Bird conservation priorities in a northern Andean city

dc.contributor.advisorMancera Rodríguez, Néstor Javier
dc.contributor.advisorGarizábal Carmona, Jaime Andrés
dc.contributor.authorFigueroa Zuluaga, Maria José
dc.contributor.cvlacFigueroa Zuluaga, María José [0002044705]
dc.contributor.orcidFigueroa Zuluaga, María José [0000000221223700]
dc.contributor.orcidMancera Rodríguez, Néstor Javier [0000-0002-7325-9588]
dc.contributor.orcidGarizábal Carmona, Jaime A. [0000-0002-0177-2729]
dc.contributor.researchgroupEcología y Conservación de Fauna Silvestre
dc.date.accessioned2025-08-28T15:32:07Z
dc.date.available2025-08-28T15:32:07Z
dc.date.issued2025
dc.descriptionIlustraciones, mapasspa
dc.description.abstractIn northern tropical Andes, the increasing urbanization sprawl represents a conservation threat for highly biodiverse biotas. However, while most conservation studies in the region have focused on non-urban areas with forest remnants, the role of urbanized landscapes in biodiversity conservation has been largely overlooked. This study seeks to identify priority conservation areas for birds, as well as biodiversity drivers for birds of conservation priority in Medellín, Colombia. In Chapter One, bird species with conservation priorities were identified and mapped across the urban continuum (based on 212 survey sites). Here, the selection of species with priority was based on criteria such as threat status, habitat specificity, endemism, and commercial or cultural use categorizing into three priority levels (very high, high, and moderate). A total of 87 focal bird species were categorized: 9.1% of them were assigned to very high priority, 58.6% to high and 32.2% to moderate. Afterwards, priority areas for bird conservation were identified based on these species distribution. Findings suggests that sites closer to non-urban areas are essential for very high priority species that are disappearing within the city, while only high and moderate priority bird species are found further, especially larger greenspaces. In all cases, most sites representing priority conservation bird areas are not protected. In Chapter Two landscape and habitat characteristics associated with focal bird species richness were assessed, highlighting higher number of buildings, intensity of vegetation management and distance to the urban edge as negative drivers of conservation priority bird species richness. In contrast, vegetation cover exhibited positive relationships, suggesting that urbanization and habitat alteration reduce focal bird species richness. Other variables such the number of motorized vehicles and number of pedestrians also showed a negative association with total focal species richness, and the noise showed a negative association with moderate priority species richness. Finally, in Chapter Three changes in composition, richness, and abundance of a group highly affected by wildlife trade, Psittacidae, were analyzed across different urbanization levels, as well as abundance trends regarding an urbanization gradient at different spatial scales (i.e., 200, 500, 1000 m). Native species were the most abundant Psittacidae species, Brotogeris jugularis and Forpus conspicillatus, with the first increasing abundance with urbanization and the last showing the opposite pattern. This emphasizes the importance of species-specific conservation approaches in urban environments. This study points out the role of cities in biodiversity conservation and the need to integrate biodiversity into urban planning in the northern Andes. (Tomado de la fuente)eng
dc.description.abstractEn el norte de los Andes tropicales, la creciente expansión urbanística representa una amenaza para la conservación de biotas de alta biodiversidad. Sin embargo, mientras que la mayoría de los estudios de conservación en la región se han centrado en áreas no urbanas con remanentes de bosque, el papel de los paisajes urbanizados en la conservación de la biodiversidad ha sido, en gran medida, pasado por alto. Este estudio busca identificar las áreas clave para la conservación de las aves, así como los impulsores de la biodiversidad para las aves con prioridad de conservación en Medellín, Colombia. En el Capítulo Uno, se identificaron las especies de aves con prioridades de conservación y se mapearon a través del continuo urbano (basado en 212 sitios de estudio). Aquí, la selección de especies con prioridad se basó en criterios como el estado de amenaza, la especificidad del hábitat, el endemismo y el uso comercial o cultural, categorizándose en tres niveles de prioridad (muy alta, alta y moderada). Se categorizaron un total de 87 especies de aves focales: al 9,1% de ellas se les asignó prioridad muy alta, al 58,6% alta y al 32,2% moderada. Posteriormente, se identificaron áreas clave para la conservación de las aves basándose en la distribución de estas especies. Los resultados sugieren que los lugares más cercanos a las zonas no urbanas son esenciales para las especies de prioridad muy alta que están desapareciendo dentro de la ciudad, mientras que sólo las especies de aves de prioridad alta y moderada se encuentran más lejos del borde urbano, especialmente en los espacios verdes más grandes. En todos los casos, la mayoría de los lugares que representan zonas clave para la conservación de las aves no están siendo activamente protegidos. En el Capítulo Dos se evaluaron las características del paisaje y del hábitat asociadas a la riqueza de especies de aves focales, destacando el mayor número de edificios, la intensidad de la gestión de la vegetación y la distancia al borde urbano como factores que influyen negativamente a la riqueza de especies de aves prioritarias para la conservación. Por el contrario, la cubierta vegetal mostró relaciones positivas, sugiriendo que la urbanización y la alteración del hábitat reducen la riqueza de especies de aves focales. Otras variables como el número de vehículos motorizados y el número de peatones también mostraron una asociación negativa con la riqueza total de especies focales, y el ruido mostró una asociación negativa con la riqueza de especies de prioridad moderada. Finalmente, en el Capítulo Tres se analizaron los cambios en la composición, riqueza y abundancia de un grupo altamente afectado por el comercio de fauna silvestre, los psitácidos (Psittacidae), a través de diferentes niveles de urbanización, así como las tendencias de abundancia respecto a un gradiente de urbanización a diferentes escalas espaciales (es decir, 200, 500, 1000 m). Las especies autóctonas de psitácidos más abundantes fueron Brotogeris jugularis y Forpus conspicillatus, aumentando la abundancia de la primera con la urbanización y mostrando la última el patrón opuesto. Esto subraya la importancia de los enfoques de conservación específicos para cada especie en los entornos urbanos. Este estudio señala el papel de las ciudades en la conservación de la biodiversidad y la necesidad de integrar la biodiversidad en la planificación urbana en el norte de los Andes.spa
dc.description.curricularareaMedio Ambiente.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagister en Medio Ambiente y Desarrollo
dc.description.researchareaConservación y manejo sostenible de la vida silvestre
dc.format.extent104 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88497
dc.language.isoeng
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Minas
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollo
dc.relation.indexedLaReferencia
dc.relation.referencesAbilhôa, V., & Amorin, R. (2017). Effects of urbanization on the avian community in a southern Brazilian city. Revista Brasileira de Ornitología, 25(1), 31-39. https://doi.org/10.1007/bf03544374
dc.relation.referencesAdams, C. A., Fernández‐Juricic, E., Bayne, E. M., & Clair, C. C. S. (2021). Effects of artificial light on bird movement and distribution: a systematic map. Environmental Evidence, 10(1). https://doi.org/10.1186/s13750-021-00246-8
dc.relation.referencesAlberti, M. (2005). The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2), 168-192. https://doi.org/10.1177/0160017605275160
dc.relation.referencesÁlvarez-Castillo, C., MacGregor‐Fors, I., Arriaga-Weiss, S. L., Mota-Vargas, C., & Santiago‐Alarcon, D. (2022). Abundance of white-fronted parrots and diet of an urban parrot assemblage (Aves: Psittaciformes) in a green Neotropical city. Avian Research, 13, 100019. https://doi.org/10.1016/j.avrs.2022.100019
dc.relation.referencesAmaya‐Espinel, J. D., Hostetler, M. E., Henríquez, C., & Bonacic, C. (2019). The influence of building density on neotropical bird communities found in small urban parks. Landscape and Urban Planning, 190, 103578. https://doi.org/10.1016/j.landurbplan.2019.05.009
dc.relation.referencesAndelman, S. J. & Fagan, W. F. (2000). Umbrellas and flagships: efficient conservation surrogates or expensive mistakes? Proceedings of the National Academy of Sciences, 97(11), 5954-5959. https://doi.org/10.1073/pnas.100126797
dc.relation.referencesArbeláez‐Cortés, E. (2013). Knowledge of colombian biodiversity: published and indexed. Biodiversity and Conservation, 22(12), 2875-2906. https://doi.org/10.1007/s10531-013-0560-
dc.relation.referencesArchibald, C. L., McKinney, M., Mustin, K., Shanahan, D. F., & Possingham, H. P. (2017). Assessing the impact of revegetation and weed control on urban sensitive bird species. Ecology and Evolution, 7(12), 4200-4208. https://doi.org/10.1002/ece3.2960
dc.relation.referencesAronson, M. F. J., La Sorte, F. A., Nilon, C. H., Katti, M., Goddard, M. A., Lepczyk, C. A., Warren, P. S., Williams, N. S. G., Cilliers, S., Clarkson, B., Dobbs, C., Dolan, R., Hedblom, M., Klotz, S., Kooijmans, J. L., MacGregor-Fors, I., McDonnell, M. J., Mörtberg, U., Pyšek, P., & Winter, M. (2014). A global analysis of the impacts of urbanization on bird and plant diversity reveals key anthropogenic drivers. Proceedings of the Royal Society B: Biological Sciences, 281(1780), 20133330.
dc.relation.referencesAronson, M. F. J., Lepczyk, C. A., Evans, K. L., Goddard, M. A., Lerman, S. B., MacIvor, J. S., … & Vargo, T. (2017). Biodiversity in the city: key challenges for urban green space management. Frontiers in Ecology and the Environment, 15(4), 189-196. https://doi.org/10.1002/fee.1480
dc.relation.referencesAronson, M. F. J., Nilon, C. H., Lepczyk, C. A., Parker, T. S., Warren, P. S., Cilliers, S., … & Zipperer, W. C. (2016). Hierarchical filters determine community assembly of urban species pools. Ecology, 97(11), 2952-2963. https://doi.org/10.1002/ecy.1535
dc.relation.referencesAuer, T., Barker, S., Barry, J., Charnoky, M., Curtis, J., Davies, I., Davis, C., Downie, I., Fink, D., Fredericks, T., Ganger, J., Gerbracht, J., Hanks, C., Hochachka, W., Iliff, M., Imani, J., Jordan, A., Levatich, T., ... Wood, C. (2024). EOD – eBird Observation Dataset [Occurrence dataset]. Cornell Lab of Ornithology. https://doi.org/10.15468/aomfnb
dc.relation.referencesAyerbe, F. (2018). Guía ilustrada de la avifauna colombiana. Puntoaparte Bookvertising.
dc.relation.referencesBarbosa, O., M. N. K., A. F. L., DeVries, S. R., & Gómez-Baggethun, E. (2020). The role of green spaces in urban biodiversity conservation: A synthesis of case studies from European cities. Urban Forestry & Urban Greening, 48, 126560. https://doi.org/10.1016/j.ufug.2020.126560
dc.relation.referencesBarbosa, K. V. C., Rodewald, A. D., Ribeiro, M. C., & Jahn, A. E. (2020). Noise level and water distance drive resident and migratory bird species richness within a neotropical megacity. Landscape and Urban Planning, 197, 103769. https://doi.org/10.1016/j.landurbplan.2020.103769
dc.relation.referencesBax, V. & Francesconi, W. (2019). Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. Journal of Environmental Management, 232(June 2018), 387–396. https://doi.org/10.1016/j.jenvman.2018.11.086
dc.relation.referencesBelmaker, J., & Jetz, W. (2013). Spatial scaling of functional structure in bird and mammal assemblages. The American Naturalist, 181(4), 464-478. https://doi.org/10.1086/669906
dc.relation.referencesBeninde, J., Veith, M., & Hochkirch, A. (2015). Biodiversity in cities needs space: a meta‐analysis of factors determining intra‐urban biodiversity variation. Ecology Letters, 18(6), 581-592. https://doi.org/10.1111/ele.12427
dc.relation.referencesBenítez‐López, A., Alkemade, R., Schipper, A. M., Ingram, D. J., Verweij, P., Eikelboom, J. A., … & Huijbregts, M. A. J. (2017). The impact of hunting on tropical mammal and bird populations. Science, 356(6334), 180-183. https://doi.org/10.1126/science.aaj1891
dc.relation.referencesBenito, J. F., Escobar, M. A. H., & Villaseñor, N. R. (2019). Conservación en la ciudad: ¿cómo influye la estructura del hábitat sobre la abundancia de especies de aves en una metrópoli latinoamericana? Gayana (Concepción), 83(2), 114-125. https://doi.org/10.4067/s0717-65382019000200114
dc.relation.referencesBezerra, L. T., Gonzaga, E. P., Lana, M. D., Breda, M. O., & Duarte, M. (2021). Butterflies (Lepidoptera: Papilionoidea) in the Arboretum of Alagoas State, Brazil Brazilian Journal of Animal and Environmental Research, 4(3), 3248-3268. https://doi.org/10.34188/bjaerv4n3-037
dc.relation.referencesBhakti, T., Pena, J. C., & Rodrigues, M. (2020). Unplanned urban growth and its potential impacts on bird species in a south american city. Floresta E Ambiente, 27(2). https://doi.org/10.1590/2179-8087.011119
dc.relation.referencesBibby C.J., Burgess N.D. & Hill D.A. (1992) Bird Census Techniques, Chapter 5 - Point Counts, Academic Press, pp 85-104. https://doi.org/10.1016/B978-0-12-095830-6.50010-9
dc.relation.referencesBirdLife International (2014) Important Bird and Biodiversity Areas: A global network for conserving nature and benefiting people. Cambridge, UK: BirdLife International
dc.relation.referencesBlackburn, T. M., & Duncan, R. P. (2001). Establishment patterns of exotic birds are constrained by non‐random patterns in introduction. Journal of Biogeography, 28(7), 927-939. https://doi.org/10.1046/j.1365-2699.2001.00597.x
dc.relation.referencesBolker, B. (2008). Ecological models and data in R. Princeton University Press. https://doi.org/10.2307/j.ctvcm4g37
dc.relation.referencesBrambilla, M., Foglini, C., & Vitulano, S. (2024). Small-scale forest restoration in peri-urban areas provides immediate benefits for birds. Bird Conservation International, 34. https://doi.org/10.1017/s0959270924000200
dc.relation.referencesBrambilla, M., Gustin, M., & Celada, C. (2013). Species appeal predicts conservation status. Biological Conservation, 160, 209-213. https://doi.org/10.1016/j.biocon.2013.02.006
dc.relation.referencesBrightsmith, D., Burgio, K. R., Hiller, B. J., Block, K. E., Pyle, P., & Patten, M. A. (2020). White-winged Parakeet (Brotogeris versicolurus), version 1.0. In P. G. Rodewald (Ed.), Birds of the World. Cornell Lab of Ornithology. https://doi.org/10.2173/bow.whwpar.01
dc.relation.referencesBrito, D. & Oprea, M. (2009). Mismatch of research effort and threat in avian conservation biology. Tropical Conservation Science, 2(3), 353-362. https://doi.org/10.1177/194008290900200305
dc.relation.referencesBrooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. The R Journal, 9(2), 378-400. https://doi.org/10.32614/RJ-2017-066
dc.relation.referencesBurnham, K. P., & Anderson, D. R. (2002). Information and likelihood theory: A basis for model selection and inference. In Model selection and multimodel inference (2nd ed., pp. 49-97). Springer. https://doi.org/10.1007/978-0-387-22456-5_2
dc.relation.referencesButchart, S. H. M., Scharlemann, J. P. W., Evans, M. I., Quader, S., Aricò, S., Arinaitwe, J., … & Woodley, S. (2012). Protecting important sites for biodiversity contributes to meeting global conservation targets. PLoS ONE, 7(3), e32529. https://doi.org/10.1371/journal.pone.0032529
dc.relation.referencesCabrera, A., Román, A. G., Riera, E. M., Diosa, L. Q., & Buriticá, S. M. (2017). Evaluación del estado actual de zarigüeyas (didelphis marsupialis) en tres zonas del valle de aburrá. Journal of Agriculture and Animal Sciences, 6(1), 30-40. https://doi.org/10.22507/jals.v6n1a3
dc.relation.referencesCadenasso, M. L., Pickett, S. T. A., & Schwarz, K. (2007). Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework for classification. Frontiers in Ecology and the Environment, 5(2), 80-88. https://doi.org/10.1890/1540-9295(2007)5[80:shiuer]2.0.co;2
dc.relation.referencesCalcagno, V. and Mazancourt, C. d. (2010). glmulti: anrpackage for easy automated model selection with (generalized) linear models. Journal of Statistical Software, 34(12). https://doi.org/10.18637/jss.v034.i12
dc.relation.referencesCallaghan, C. T., Major, R. E., Lyons, M., Martin, J. M., & Kingsford, R. T. (2018). The effects of local and landscape habitat attributes on bird diversity in urban greenspaces. Ecosphere, 9(7). https://doi.org/10.1002/ecs2.2347
dc.relation.referencesCallaghan, C. T., Poore, A. G. B., Major, R. E., Cornwell, W. K., Wilshire, J. H., & Lyons, M. (2020). How to build a biodiverse city: environmental determinants of bird diversity within and among 1581 cities. Biodiversity and Conservation, 30(1), 217-234. https://doi.org/10.1007/s10531-020-02088-1
dc.relation.referencesCarbó‐Ramírez, P. & Zuria, I. (2011). The value of small urban greenspaces for birds in a mexican city. Landscape and Urban Planning, 100(3), 213-222. https://doi.org/10.1016/j.landurbplan.2010.12.008
dc.relation.referencesCarpio, A. J., Álvarez, Y., Oteros, J., León, F. E. D., & Tortosa, F. S. (2020). Intentional introduction pathways of alien birds and mammals in Latin America. Global Ecology and Conservation, 22, e00949. https://doi.org/10.1016/j.gecco.2020.e00949
dc.relation.referencesCarral-Murrieta, C. O., García-Arroyo, M., Marín‐Gómez, O. H., Sosa‐López, J. R., & MacGregor‐Fors, I. (2020). Noisy environments: untangling the role of anthropogenic noise on bird species richness in a neotropical city. Avian Research, 11(1). https://doi.org/10.1186/s40657-020-00218-5
dc.relation.referencesCarrete, M., & Tella, J. L. (2008). Wild-bird trade and exotic invasions: A new link of conservation concern? Frontiers in Ecology and the Environment, 6(4), 207-211. https://doi.org/10.1890/070075
dc.relation.referencesCarvajal-Castro, J. D., Ospina-L, A. M., Toro-López, Y., Pulido-G, A., Cabrera-Casas, L. X., Guerrero-Peláez, S., … & Vargas‐Salinas, F. (2019). Birds vs bricks: patterns of species diversity in response to urbanization in a neotropical andean city. Plos One, 14(6), e0218775. https://doi.org/10.1371/journal.pone.0218775
dc.relation.referencesCasas, D. M. & Parrado-Rosselli, Á. (2023). Response of diversity and guild structure of predatory birds to changes in urban variables at a neotropical megacity. https://doi.org/10.21203/rs.3.rs-2917182/v1
dc.relation.referencesCassey, P., Blackburn, T., Russell, G., Jones, K., & Lockwood, J. (2004). Influences on the transport and establishment of exotic bird species: An analysis of the parrots (Psittaciformes) of the world. Global Change Biology, 10, 417-426. https://doi.org/10.1111/j.1529-8817.2003.00748.x
dc.relation.referencesCediel, F., & Lozano-Flórez, A. J. (2021). Aves urbanas en zonas verdes del área metropolitana de Bucaramanga, Santander, Colombia. Ornitología Colombiana, 18, 1-20. https://doi.org/10.59517/oc.e381
dc.relation.referencesChace, J. F. & Walsh, J. J. (2006). Urban effects on native avifauna: a review. Landscape and Urban Planning, 74(1), 46-69. https://doi.org/10.1016/j.landurbplan.2004.08.007
dc.relation.referencesChamberlain, D., Cannon, A., Toms, M. P., Leech, D. I., Hatchwell, B. J., & Gaston, K. J. (2008). Avian productivity in urban landscapes: A review and meta‐analysis. Ibis, 151(1), 1-18. https://doi.org/10.1111/j.1474-919x.2008.00899.x
dc.relation.referencesChan, D. T. C., Poon, E. S. K., Wong, A. T. C., & Sin, S. Y. W. (2021). Global trade in parrots–Influential factors of trade and implications for conservation. Global Ecology and Conservation, 30, e01784.
dc.relation.referencesChaparro-Herrera, S., Lozano, M., & Echeverry-Galvis, M. Á. (2024). Listado de las aves endémicas y casi-endémicas de Colombia: Evaluación 2013-2023.
dc.relation.referencesChamberlain, D., Cannon, A., Toms, M. P., Leech, D. I., Hatchwell, B. J., & Gaston, K. J. (2008). Avian productivity in urban landscapes: A review and meta‐analysis. Ibis, 151(1), 1-18. https://doi.org/10.1111/j.1474-919x.2008.00899.x
dc.relation.referencesChan, D. T. C., Poon, E. S. K., Wong, A. T. C., & Sin, S. Y. W. (2021). Global trade in parrots–Influential factors of trade and implications for conservation. Global Ecology and Conservation, 30, e01784.
dc.relation.referencesChen, X., Pu, H., He, Y., Lai, M., Zhang, D., Chen, J., … & Pu, H. (2023). An efficient method for monitoring birds based on object detection and multi-object tracking networks. Animals, 13(10), 1713. https://doi.org/10.3390/ani13101713
dc.relation.referencesCITES. (2025). CITES species checklist. Convention on International Trade in Endangered Species of Wild Fauna and Flora. https://checklist.cites.org/#/en
dc.relation.referencesClergeau, P., Jokimäki, J., & Savard, J. L. (2001). Are urban bird communities influenced by the bird diversity of adjacent landscapes? Journal of Applied Ecology, 38(5), 1122-1134. https://doi.org/10.1046/j.1365-2664.2001.00666.x
dc.relation.referencesComer, P., Valdez, J. W., Pereira, H. M., Acosta‐Muñoz, C., Campos, F. S., Bonet, F. J., … & Fernández, M. (2022). Conserving ecosystem diversity in the tropical andes. Remote Sensing, 14(12), 2847. https://doi.org/10.3390/rs14122847
dc.relation.referencesCordingley, J. E., Newton, A. C., Rose, R. J., Clarke, R. T., & Bullock, J. M. (2015). Can landscape‐scale approaches to conservation management resolve biodiversity–ecosystem service trade‐offs? Journal of Applied Ecology, 53(1), 96-105. https://doi.org/10.1111/1365-2664.12545
dc.relation.referencesDa Silva, B.F., Pena, J.C., Viana‐Júnior, A.B., Vergne, M.C., & Pizo, M.A. (2020). Noise and tree species richness modulate the bird community inhabiting small public urban green spaces of a Neotropical city. Urban Ecosystems, 24, 71-81.
dc.relation.referencesD’Amico, M., Catry, I., Martins, R. C., Ascensão, F., Barrientos, R., & Moreira, F. (2018). Bird on the wire: landscape planning considering costs and benefits for bird populations coexisting with power lines. Ambio, 47(6), 650-656. https://doi.org/10.1007/s13280-018-1025-z
dc.relation.referencesDaut, E. F., Lahodny, G., Peterson, M. J., & Ivanek, R. (2016). Interacting effects of Newcastle disease transmission and illegal trade on a wild population of white-winged parakeets in Peru: A modeling approach. PLoS ONE, 11(1), e0147517. https://doi.org/10.1371/journal.pone.0147517
dc.relation.referencesDel Hoyo, J., Elliott, A., Sargatal, J., Christie, D. A., & de Juana, E. (Eds.). (2020). Birds of the World. Cornell Lab of Ornithology.
dc.relation.referencesDe Matos Fragata, M., Baccaro, F., Gonçalves, A. L. S., & others. (2022). Living in a tropical concrete jungle: Diversity and abundance variation in a parrot assemblage (Aves, Psittacidae) of a major Amazonian city. Urban Ecosystems, 25(3), 977-987. https://doi.org/10.1007/s11252-022-01209-8
dc.relation.referencesDevenish, C., Cortez, E. N., Buchanan, G. M., Smith, G., & Marsden, S. J. (2019). Estimating ecological metrics for holistic conservation management in a biodiverse but information‐poor tropical region. Conservation Science and Practice, 2(2). https://doi.org/10.1111/csp2.153
dc.relation.referencesDevos, P. (2023). The bird dawn chorus strength of an urban soundscape and its potential to assess urban green spaces. Sustainability, 15(8), 7002. https://doi.org/10.3390/su15087002
dc.relation.referencesDickinson, E., Young, M. W., Tanis, D., & Granatosky, M. C. (2023). Patterns and factors influencing parrot (Order: Psittaciformes) success in establishing thriving naturalized populations within the contiguous United States. Animals, 13(13), 2101. https://doi.org/10.3390/ani13132101
dc.relation.referencesEcheverry-Duque, M.A. (2020). Identificación de áreas para conservar la diversidad de aves en Colombia y su relación con los servicios ecosistémicos [Tesis inédita para optar a Magister en Conservación y Uso de la Biodiversidad]. Pontificia Universidad Javeriana.
dc.relation.referencesEcheverry‐Galvis, M. Á., Ramírez, P. L., & Amaya‐Espinel, J. D. (2023). Long-term christmas bird counts describe neotropical urban bird diversity. Plos One, 18(2), e0272754. https://doi.org/10.1371/journal.pone.0272754
dc.relation.referencesEglington, S. M., Brereton, T., Tayleur, C., Noble, D. G., Risely, K., Roy, D. B., … & Pearce‐Higgins, J. W. (2015). Patterns and causes of covariation in bird and butterfly community structure. Landscape Ecology, 30(8), 1461-1472. https://doi.org/10.1007/s10980-015-0199-z
dc.relation.referencesEvans, B., Reitsma, R., Hurlbert, A. H., & Marra, P. P. (2018). Environmental filtering of avian communities along a rural‐to‐urban gradient in Greater Washington, D.C., United States. Ecosphere, 9(11), e02402. https://doi.org/10.1002/ecs2.2402
dc.relation.referencesEvans, K. L., Gaston, K. J., Sharp, S. P., McGowan, A., Simeoni, M., & Hatchwell, B. J. (2009). Effects of urbanisation on disease prevalence and age structure in blackbird Turdus merula populations. Oikos, 118(5), 774-782. https://doi.org/10.1111/j.1600-0706.2008.17226.x
dc.relation.referencesEvans, T., Jeschke, J. M., Liu, C., Redding, D. W., Şekercioğlu, Ç. H., & Blackburn, T. M. (2021). What factors increase the vulnerability of native birds to the impacts of alien birds? Ecography, 44(5), 727-739. https://doi.org/10.1111/ecog.05000
dc.relation.referencesFaeth, S. H., Bang, C., & Saari, S. (2011). Urban biodiversity: patterns and mechanisms. Annals of the New York Academy of Sciences, 1223, 69–81. https://doi.org/10.1111/j.1749-6632.2010.05925.x
dc.relation.referencesFerger, S. W., Schleuning, M., Hemp, A., Howell, K. M., & Böhning‐Gaese, K. (2014). Food resources and vegetation structure mediate climatic effects on species richness of birds. Global Ecology and Biogeography, 23(5), 541-549. https://doi.org/10.1111/geb.12151
dc.relation.referencesFlórez, P. (2008). Caracterización de poblaciones de Psitácidos en el Valle de Aburrá-Antioquia. Corantioquia
dc.relation.referencesFranco, A. M., Amaya-Espinel, J. D., Umaña, A. M., Baptiste, M. P., & Cortés, O. (Eds.). (2009). Especies focales de aves de Cundinamarca: Estrategias para la conservación. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt y Corporación Autónoma Regional de Cundinamarca.
dc.relation.referencesFontana, C. S., Burger, M. I., & Magnusson, W. E. (2011). Bird diversity in a subtropical south-american city: effects of noise levels, arborisation and human population density. Urban Ecosystems, 14(3), 341-360. https://doi.org/10.1007/s11252-011-0156-9
dc.relation.referencesForshaw, J. M., & Knight, F. (2010). Parrots of the world. Princeton University Press. http://www.jstor.org/stable/j.ctt7ssn3
dc.relation.referencesGarizábal-Carmona, J. A., Betancur, J. S., Montoya-Arango, S., Franco-Espinosa, L., Ruíz-Giraldo, N., & Mancera-Rodrı́guez, N. J. (2023). Bird diversity across an andean city: the limitation of species richness values and watershed scales. Acta Biológica Colombiana, 28(3), 506-516. https://doi.org/10.15446/abc.v28n3.101974
dc.relation.referencesGarizábal-Carmona, J. A., Betancur, J. S., Montoya-Arango, S., Franco-Espinosa, L., Ruíz-Giraldo, N., & Mancera-Rodrı́guez, N. J. (2023). Bird diversity across an Andean city: the limitation of species richness values and watershed scales. Acta Biológica Colombiana, 28(3), 506-516. https://doi.org/10.15446/abc.v28n3.101974
dc.relation.referencesGarizábal-Carmona, J. A., Betancur, J. S., Montoya-Arango, S., Franco-Espinosa, L., & Mancera-Rodrı́guez, N. J. (2024). Categorizing urban avoiders, utilizers, and dwellers for identifying bird conservation priorities in a northern Andean city. Frontiers in Ecology and Evolution, 12. https://doi.org/10.3389/fevo.2024.1432340
dc.relation.referencesGarizábal-Carmona, J. A., & Mancera-Rodríguez, N. J. (2021). Bird species richness across a Northern Andean city: Effects of size, shape, land cover, and vegetation of urban green spaces. Urban Forestry & Urban Greening, 64, Article 127243. https://doi.org/10.1016/j.ufug.2021.127243
dc.relation.referencesGarrard, G. E., Williams, N., Mata, L., Thomas, J. M., & Bekessy, S. A. (2017). Biodiversity sensitive urban design. Conservation Letters, 11(2). https://doi.org/10.1111/conl.12411
dc.relation.referencesGaston, K. J. (2000). Global patterns in biodiversity. Nature, 405(6783), 220-227. https://doi.org/10.1038/35012228
dc.relation.referencesGeschke, A., Liu, J. N. K., Bennett, A. F., & Nimmo, D. G. (2018). Compact cities or sprawling suburbs? optimising the distribution of people in cities to maximise species diversity. Journal of Applied Ecology, 55(5), 2320-2331. https://doi.org/10.1111/1365-2664.13183
dc.relation.referencesGoddard, M. A., Dougill, A. J., & Benton, T. G. (2010). Scaling up from gardens: biodiversity conservation in urban environments. Trends in Ecology &Amp; Evolution, 25(2), 90-98. https://doi.org/10.1016/j.tree.2009.07.016
dc.relation.referencesGordon, E. R., Butt, N., Rosner‐Katz, H., Binley, A. D., & Bennett, J. (2019). Relative costs of conserving threatened species across taxonomic groups. Conservation Biology, 34(1), 276-281. https://doi.org/10.1111/cobi.13382
dc.relation.referencesGraells, G., Celis‐Diez, J. L., Corcoran, D., & Gelcich, S. (2022). Bird communities in coastal areas. effects of anthropogenic influences and distance from the coast. Frontiers in Ecology and Evolution, 10. https://doi.org/10.3389/fevo.2022.807280
dc.relation.referencesGrimm, N. B., Faeth, S. H., Golubiewski, N. E., Redman, C. L., Wu, J., Bai, X., … & Briggs, J. M. (2008). Global change and the ecology of cities. Science, 319(5864), 756-760. https://doi.org/10.1126/science.1150195
dc.relation.referencesGrueber, C. E., Nakagawa, S., Laws, R., & Jamieson, I. G. (2011). Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology, 24(4), 699-711. https://doi.org/10.1111/j.1420-9101.2010.02210.x
dc.relation.referencesHansen, C. P., Kays, R., & Millspaugh, J. J. (2023). From backyard to backcountry: Changes in mammal communities across an urbanization gradient. Journal of Mammalogy, 105(1), 175-191. https://doi.org/10.1093/jmammal/gyad110
dc.relation.referencesHansen, E., Ma, C., Dwyer, M. B., Dobler, G., & Moscardi, C. (2021). Impact of artificial light at night on bird migration. https://doi.org/10.22541/au.162066497.73368744/v1
dc.relation.referencesHayes, W. M., Fisher, J. C., Pierre, M. A., Bicknell, J. E., & Davies, Z. G. (2019). Bird communities across varying landcover types in a neotropical city. Biotropica, 52(1), 151-164. https://doi.org/10.1111/btp.12729
dc.relation.referencesHermelin, M. (2007). Valle de Aburrá. Gobernación de Antioquia. http://www.bdigital.unal.edu.co/13787/1/1408-6745-1-PB.pdf
dc.relation.referencesHrouda, J. & Brlík, V. (2021). Birds in power-line corridors: effects of vegetation mowing on avian diversity and abundance. Journal of Vertebrate Biology, 70(2). https://doi.org/10.25225/jvb.21027
dc.relation.referencesIDEAM. (2024). Mapa de ecosistemas continentales, costeros y marinos de Colombia. Escala 1:100.000 [Mapa]. Subdirección de Ecosistemas e Información Ambiental, Grupo de Suelos y Tierras. Cartografía básica IGAC 2022. Elaborado por L. J. Díaz Cubillos. Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM).
dc.relation.referencesIkin, K., Knight, E., Lindenmayer, D. B., Fischer, J., & Manning, A. D. (2012). The influence of native versus exotic streetscape vegetation on the spatial distribution of birds in suburbs and reserves. Diversity and Distributions, 19(3), 294-306. https://doi.org/10.1111/j.1472-4642.2012.00937.x
dc.relation.referencesIsaksson, C. (2018). Impact of urbanization on birds. In Fascinating Life Sciences (pp. 235-257). https://doi.org/10.1007/978-3-319-91689-7_13
dc.relation.referencesIUCN Standards and Petitions Committee. 2014. Guidelines for Using the IUCN Red List Categories and Criteria. Version 10. Prepared by the Standards and Petitions Committee. Downloadable from https://www.iucnredlist.org/documents/RedListGuidelines.pdf.
dc.relation.referencesJezuíno, P., Alquezar, R. D., & Machado, R. B. (2021). Parrots and the city: Modeling potential corridors in an urban environment. Urban Ecosystems, 24(6), 1141-1154. https://doi.org/10.1007/s11252-021-01107-5
dc.relation.referencesKarjee, R., Palei, H. S., Konwar, A., Gogoi, A., & Mishra, R. K. (2022). Bird assemblages in a peri-urban landscape in eastern india. Birds, 3(4), 383-401. https://doi.org/10.3390/birds3040026
dc.relation.referencesKontsiotis, V. J., Valsamidis, E., & Liordos, V. (2019). Organization and differentiation of breeding bird communities across a forested to urban landscape. Urban Forestry &Amp; Urban Greening, 38, 242-250. https://doi.org/10.1016/j.ufug.2019.01.007
dc.relation.referencesKorányi, D., Gallé, R., Donkó, B., Chamberlain, D., & Batáry, P. (2020). Urbanization does not affect green space bird species richness in a mid-sized city. Urban Ecosystems, 24(4), 789-800. https://doi.org/10.1007/s11252-020-01083-2
dc.relation.referencesKowarik, I., Fischer, L. K., & Kendal, D. (2020). Biodiversity conservation and sustainable urban development. Sustainability, 12(12), 4964. https://doi.org/10.3390/su12124964
dc.relation.referencesLara-Vásquez, C. E., Castaño-Rivas, A. M., & Jonker, R. (2007). Notas acerca de las guacamayas (Psittacidae: Ara) introducidas en el municipio de Medellín, Colombia. Boletín de la Sociedad Antioqueña de Ornitología.
dc.relation.referencesLambeck, R. (1997). Focal species: a multi‐species umbrella for nature conservation. Conservation Biology, 11(4), 849-856. https://doi.org/10.1046/j.1523-1739.1997.96319.x
dc.relation.referencesLazarina, M., Tsianou, M. A., Boutsis, G., Andrikou‐Charitidou, A., Karadimou, E., & Kallimanis, A. S. (2020). Urbanization and human population favor species richness of alien birds. Diversity, 12(2), Article 72. https://doi.org/10.3390/d12020072
dc.relation.referencesLepczyk, C. A., Aronson, M. F. J., Evans, K. L., Goddard, M. A., Lerman, S. B., & MacIvor, J. S. (2017). Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience, 67(9), 799-807. https://doi.org/10.1093/biosci/bix079
dc.relation.referencesLera, D. N., Cozzani, N., Camina, J. L., Tella, J. L., & Zalba, S. (2023). Urban parrots in Southern South America: Conservation challenges and opportunities. Preprint. https://doi.org/10.21203/rs.3.rs-3303849/v1
dc.relation.referencesLeveau, L. M., Isla, F. I., & Bellocq, M. I. (2015). Urbanization and the temporal homogenization of bird communities: a case study in central Argentina. Urban Ecosystems, 18(4), 1461-1476. https://doi.org/10.1007/s11252-015-0469-1
dc.relation.referencesLeveau, L. M., Leveau, C. M., Villegas, M., Cursach, J. A., & Suazo, C. G. (2017). Bird communities along urbanization gradients: a comparative analysis among three neotropical cities. Ornitología Neotropical, 28, 77-87. https://doi.org/10.58843/ornneo.v28i0.125
dc.relation.referencesLi, X., Ou, X., Sun, X., Li, H., Li, Y., & Zheng, X. (2024). Urban biodiversity conservation: a framework for ecological network construction and priority areas identification considering habit differences within species. Journal of Environmental Management, 365, 121512. https://doi.org/10.1016/j.jenvman.2024.121512
dc.relation.referencesLindenmayer, D. B., Lane, P. W., Westgate, M. J., Crane, M., Michael, D., Okada, S., … & Barton, P. S. (2014). An empirical assessment of the focal species hypothesis. Conservation Biology, 28(6), 1594-1603. https://doi.org/10.1111/cobi.12330
dc.relation.referencesLiordos, V., Jokimäki, J., Kaisanlahti‐Jokimäki, M., Valsamidis, E., & Kontsiotis, V. J. (2021). Niche analysis and conservation of bird species using urban core areas. Sustainability, 13(11), 6327. https://doi.org/10.3390/su13116327
dc.relation.referencesLópez‐Bedoya, P. A., Magura, T., Méndez‐Rojas, D. M., Noriega, J. A., Horgan, F. G., & Edwards, D. P. (2023). Knowledge of ground‐dwelling beetle communities in the tropical andes: gaps and trends. Austral Ecology, 49(1). https://doi.org/10.1111/aec.13413
dc.relation.referencesLondoño-Betancourth, J. C. (2011). Una mirada a la diversidad ornitológica de Pereira. Boletín Científico del Museo de Historia Natural, 15(1), 84–103.
dc.relation.referencesMacGregor‐Fors, I. (2010). How to measure the urban‐wildland ecotone: redefining ‘peri‐urban’ areas. Ecological Research, 25(4), 883-887. https://doi.org/10.1007/s11284-010-0717-z
dc.relation.referencesMacGregor‐Fors, I., García-Arroyo, M., & Quesada, J. (2022). Keys to the city: an integrative conceptual framework on avian urban filtering. Journal of Urban Ecology, 8(1). https://doi.org/10.1093/jue/juac026
dc.relation.referencesMacGregor‐Fors, I., González-García, F., Hernández‐Lara, C., & Santiago‐Alarcon, D. (2018). Where are the birds in the matrix? avian diversity in a neotropical landscape mosaic. The Wilson Journal of Ornithology, 130(1), 81-93. https://doi.org/10.1676/16-087.1
dc.relation.referencesMacGregor‐Fors, I. and Ortega‐Álvarez, R. (2011). Fading from the forest: bird community shifts related to urban park site-specific and landscape traits. Urban Forestry &Amp; Urban Greening, 10(3), 239-246. https://doi.org/10.1016/j.ufug.2011.03.004
dc.relation.referencesMacGregor‐Fors, I. & Schondube, J. E. (2012). Urbanizing the wild: shifts in bird communities associated to small human settlements. Revista Mexicana De Biodiversidad, 83(2). https://doi.org/10.22201/ib.20078706e.2012.2.982
dc.relation.referencesMarcolin, F., Segurado, P., Chamberlain, D., & Reino, L. (2023). Testing the links between bird diversity, alien species, and disturbance within a human-modified landscape. Ecography, 46(2), Article e06886. https://doi.org/10.1111/ecog.06886
dc.relation.referencesMarín, M. A., Hincapié, C. F. Á., Giraldo, C. E., Pyrcz, T. W., Uribe, S., & Vila, R. (2014). Mariposas en un bosque de niebla andino periurbano en el valle de aburrá, colombia. Revista Mexicana De Biodiversidad, 85(1), 200-208. https://doi.org/10.7550/rmb.36605
dc.relation.referencesMartensen, A. C., Ribeiro, M. C., Banks‐Leite, C., Prado, P. I., & Metzger, J. P. (2012). Associations of forest cover, fragment area, and connectivity with neotropical understory bird species richness and abundance. Conservation Biology, 26(6), 1100-1111. https://doi.org/10.1111/j.1523-1739.2012.01940.x
dc.relation.referencesMartin-Albarracin, V. L., Amico, G. C., Simberloff, D., & Nuñez, M. A. (2015). Impact of non-native birds on native ecosystems: A global analysis. PLoS One, 10(11), Article e0143070. https://doi.org/10.1371/journal.pone.0143070
dc.relation.referencesMartin, L. J., Quinn, J. E., Ellis, E. C., Shaw, M. R., Dorning, M. A., Hallett, L. M., … & Wiederholt, R. (2014). Conservation opportunities across the world's anthromes. Diversity and Distributions, 20(7), 745-755. https://doi.org/10.1111/ddi.12220
dc.relation.referencesMcCain, C. M. (2009). Global analysis of bird elevational diversity. Global Ecology and Biogeography, 18(3), 346-360. https://doi.org/10.1111/j.1466-8238.2008.00443.x
dc.relation.referencesMcDonald, R. I., Mansur, A. V., Ascensão, F., Colbert, M., Crossman, K., Elmqvist, T., … & Ziter, C. (2019). Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 3(1), 16-24. https://doi.org/10.1038/s41893-019-0436-6
dc.relation.referencesMcKinney, M. L. (2002). Urbanization, biodiversity, and conservation. BioScience, 52(10), 883. https://doi.org/10.1641/0006-3568(2002)052[0883:ubac]2.0.co;2
dc.relation.referencesMcKinney, M. L. (2006). Urbanization as a major cause of biotic homogenization. Biological Conservation, 127(3), 247-260. https://doi.org/10.1016/j.biocon.2005.09.005
dc.relation.referencesMcKinney, M. L. (2008). Effects of urbanization on species richness: a review of plants and animals. Urban Ecosystems, 11(2), 161-176. https://doi.org/10.1007/s11252-007-0045-4
dc.relation.referencesMelo, M. A. & Piratelli, A. J. (2023). Increase in size and shrub cover improves bird functional diversity in neotropical urban green spaces. Austral Ecology, 48(2), 440-460. https://doi.org/10.1111/aec.13279
dc.relation.referencesMelo, M. A., Sanches, P. M., Filho, D. F. d. S., & Piratelli, A. J. (2021). Influence of habitat type and distance from source area on bird taxonomic and functional diversity in a neotropical megacity. Urban Ecosystems, 25(2), 545-560. https://doi.org/10.1007/s11252-021-01169-5
dc.relation.referencesMenchetti, M., & Mori, E. (2014). Worldwide impact of alien parrots (Aves Psittaciformes) on native biodiversity and environment: A review. Ethology Ecology & Evolution, 26(2–3), 172–194. https://doi.org/10.1080/03949370.2014.905981
dc.relation.referencesMesa, A. A. C., Vásquez-Salazar, R. D., Parra, J. C., Olmos-Severiche, C., Travieso, C. M., & Gómez, L. (2025). A methodology for the multitemporal analysis of land cover changes and urban expansion using synthetic aperture radar (sar) imagery: a case study of the aburrá valley in colombia. Remote Sensing, 17(3), 554. https://doi.org/10.3390/rs17030554
dc.relation.referencesMichel, N. L., Burkhalter, C., Wilsey, C. B., Holloran, M., Holloran, A. G., & Langham, G. (2020). Metrics for conservation success: using the “bird‐friendliness index” to evaluate grassland and aridland bird community resilience across the northern great plains ecosystem. Diversity and Distributions, 26(12), 1687-1702. https://doi.org/10.1111/ddi.13163
dc.relation.referencesMikami, O., & Mikami, K. (2012). Structure of the Japanese avian community from city centers to natural habitats exhibits a globally observed pattern. Landscape Ecology and Engineering, 10(2), 355–360. https://doi.org/10.1007/s11355-012-0201-8
dc.relation.referencesMiller, J. R., Groom, M. J., Hess, G. R., Steelman, T. A., Stokes, D. L., Thompson, J. R., … & Marquardt, R. D. (2009). Biodiversity conservation in local planning. Conservation Biology, 23(1), 53-63. https://doi.org/10.1111/j.1523-1739.2008.01110.x
dc.relation.referencesMimet, A., Houet, T., Julliard, R., & Simon, L. (2013). Assessing functional connectivity: a landscape approach for handling multiple ecological requirements. Methods in Ecology and Evolution, 4(5), 453-463. https://doi.org/10.1111/2041-210x.12024
dc.relation.referencesMinambiente (2010). Decreto 2372 de 2010. Ministerio de Ambiente y Desarrollo Sostenible, Colombia. https://www.minambiente.gov.co
dc.relation.referencesMinor, E. S., Appelt, C. W., Grabiner, S., Ward, L., Moreno, A., & Pruett‐Jones, S. (2012). Distribution of exotic monk parakeets across an urban landscape. Urban Ecosystems, 15(4), 979–991. https://doi.org/10.1007/s11252-012-0249-0
dc.relation.referencesMiranda, A. C., Schielzeth, H., Sonntag, T., & Partecke, J. (2013). Urbanization and its effects on personality traits: a result of microevolution or phenotypic plasticity?. Global Change Biology, 19(9), 2634-2644. https://doi.org/10.1111/gcb.12258
dc.relation.referencesMohd-Hasmadi, I., Pakhriazad, H. Z., & Shahrin, M. F. (2009). Evaluating supervised and unsupervised techniques for land cover mapping using remote sensing data. Geografia: Malaysian Journal of Society and Space, 5(1), 1–10. ISSN 2180-2491
dc.relation.referencesMuñoz‐Pacheco, C. B. & Villaseñor, N. R. (2021). Avian species richness in cities: a review of the spanish-language literature from the southern cone of South America. Urban Ecosystems, 25(2), 601-616. https://doi.org/10.1007/s11252-021-01180-w
dc.relation.referencesMori, E., Grandi, G., Menchetti, M., Tella, J. L., Jackson, H. A., Reino, L., van Kleunen, A., Figueira, R., & Ancillotto, L. (2017). Worldwide distribution of non-native Amazon parrots and temporal trends of their global trade. Animal Biodiversity and Conservation, 40(1), 49–62. https://doi.org/10.32800/abc.2017.40.0049
dc.relation.referencesMyers, N., Mittermeier, R. A., Mittermeier, C. G., Fonseca, G. A. B. d., & Kent, J. L. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853-858. https://doi.org/10.1038/35002501
dc.relation.referencesNeate‐Clegg, M. H. C., Tonelli, B. A., Youngflesh, C., Wu, J., Montgomery, G. A., Şekercioğlu, Ç. H., … & Tingley, M. W. (2023). Traits shaping urban tolerance in birds differ around the world. Current Biology, 33(9), 1677-1688.e6. https://doi.org/10.1016/j.cub.2023.03.024
dc.relation.referencesNugroho, S. P. A., Mardiastuti, A., Mulyani, Y. A., & Rahman, D. A. (2024). Bird communities in the tropical peri-urban landscape of Bogor, Indonesia. Biodiversitas Journal of Biological Diversity, 24(12). 6988-7000. https://doi.org/10.13057/biodiv/d241260
dc.relation.referencesOcampo‐Peñuela, N. & Pimm, S. L. (2014). Setting practical conservation priorities for birds in the western Andes of Colombia. Conservation Biology, 28(5), 1260-1270. https://doi.org/10.1111/cobi.12312
dc.relation.referencesOliveira-Júnior, N. D. d., Heringer, G., Bueno, M. L., Pontara, V., & Meira‐Neto, J. A. A. (2020). Identifying priority connectivity in a tropical forest hotspot severely affected by land use changes. https://doi.org/10.1101/2020.03.13.991372
dc.relation.referencesOrdóñez-Delgado, L., Iñiguez-Armijos, C., Díaz, M., Escudero, A., Gosselin, E., Waits, L. P., & Espinosa, C. I. (2022). The good, the bad, and the ugly ofuUrbanization: Response of a bird community in the Neotropical Andes. Frontiers in Ecology and Evolution, 10(March), 1–11. https://doi.org/10.3389/fevo.2022.844944
dc.relation.referencesOropeza‐Sánchez, M. T., Solano‐Zavaleta, I., Cuandón-Hernández, W. L., Martínez-Villegas, J. A., Palomera-Hernández, V., & Zúñiga‐Vega, J. J. (2024). Urban green spaces with high connectivity and complex vegetation promote occupancy and richness of birds in a tropical megacity. https://doi.org/10.21203/rs.3.rs-3858180/v1
dc.relation.referencesOrtega‐Álvarez, R., Calderón‐Parra, R., & García-Luna, F. (2022). Trees and people determine the feeding activity of a migratory bird in an urban mega-park of Mexico city. Avian Biology Research, 15(3), 149-157. https://doi.org/10.1177/17581559221113641
dc.relation.referencesOrtega‐Álvarez, R. and MacGregor‐Fors, I. (2009). Living in the big city: effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90(3-4), 189-195. https://doi.org/10.1016/j.landurbplan.2008.11.003
dc.relation.referencesOuyang, J. Q., Isaksson, C., Schmidt, C., Hutton, P., Bonier, F., & Dominoni, D. M. (2018). A new framework for urban ecology: an integration of proximate and ultimate responses to anthropogenic change. Integrative and Comparative Biology. https://doi.org/10.1093/icb/icy110
dc.relation.referencesPalacio, F. X., Ibañez, L. M., Maragliano, R. E., & Montalti, D. (2018). Urbanization as a driver of taxonomic, functional, and phylogenetic diversity losses in bird communities. Canadian Journal of Zoology, 96(10), 1114-1121. https://doi.org/10.1139/cjz-2018-0008
dc.relation.referencesPaniagua-Villada, C., Garizábal-Carmona, J., Martínez-Arias, V., & Mancera-Rodríguez, N. J. (2024). Built vs. green cover: An unequal struggle for urban space in Medellín (Colombia). Urban Ecosystems, 1–11. https://doi.org/10.1007/s11252-023-01443-8
dc.relation.referencesParques Nacionales Naturales de Colombia. (2024). Registro Único Nacional de Áreas Protegidas (RUNAP) – Officially Protected Areas in the Aburrá Valley. ArcGIS Online. Retrieved from [https://www.arcgis.com/home/item.html?id=ID_de_la_capa]
dc.relation.referencesPatiño, L. C. A., & Millares i Garcia, J. M. (2015). Design and management of the metropolitan green belt of Aburrá Valley, Colombia. WIT Transactions on Ecology and the Environment, 194, 193-203.
dc.relation.referencesPeck, H. L., Pringle, H., Marshall, H. H., Owens, I. P. F., & Lord, A. M. (2014). Experimental evidence of impacts of an invasive parakeet on foraging behavior of native birds. Behavioral Ecology, 25(3), 582–590. https://doi.org/10.1093/beheco/aru025
dc.relation.referencesPejchar, L., Rega‐Brodsky, C. C., Vázquez, L., & MacGregor‐Fors, I. (2025). Bird‐mediated ecosystem services and disservices in cities and towns. Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.2835
dc.relation.referencesPena, J. C., Magalhães, D. M. d., Moura, A. C. M., Young, R. J., & Rodrigues, M. (2016). The green infrastructure of a highly urbanized neotropical city: the role of the urban vegetation in preserving native biodiversity. Revista da Sociedade Brasileira de Arborização Urbana, 11(4), 66. https://doi.org/10.5380/revsbau.v11i4.63481
dc.relation.referencesPena, J. C., Martello, F., Ribeiro, M. C., Armitage, R., Young, R. J., & Rodrigues, M. (2017). Street trees reduce the negative effects of urbanization on birds. Plos One, 12(3), e0174484. https://doi.org/10.1371/journal.pone.0174484
dc.relation.referencesPeterson, B.G. & Carl, P. (2020). Performance Analytics: Econometric Tools for Performance and Risk Analysis_. R package version 2.0.4, https://CRAN.R-project.org/package=PerformanceAnalytics.
dc.relation.referencesPiano, E., Souffreau, C., Merckx, T., Baardsen, L. F., Backeljau, T., Bonte, D., Brans, K. I., Cours, M., Dahirel, M., Debortoli, N., Decaestecker, E., De Wolf, K., Engelen, J. M. T., Fontaneto, D., Gianuca, A. T., Govaert, L., Hanashiro, F. T. T., Higuti, J., Lens, L., … Hendrickx, F. (2020). Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Global Change Biology, 26(3), 1196–1211. https://doi.org/10.1111/gcb.14934
dc.relation.referencesPlummer, K. E., Gillings, S., & Siriwardena, G. (2020). Evaluating the potential for bird‐habitat models to support biodiversity‐friendly urban planning. Journal of Applied Ecology, 57(10), 1902-1914. https://doi.org/10.1111/1365-2664.13703
dc.relation.referencesPollack, L., Ondrasek, N., & Calisi, R. M. (2017). Urban health and ecology: the promise of an avian biomonitoring tool. Current Zoology, 63(2), 205-212. https://doi.org/10.1093/cz/zox011
dc.relation.referencesRadomska, M., & Horobtsov, I. V. (2019). Protection of avifauna for the provision of the Kyiv urban ecosystem stability. Scientific Bulletin of UNFU, 29(3), 60–64. https://doi.org/10.15421/40290313
dc.relation.referencesRajpar, M. N., Khan, S. A., Ditta, A., Ali, H. M., Ullah, S., Ibrahim, M., … & Salem, M. Z. M. (2021). Subtropical broad-leaved urban forests as the foremost dynamic and complex habitats for a wide range of bird species. Sustainability, 13(23), 13021. https://doi.org/10.3390/su132313021
dc.relation.referencesRamírez-Cardona, A., & Jiménez Mejía, J. F. (2023). The nocturnal boundary layer of Aburrá’s valley, a tropical urban area with complex topography. DYNA, 90(229), 9–18. https://doi.org/10.15446/dyna.v90n229.109353
dc.relation.referencesRamírez, B. R., Freeland, R. J., Muhlheim, A., Zellmer, A. J., DeRaad, D. A., Kirsch, E. J., … McCormack, J. E. (2024). Convergent niche shifts of endangered parrots (genus Amazona) during successful establishment in urban Southern California. Diversity and Distributions, 30(4). https://doi.org/10.1111/ddi.13817
dc.relation.referencesR Core Team (2023). _R: A language and environment for statistical computing_. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/
dc.relation.referencesRega‐Brodsky, C. C., Aronson, M. F. J., Piana, M. R., Carpenter, E., Hahs, A. K., Herrera-Montes, A., … & Nilon, C. H. (2022). Urban biodiversity: state of the science and future directions. Urban Ecosystems, 25(4), 1083-1096. https://doi.org/10.1007/s11252-022-01207-w
dc.relation.referencesRenjifo, L. M., Amaya-Villarreal, Á. M., Burbano-Girón, J., & Velásquez-Tibatá, J. (Eds.). (2016). Libro rojo de aves de Colombia: Volumen II. Ecosistemas abiertos, secos, insulares, acuáticos continentales, marinos, tierras altas del Darién y Sierra Nevada de Santa Marta y bosques húmedos del centro, norte y oriente del país. Editorial Pontificia Universidad Javeriana; Instituto Humboldt.
dc.relation.referencesRestrepo-Rodas, D. C., & Pulgarín-Restrepo, P. C. (2021). Dinámicas de los loros en cautiverio en Colombia: Tráfico, mortalidad y liberación. Ornitología Colombiana, (16), 1–23. https://asociacioncolombianadeornitologia.org/ojs/index.php/roc/article/view/373
dc.relation.referencesRicketts, T. H., Dinerstein, E., Boucher, T., Brooks, T. M., Butchart, S. H. M., Hoffmann, M., … & Wikramanayake, E. (2005). Pinpointing and preventing imminent extinctions. Proceedings of the National Academy of Sciences, 102(51), 18497-18501. https://doi.org/10.1073/pnas.0509060102
dc.relation.referencesRomero‐Vidal, P., Blanco, G., Hiraldo, F., Díaz‐Luque, J. A., Luna, Á., Lera, D., … Tella, J. L. (2023). Nesting innovations in Neotropical parrots associated with anthropogenic environmental changes. Ecology and Evolution, 13(9). https://doi.org/10.1002/ece3.10462
dc.relation.referencesSalinas-Melgoza, A., Salinas-Melgoza, V., & Wright, T. F. (2013). Behavioral plasticity of a threatened parrot in human-modified landscapes. Biological Conservation, 159, 303–312. https://doi.org/10.1016/j.biocon.2012.12.013
dc.relation.referencesSalmón, P., Stroh, E., Herrera-Dueñas, A., Post, M. v., & Isaksson, C. (2018). Oxidative stress in birds along a nox and urbanisation gradient: an interspecific approach. Science of the Total Environment, 622, 635-643. https://doi.org/10.1016/j.scitotenv.2017.11.354
dc.relation.referencesSander, M. M. & Tietze, D. T. (2022). Impacts of traffic infrastructure on urban bird communities: a review. Sustainability, 14(24), 16805. https://doi.org/10.3390/su142416805
dc.relation.referencesSantiago, S. M., Paes Cavalcante, N., & Leveau, L. M. (2023). What drives the alien parrot richness and occurrence in urban green spaces along the annual cycle in Buenos Aires city, Argentina? Animals, 13(21), Article 3426. https://doi.org/10.3390/ani13213426
dc.relation.referencesSantos, E. G., Wiederhecker, H. C., Pompermaier, V. T., Gainsbury, A. M., Schirmer, S. C., Morais, C. V. F., … & Marini, M. Â. (2024). Urbanization reduces diversity, simplifies community and filter bird species based on their functional traits in a tropical city. Science of the Total Environment, 935, 173379. https://doi.org/10.1016/j.scitotenv.2024.173379
dc.relation.referencesSaura, S., Bodin, Ö., & Fortin, M. (2013). Editor's choice: stepping stones are crucial for species' long‐distance dispersal and range expansion through habitat networks. Journal of Applied Ecology, 51(1), 171-182. https://doi.org/10.1111/1365-2664.12179
dc.relation.referencesSchütz, C. and Schulze, C. (2015). Functional diversity of urban bird communities: effects of landscape composition, green space area and vegetation cover. Ecology and Evolution, 5(22), 5230-5239. https://doi.org/10.1002/ece3.1778
dc.relation.referencesScott, M. L., Skagen, S. K., & Merigliano, M. F. (2003). Relating geomorphic change and grazing to avian communities in riparian forests. Conservation Biology, 17(1), 284-296. https://doi.org/10.1046/j.1523-1739.2003.00466.x
dc.relation.referencesSeress, G. & Liker, A. (2015). Habitat urbanization and its effects on birds. Acta Zoologica Academiae Scientiarum Hungaricae, 61(4), 373-408. https://doi.org/10.17109/azh.61.4.373.2015
dc.relation.referencesSeto, K. C., Güneralp, B., & Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083-16088. https://doi.org/10.1073/pnas.1211658109
dc.relation.referencesShannon, G., McKenna, M. F., Angeloni, L. M., Crooks, K. R., Fristrup, K. M., Brown, E., … & Wittemyer, G. (2015). A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews, 91(4), 982-1005. https://doi.org/10.1111/brv.12207
dc.relation.referencesSilva, C. P., Sepúlveda, R. D., & Barbosa, O. (2016). Nonrandom filtering effect on birds: species and guilds response to urbanization. Ecology and Evolution, 6(11), 3711-3720. https://doi.org/10.1002/ece3.2144
dc.relation.referencesSociedad Antioqueña de Ornitología & Fundación Grupo Argos. (2024). Aves de Antioquia: Guía de campo. (pp.309).
dc.relation.referencesSoga, M. & Gaston, K. J. (2016). Extinction of experience: the loss of human–nature interactions. Frontiers in Ecology and the Environment, 14(2), 94-101. https://doi.org/10.1002/fee.1225
dc.relation.referencesSol, D., Bartomeus, I., & Griffin, A. (2011). The paradox of invasion in birds: Competitive superiority or ecological opportunism? Oecologia, 169, 553–564. https://doi.org/10.1007/s00442-011-2203-x
dc.relation.referencesSol, D., González‐Lagos, C., Moreira‐Arce, D., Maspons, J., & Lapiedra, O. (2014). Urbanisation tolerance and the loss of avian diversity. Ecology Letters, 17(8), 942-950. https://doi.org/10.1111/ele.12297
dc.relation.referencesSorte, F. A. L., Lepczyk, C. A., Aronson, M. F. J., Goddard, M. A., Hedblom, M., Katti, M., … & Yang, J. (2018). The phylogenetic and functional diversity of regional breeding bird assemblages is reduced and constricted through urbanization. Diversity and Distributions, 24(7), 928-938. https://doi.org/10.1111/ddi.12738
dc.relation.referencesStein, A., Gerstner, K., & Kreft, H. (2014). Environmental heterogeneity as a universal driver of species richness across taxa, biomes and spatial scales. Ecology Letters, 17(7), 866-880. https://doi.org/10.1111/ele.12277
dc.relation.referencesStiles, F. G. (1998). Especies de aves endémicas y casi endémicas de Colombia. En M. E. Chaves & N. Arango (Eds.), Informe nacional sobre el estado de la biodiversidad 1998 - Colombia (pp. 378–385, 428–432). Instituto Alexander von Humboldt, PNUMA, Ministerio del Medio Ambiente.
dc.relation.referencesStotz, D. F., Fitzpatrick, J. W., Parker III, T. A., & Moskovits, D. K. (1996). Neotropical birds: Ecology and conservation. University of Chicago Press
dc.relation.referencesStukenholtz, E. E. & Stevens, R. D. (2022). Taxonomic and functional components of avian metacommunity structure along an urban gradient. Plos One, 17(8), e0271405. https://doi.org/10.1371/journal.pone.0271405
dc.relation.referencesSu, S., Vall‐llosera, M., Cassey, P., Blackburn, T. M., Carrete, M., & Tella, J. L. (2021). Drivers of alien species composition in bird markets across the world. Ecology and Evolution, 12(1). https://doi.org/10.1002/ece3.8397
dc.relation.referencesSun, B., Lü, Y., Yang, Y., Yu, M., Yuan, J., Yu, R., … & Li, J. (2022). Urbanization affects spatial variation and species similarity of bird diversity distribution. Science Advances, 8(49). https://doi.org/10.1126/sciadv.ade3061
dc.relation.referencesSukopp, H. (1998). Urban ecology — scientific and practical aspects. Urban Ecology, 3-16. https://doi.org/10.1007/978-3-642-88583-9_1
dc.relation.referencesSushinsky, J. R., Rhodes, J. R., Possingham, H. P., Gill, T. K., & Fuller, R. A. (2012). How should we grow cities to minimize their biodiversity impacts?. Global Change Biology, 19(2), 401-410. https://doi.org/10.1111/gcb.12055
dc.relation.referencesSutherland, W. J., Newton, I., & Green, R. (2024). Bird ecology and conservation: A handbook of techniques. Techniques in Ecology and Conservation. https://doi.org/10.1093/acprof:oso/9780198520863.001.0001
dc.relation.referencesSwartz, T. M., Gleditsch, J. M., & Behm, J. E. (2023). A functional trait approach reveals the effects of landscape context on ecosystem services provided by urban birds. Landscape and Urban Planning, 234, 104724. https://doi.org/10.1016/j.landurbplan.2023.104724
dc.relation.referencesThrelfall, C. G., Mata, L., Mackie, J., Hahs, A. K., Stork, N. E., Williams, N., … & Livesley, S. J. (2017). Increasing biodiversity in urban green spaces through simple vegetation interventions. Journal of Applied Ecology, 54(6), 1874-1883. https://doi.org/10.1111/1365-2664.12876
dc.relation.referencesTiwari, G., Shukla, A., & Anthony, F. M. (2022). Air pollution level declines the bird species diversity in an urban area: a case study of bilaspur, chhattisgarh during the summer season. International Journal of Agricultural and Applied Sciences, 3(2), 29-34. https://doi.org/10.52804/ijaas2022.325
dc.relation.referencesTiwari, G. & Shukla, A. (2023). Green zones in urban area as potential sites for bird diversity conservation. International Journal of Biosciences (IJB). https://doi.org/10.12692/ijb/22.5.35-45
dc.relation.referencesTu, H., Fan, M., & Ko, J. C. (2020). Different habitat types affect bird richness and evenness. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-58202-4
dc.relation.referencesVásquez-Muñoz, J. L., & Castaño-Villa, G. J. (2008). Identificación de áreas prioritarias para la conservación de la avifauna en la zona urbana del municipio de Medellín, Colombia. Boletín Científico. Centro de Museos. Museo de Historia Natural, 12(1), 51-61. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0123-30682008000100005&lng=en&tlng=es.
dc.relation.referencesVélez, S. G. V. (2004). La incorporación de los espacios verdes libres en la planificación urbana: El caso de El Poblado en Medellín, Colombia [Master’s thesis, Universidad Nacional de Colombia].
dc.relation.referencesWang, D., & Liu, X. (2021). Behavioral innovation promotes alien bird invasions. Innovation, 2(4), Article 100167. https://doi.org/10.1016/j.xinn.2021.100167
dc.relation.referencesWang, Y., Lu, X., Wang, R., Jia, Y., & Huang, J. (2023). Identification of bird habitat restoration priorities in a central area of a megacity. Forests, 14(8), 1689. https://doi.org/10.3390/f14081689
dc.relation.referencesWenny, D. G., DeVault, T. L., Johnson, M. D., Kelly, D., Şekercioğlu, Ç. H., Tomback, D. F., … & Whelan, C. J. (2011). The need to quantify ecosystem services provided by birds. The Auk, 128(1), 1-14. https://doi.org/10.1525/auk.2011.10248
dc.relation.referencesWillson, M. F. (1974). Avian community organization and habitat structure. Ecology, 55(5), 1017-1029. https://doi.org/10.2307/1940352
dc.relation.referencesZhang, G., Zhu, A., Windels, S. K., & Qin, C. (2018). Modelling species habitat suitability from presence-only data using kernel density estimation. Ecological Indicators, 93, 387–396. https://doi.org/10.1016/j.ecolind.2018.04.002
dc.relation.referencesZuur, A. F., Ieno, E. N., & Elphick, C. S. (2009). A protocol for data exploration to avoid common statistical problems. Methods in Ecology and Evolution, 1(1), 3-14. https://doi.org/10.1111/j.2041-210x.2009.00001.x
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.lembDiversidad biológica
dc.subject.lembZonas verdes
dc.subject.lembConservación de aves
dc.subject.proposalBiodiversityeng
dc.subject.proposalConservation prioritieseng
dc.subject.proposalUrban conservationeng
dc.subject.proposalUrban greenspaceseng
dc.subject.proposalUrbanizationeng
dc.subject.proposalBiodiversidadspa
dc.subject.proposalConservación urbanaspa
dc.subject.proposalEspacios verdes urbanosspa
dc.subject.proposalPrioridades de conservaciónspa
dc.subject.proposalUrbanizaciónspa
dc.titleBird conservation priorities in a northern Andean cityeng
dc.title.translatedPrioridades de conservación de aves en una ciudad del norte de los Andesspa
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentInvestigadores
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBiodiversidad y ciudad: descifrando patrones locales para entender problemas globales
oaire.fundernameUniversidad Nacional de Colombia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Medio Ambiente y Desarrollo
Tamaño:
2.19 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 4 de 4
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción:
Cargando...
Miniatura
Nombre:
License for publication_Charting urban priority areas for bird conservation in Medellín, Colombia_2025.pdf
Tamaño:
433.47 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
License for publication_Unveiling biodiversity drivers of occurrence for threatened_2025.pdf
Tamaño:
400.58 KB
Formato:
Adobe Portable Document Format
Descripción:
Cargando...
Miniatura
Nombre:
License for publication_Urbanization as Game changer_2025.pdf
Tamaño:
443.45 KB
Formato:
Adobe Portable Document Format
Descripción: