013). Improvement of Mechanical Properties of Polycaprolactone (PCL) by Addition of Nano-Montmorillonite (MMT) and Hydroxyapatite (HA). Applied Mechanics and Materials, 315, 815–819. https://doi.org/10.4028/www.scientific.net/AMM.315.815spa
dc.relation.referencesAmador-González, E., Sotomayor-del Moral, J. A., Pascual-Francisco, J. B., & Farfán-Cabrera, L. I. (2021). Medición y obtención de modelo de fluencia lenta en elastómeros. Pädi Boletín Científico de Ciencias Básicas e Ingenierías Del ICBI, 9(17), 108–113. https://doi.org/10.29057/icbi.v9i17.7136spa
dc.relation.referencesASTM International. (2012). Standard Terminology for Additive Manufacturing Technologies.spa
dc.relation.referencesASTM International. (2016). ASTM D-695-15: Standard Test Method for Compressive Properties of Rigid Plastics.spa
dc.relation.referencesASTM International. (2017). ASTM D790-17: Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials.spa
dc.relation.referencesASTM International. (2018). ASTM D882-18 Standard Test Method for Tensile Properties of Thin Plastic Sheeting.spa
dc.relation.referencesASTM International. (2021). ASTM D3418-99: Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry.spa
dc.relation.referencesASTM International. (2022). ASTM D-638: Standard Test Method for Tensile Properties of Plastics.spa
dc.relation.referencesAzimi, B., Nourpanah, P., Rabiee, M., & Arbab, S. (2018). Poly (∊-caprolactone) Fiber: An Overview. Journal of Engineered Fibers and Fabrics, 9(3), 155892501400900. https://doi.org/10.1177/155892501400900309spa
dc.relation.referencesBaez, J. (2006). Poli (e-caprolactona), un polímero degradable síntesis por triisopropóxido de aluminio Al(OiPr)3 como iniciador. Educación Química (UNAM), 17(4), 458–463.spa
dc.relation.referencesBao, T. Q., Franco, R. A., & Lee, B. T. (2012). Preparation and characterization of a novel 3D scaffold from poly(e{open}-caprolactone)/biphasic calcium phosphate hybrid composite microspheres adhesion. Biochemical Engineering Journal, 64, 76–83. https://doi.org/10.1016/j.bej.2012.02.005spa
dc.relation.referencesBarazanchi, A., Li, K. C., Al-Amleh, B., Lyons, K., & Waddell, J. N. (2017). Additive Technology: Update on Current Materials and Applications in Dentistry. Journal of Prosthodontics, 26(2), 156–163. https://doi.org/10.1111/jopr.12510spa
dc.relation.referencesCardoso, G. B., Machado-Silva, A. B., Sabino, M., Santos Jr, A. R., & Zavaglia, C. A. (2014). Novel hybrid membrane of chitosan/poly (ε-caprolactone) for tissue engineering. Biomatter, 4(1), e29508. https://doi.org/10.4161/biom.29508spa
dc.relation.referencesCarvalho, J. R. G., Conde, G., Antonioli, M. L., Dias, P. P., Vasconcelos, R. O., Taboga, S. R., Canola, P. A., Chinelatto, M. A., Pereira, G. T., & Ferraz, G. C. (2020). Biocompatibility and biodegradation of poly(lactic acid) (PLA) and an immiscible PLA/poly(ε-caprolactone) (PCL) blend compatibilized by poly(ε-caprolactone-b-tetrahydrofuran) implanted in horses. Polymer Journal, 52(6), 629–643. https://doi.org/10.1038/s41428-020-0308-yspa
dc.relation.referencesCenter for Devices and Radiological Health. (2016). Use of International Standard ISO 10993-1, “Biological evaluation of medical devices - Part 1: Evaluation and testing within a risk management process.” Guidance for Industry and Food and Drug Administration Staff, 26.spa
dc.relation.referencesDash, T. K., & Konkimalla, V. B. (2012). Poly-є-caprolactone based formulations for drug delivery and tissue engineering: A review. Journal of Controlled Release, 158(1), 15–33. https://doi.org/10.1016/j.jconrel.2011.09.064spa
dc.relation.referencesDhandayuthapani, B., Yoshida, Y., Maekawa, T., & Kumar, D. S. (2011). Polymeric scaffolds in tissue engineering application: A review. International Journal of Polymer Science, 2011(ii). https://doi.org/10.1155/2011/290602spa
dc.relation.referencesDong, L., Wang, S. J., Zhao, X. R., Zhu, Y. F., & Yu, J. K. (2017). 3D-printed poly (ϵ-caprolactone) scaffold integrated with cell-laden chitosan hydrogels for bone tissue engineering. Scientific Reports, 7(1), 4–12. https://doi.org/10.1038/s41598-017-13838-7spa
dc.relation.referencesEarnest, C. M. (1984). Modern thermogravimetry. Analytical Chemistry, 56(13), 1471A-1486A. https://doi.org/10.1021/ac00277a002spa
dc.relation.referencesEngelberg, I., & Kohn, J. (1991). Physico-mechanical properties of degradable polymers used in medical applications: A comparative study. Biomaterials, 12(3), 292–304. https://doi.org/10.1016/0142-9612(91)90037-Bspa
dc.relation.referencesEshraghi, S., & Das, S. (2010). Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomaterialia, 6(7), 2467–2476. https://doi.org/10.1016/j.actbio.2010.02.002spa
dc.relation.referencesFahira, A. I., Amalia, R., Barliana, M. I., Gatera, V. A., & Abdulah, R. (2022). Polyethyleneimine (PEI) as a Polymer-Based Co-Delivery System for Breast Cancer Therapy. Breast Cancer: Targets and Therapy, Volume 14, 71–83. https://doi.org/10.2147/BCTT.S350403spa
dc.relation.referencesFernandez, A., Sosa, P., Debora, S., Desantadina, V., Fabeiro, M., Martinez, M. I., Piazza, N., Casavalle, P., Tonietti, M., Vacarezza, V., de Grandis, S., Granados, N., & Hernandez, J. (2011). Calcio y nutrición.spa
dc.relation.referencesFinkenstadt, V. L., Mohamed, A. A., Biresaw, G., & Willett, J. L. (2008). Mechanical properties of green composites with polycaprolactone and wheat gluten. Journal of Applied Polymer Science, 110(4), 2218–2226. https://doi.org/10.1002/app.28446spa
dc.relation.referencesGilmer, E. L., Miller, D., Chatham, C. A., Zawaski, C., Fallon, J. J., Pekkanen, A., Long, T. E., Williams, C. B., & Bortner, M. J. (2018). Model analysis of feedstock behavior in fused filament fabrication: Enabling rapid materials screening. Polymer, 152, 51–61. https://doi.org/10.1016/j.polymer.2017.11.068spa
dc.relation.referencesGregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., & Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11(1), 1–21. https://doi.org/10.1186/s13036-017-0074-3spa
dc.relation.referencesGuarino, V., Gentile, G., Sorrentino, L., & Ambrosio, L. (2017). Polycaprolactone: Synthesis, Properties, and Applications. In Encyclopedia of Polymer Science and Technology. https://doi.org/10.1002/0471440264.pst658spa
dc.relation.referencesGuerra, A., Cano, P., Rabionet, M., Puig, T., & Ciurana, J. (2018). 3D-Printed PCL/PLA Composite Stents: Towards a New Solution to Cardiovascular Problems. Materials, 11(9), 1679. https://doi.org/10.3390/ma11091679spa
dc.relation.referencesGuerra, A. J., & Ciurana, J. (2018). 3D-printed bioabsordable polycaprolactone stent: The effect of process parameters on its physical features. Materials & Design, 137, 430–437. https://doi.org/10.1016/j.matdes.2017.10.045spa
dc.relation.referencesGuerrero F, M., Maya C, C. X., & Vallejo L, M. (2016). Evaluación del efecto citotóxico de una resina dental a base de siloranos sobre fibroblastos L929. Revista de La Universidad Industrial de Santander. Salud, 48(1), 71–80. https://doi.org/10.18273/revsal.v48n1-2016008spa
dc.relation.referencesHajiali, F., Tajbakhsh, S., & Shojaei, A. (2018). Fabrication and Properties of Polycaprolactone Composites Containing Calcium Phosphate-Based Ceramics and Bioactive Glasses in Bone Tissue Engineering: A Review. Polymer Reviews, 58(1), 164–207. https://doi.org/10.1080/15583724.2017.1332640spa
dc.relation.referencesHan, F., Wang, J., Ding, L., Hu, Y., Li, W., Yuan, Z., Guo, Q., Zhu, C., Yu, L., Wang, H., Zhao, Z., Jia, L., Li, J., Yu, Y., Zhang, W., Chu, G., Chen, S., & Li, B. (2020). Tissue Engineering and Regenerative Medicine: Achievements, Future, and Sustainability in Asia. Frontiers in Bioengineering and Biotechnology, 8. https://doi.org/10.3389/fbioe.2020.00083spa
dc.relation.referencesIqbal Mohammed, M. (2017). Design and fabrication considerations for three dimensional scaffold structures. KnE Engineering, 2(2), 120. https://doi.org/10.18502/keg.v2i2.604spa
dc.relation.referencesJiao, Z., Luo, B., Xiang, S., Ma, H., Yu, Y., & Yang, W. (2019). 3D printing of HA / PCL composite tissue engineering scaffolds. Advanced Industrial and Engineering Polymer Research, 2(4), 196–202. https://doi.org/10.1016/j.aiepr.2019.09.003spa
dc.relation.referencesJin, G., Prabhakaran, M. P., Kai, D., Annamalai, S. K., Arunachalam, K. D., & Ramakrishna, S. (2013). Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials, 34(3), 724–734. https://doi.org/10.1016/j.biomaterials.2012.10.026spa
dc.relation.referencesKarageorgiou, V., & Kaplan, D. (2005). Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 26(27), 5474–5491. https://doi.org/10.1016/j.biomaterials.2005.02.002spa
dc.relation.referencesKerman, I., Toppare, L., Yilmaz, F., & Yagci, Y. (2005). Caprolactone Conducting Copolymers and their Electrochromic Properties. Journal of Macromolecular Science, Part A, 42(4), 509–520. https://doi.org/10.1081/MA-200054363spa
dc.relation.referencesKoons, G. L., Diba, M., & Mikos, A. G. (2020). Materials design for bone-tissue engineering. Nature Reviews Materials, 5(8), 584–603. https://doi.org/10.1038/s41578-020-0204-2spa
dc.relation.referencesKováčová, M., Vykydalová, A., & Špitálský, Z. (2023). Polycaprolactone with Glass Beads for 3D Printing Filaments. Processes, 11(2), 395. https://doi.org/10.3390/pr11020395spa
dc.relation.referencesLicciardello, M., Ciardelli, G., & Tonda-Turo, C. (2021). Biocompatible Electrospun Polycaprolactone-Polyaniline Scaffold Treated with Atmospheric Plasma to Improve Hydrophilicity. Bioengineering, 8(2), 24. https://doi.org/10.3390/bioengineering8020024spa
dc.relation.referencesLizarbe Iracheta, M. A. (2007). Sustitutivos de tejidos de los biomateriales a la ingeniería tisular. Revista de La Real Academia de Ciencias Exactas, Físicas y Naturales, 101(1), 227–252.spa
dc.relation.referencesLozano-Sánchez, L., Bagudanch, I., Sustaita, A., Iturbe-Ek, J., Elizalde, L., Garcia-Romeu, M., & Elías-Zúñiga, A. (2018a). Single-Point Incremental Forming of Two Biocompatible Polymers: An Insight into Their Thermal and Structural Properties. Polymers, 10(4), 391. https://doi.org/10.3390/polym10040391spa
dc.relation.referencesLyu, J. S., Lee, J.-S., & Han, J. (2019). Development of a biodegradable polycaprolactone film incorporated with an antimicrobial agent via an extrusion process. Scientific Reports, 9(1), 20236. https://doi.org/10.1038/s41598-019-56757-5spa
dc.relation.referencesMaddah, H. A. (2016). Polypropylene as a Promising Plastic: A Review. American Journal of Polymer Science, 6(1), 1–11. https://doi.org/10.5923/j.ajps.20160601.01spa
dc.relation.referencesMirhosseini, M. M., Haddadi-Asl, V., & Zargarian, S. Sh. (2016). Fabrication and characterization of hydrophilic poly(ε-caprolactone)/pluronic P123 electrospun fibers. Journal of Applied Polymer Science, 133(17), n/a-n/a. https://doi.org/10.1002/app.43345spa
dc.relation.referencesMochane, M. J., Motsoeneng, T. S., Sadiku, E. R., Mokhena, T. C., & Sefadi, J. S. (2019). Morphology and Properties of Electrospun PCL and Its Composites for Medical Applications: A Mini Review. Applied Sciences, 9(11), 2205. https://doi.org/10.3390/app9112205spa
dc.relation.referencesMoeini, S., Mohammadi, M. R., & Simchi, A. (2017). In-situ solvothermal processing of polycaprolactone/hydroxyapatite nanocomposites with enhanced mechanical and biological performance for bone tissue engineering. Bioactive Materials, 2(3), 146–155. https://doi.org/10.1016/j.bioactmat.2017.04.004spa
dc.relation.referencesNajafabadi, F. M., Karbasi, S., Benisi, S. Z., & Shojaei, S. (2023). Physical, mechanical, and biological performance of chitosan-based nanocomposite coating deposited on the polycaprolactone-based 3D printed scaffold: Potential application in bone tissue engineering. International Journal of Biological Macromolecules, 243, 125218. https://doi.org/10.1016/j.ijbiomac.2023.125218spa
dc.relation.referencesNerlich, A. G., Zink, A., Szeimies, U., & Hagedorn, H. G. (2000). Ancient Egyptian prosthesis of the big toe. The Lancet, 356(9248), 2176–2179. https://doi.org/10.1016/S0140-6736(00)03507-8spa
dc.relation.referencesO’Brien, F. J. (2011). Biomaterials & scaffolds for tissue engineering. Materials Today, 14(3), 88–95. https://doi.org/10.1016/S1369-7021(11)70058-Xspa
dc.relation.referencesOrtega, E. S., Sanz-Garcia, A., Pernia-Espinoza, A., & Escobedo-Lucea, C. (2019). Efficient fabrication of polycaprolactone scaffolds for printing hybrid tissue-engineered constructs. Materials, 12(4), 1–18. https://doi.org/10.3390/ma12040613spa
dc.relation.referencesPark, H. J., Lee, O. J., Lee, M. C., Moon, B. M., Ju, H. W., Lee, J. min, Kim, J.-H., Kim, D. W., & Park, C. H. (2015). Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. International Journal of Biological Macromolecules, 78, 215–223. https://doi.org/10.1016/j.ijbiomac.2015.03.064spa
dc.relation.referencesPark, S., Kim, G., Jeon, Y. C., Koh, Y., & Kim, W. (2009). 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. Journal of Materials Science: Materials in Medicine, 20(1), 229–234. https://doi.org/10.1007/s10856-008-3573-4spa
dc.relation.referencesPark, W. H., Kim, B. S., Park, K. E., You, H. K., Lee, J., & Kim, M. H. (2015). Effect of nanofiber content on bone regeneration of silk fibroin/poly(ε-caprolactone) nano/microfibrous composite scaffolds. International Journal of Nanomedicine, 485. https://doi.org/10.2147/IJN.S72730spa
dc.relation.referencesPrakasam, M., Popescu, M., Piticescu, R., & Largeteau, A. (2017). Fabrication Methodologies of Biomimetic and Bioactive Scaffolds for Tissue Engineering Applications. In Scaffolds in Tissue Engineering - Materials, Technologies and Clinical Applications. InTech. https://doi.org/10.5772/intechopen.70707spa
dc.relation.referencesRezania, N., Asadi-Eydivand, M., Abolfathi, N., Bonakdar, S., Mehrjoo, M., & Solati-Hashjin, M. (2022). Three-dimensional printing of polycaprolactone/hydroxyapatite bone tissue engineering scaffolds mechanical properties and biological behavior. Journal of Materials Science: Materials in Medicine, 33(3), 31. https://doi.org/10.1007/s10856-022-06653-8spa
dc.relation.referencesRezgui, F., Swistek, M., Hiver, J. M., G’Sell, C., & Sadoun, T. (2005). Deformation and damage upon stretching of degradable polymers (PLA and PCL). Polymer, 46(18), 7370–7385. https://doi.org/10.1016/j.polymer.2005.03.116spa
dc.relation.referencesRohner, D., Hutmacher, D. W., Cheng, T. K., Oberholzer, M., & Hammer, B. (2003). In vivo efficacy of bone-marrow-coated polycaprolactone scaffolds for the reconstruction of orbital defects in the pig. Journal of Biomedical Materials Research, 66B(2), 574–580. https://doi.org/10.1002/jbm.b.10037spa
dc.relation.referencesRosa, D. S., Guedes, C. G. F., & Pedroso, A. G. (2004). Gelatinized and nongelatinized corn starch/ poly(epsilon-caprolactone) blends: characterization by rheological, mechanical and morphological properties. Polímeros, 14(3), 181–186. https://doi.org/10.1590/S0104-14282004000300014spa
dc.relation.referencesRudnik, E. (2013). Compostable Polymer Properties and Packaging Applications. In Plastic Films in Food Packaging (pp. 217–248).spa
dc.relation.referencesSalgado, C. L., Sanchez, E. M. S., Zavaglia, C. A. C., & Granja, P. L. (2012). Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels. Journal of Biomedical Materials Research Part A, 100A(1), 243–251. https://doi.org/10.1002/jbm.a.33272spa
dc.relation.referencesShabab, T., Bas, O., Dargaville, B. L., Ravichandran, A., Tran, P. A., & Hutmacher, D. W. (2023). Microporous/Macroporous Polycaprolactone Scaffolds for Dental Applications. Pharmaceutics, 15(5), 1340. https://doi.org/10.3390/pharmaceutics15051340spa
dc.relation.referencesSharma, N., Pratap Yadav, V., & Sharma, A. (2021). Attitudes and empathy of youth towards physically disabled persons. Heliyon, 7(8), e07852. https://doi.org/10.1016/j.heliyon.2021.e07852spa
dc.relation.referencesSodupe Ortega, E., Sanz-Garcia, A., Pernia-Espinoza, A., & Escobedo-Lucea, C. (2019). Efficient Fabrication of Polycaprolactone Scaffolds for Printing Hybrid Tissue-Engineered Constructs. Materials, 12(4), 613. https://doi.org/10.3390/ma12040613spa
dc.relation.referencesVyas, C., Zhang, J., Øvrebø, Ø., Huang, B., Roberts, I., Setty, M., Allardyce, B., Haugen, H., Rajkhowa, R., & Bartolo, P. (2021). 3D printing of silk microparticle reinforced polycaprolactone scaffolds for tissue engineering applications. Materials Science and Engineering: C, 118, 111433. https://doi.org/10.1016/j.msec.2020.111433spa
dc.relation.referencesWang, L., Abedalwafa, M., Wang, F., & Li, C. (2013). Biodegradable Poly-Ε-Caprolactone (Pcl) for Tissue Engineering Applications: a Review. Rev. Adv. Mater. Sci, 34, 123–140. http://www.ipme.ru/e-journals/RAMS/no_23413/02_23413_abedalwafa.pdfspa
dc.relation.referencesWhitaker, M. (2014). The history of 3D printing in healthcare. The Bulletin of the Royal College of Surgeons of England, 96(7), 228–229. https://doi.org/10.1308/147363514X13990346756481spa
dc.relation.referencesWoodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer - Polycaprolactone in the 21st century. Progress in Polymer Science (Oxford), 35(10), 1217–1256. https://doi.org/10.1016/j.progpolymsci.2010.04.002spa
dc.relation.referencesZhang, Q., Zhou, X., Du, H., Ha, Y., Xu, Y., Ao, R., & He, C. (2023). Bifunctional Hydrogel-Integrated 3D Printed Scaffold for Repairing Infected Bone Defects. ACS Biomaterials Science & Engineering, 9(8), 4583–4596. https://doi.org/10.1021/acsbiomaterials.3c00564spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc670 - Manufactura::679 -Otros productos de materiales específicosspa
dc.subject.lembImagen tridimensional en diseñospa
dc.subject.lembDesign imagingeng
dc.subject.lembSistemas de representacion tridimencionalspa
dc.subject.lembThree-dimensional display systemseng
dc.subject.proposalTecnología aditivaspa
dc.subject.proposalAndamiosspa
dc.subject.proposalPruebas mecánicasspa
dc.subject.proposalAnálisis de imagenspa
dc.subject.proposalAdditive technologyeng
dc.subject.proposalScaffoldseng
dc.subject.proposalMechanical testseng
dc.subject.proposalImage analysis
dc.titleObtención de un andamio con potencial uso en ingeniería de tejidos empleando policaprolactona en una impresora 3D.spa
dc.title.translatedObtaining a scaffold with potential use in tissue engineering using polycaprolactone in a 3D printer.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1020787186.2023.pdf
Tamaño:
4.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: