Caracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombiana

dc.contributor.advisorYunis Londoño, Juan Joséspa
dc.contributor.advisorLinares Ballesteros, Teresa Adriana Elviraspa
dc.contributor.authorYunis Hazbun, Luz Karimespa
dc.contributor.orcidYunis Hazbun, Luz Karime [0000000333655196]spa
dc.contributor.researchgroupPatología Molecularspa
dc.contributor.researchgroupOncohematologia Pediatricaspa
dc.coverage.countryColombiaspa
dc.date.accessioned2024-09-03T16:27:48Z
dc.date.available2024-09-03T16:27:48Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, mapas, tablasspa
dc.description.abstractIntroducción y objetivo: Existen pocos estudios describiendo las alteraciones genómicas en pacientes pediátricos con leucemia mieloide aguda (LMA) en países latinoamericanos. El objetivo fue identificar alteraciones genómicas, características clínicas y desenlaces en una cohorte de pacientes pediátricos con LMA no promielocítica de Bogotá D.C. Diferentes estudios han demostrado variantes farmacogenéticas relacionadas con la toxicidad de fármacos en pacientes con leucemia mieloide aguda. El desarrollo de resistencia a la quimioterapia es un factor relevante en el tratamiento de la LMA y es responsable en parte de las recaídas y el aumento de la toxicidad en las terapias de segunda línea. Por otro lado, siendo Colombia un país multiétnico y pluricultural, compuesto por tres grupos étnicos principales: población mixta derivada de Europa (Adm-Col), afrodescendientes (Afr-Col) y población amerindia (Amer), es importante determinar los componentes de ancestría en los pacientes pediátricos con LMA, así como en una muestra representativa de los tres grupos étnicos principales del país para conocer si la ancestría podría estar asociada a desenlaces en la muestra analizada. El objetivo fue identificar la frecuencia de alteraciones genómicas (cromosómicas, y genéticas) mediante estudios de citogenómica, pruebas rápidas por PCR-electroforesis capilar y análisis mediante secuencia de próxima generación con un panel de 30 genes recurrentemente alterados en LMA, así como la frecuencia alélica y genotípica de las variantes de algunos genes asociados a respuesta terapéutica o toxicidad como ABCB1, CDA, DCK, GSTT1 y GSTM1 en pacientes pediátricos con LMA y en una muestra representativa de la población colombiana y el análisis de ancestría mediante 46 marcadores informativos de ancestría tipo Indel (AIM-Indel) y evaluar la asociación de estas variantes genéticas con los resultados clínicos y la toxicidad en pacientes pediátricos con leucemia mieloide aguda. Materiales y métodos: Estudio observacional descriptivo de cohorte, se incluyeron 51 pacientes con LMA de novo (no promielocítica) hasta los 18 años de edad. Se realizó análisis de citogenética convencional y FISH, secuencia de nueva generación (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, ZRSR2) utilizando el panel Myeloid Plus kit de SOPHIA Genetics (Sophia Genetics SA, Saint Sulpice, Suiza) y pruebas rápidas de PCR-EC para FLT3, NPM1 y CEBPA. Se evaluó la correlación entre los datos genómicos, la respuesta al tratamiento y los desenlaces. Adicionalmente, se incluyeron 457 muestras de los tres grupos étnicos principales de Colombia (Adm-Col, Afr-Col y Amer). Se utilizó una prueba de SNaPshot™ y una PCR convencional para evaluar las variantes ABCB1 rs1045642 (3435G>A), rs1128503 (1236G>A), rs2032582 (2677C>A/T); CDA rs2072671 (79A>C), rs532545 (-451C>T); DCK rs2306744 (-201C>T), rs3771182313 (72C>T) como control, y genotipo nulo en GSTT1 y GSTM1. El análisis de ancestría se realizó mediante la amplificación de 46 AIM-Indel mediante PCR múltiplex, seguido de electroforesis capilar y comparación con poblaciones de referencia. Los resultados clínicos y las asociaciones de toxicidad se evaluaron utilizando odds ratio y análisis de chi-cuadrado, adicionalmente se evaluó la supervivencia libre de evento. El componente de ancestría se evaluó mediante el programa STRUCTURE. Resultados: El 67,4% de la cohorte presentó una alteración citogenética y el 74,5% variantes genéticas. Se identificaron variantes en FLT3 en el 27,4 %, seguidas de NRAS (21,6 %), KRAS (13,7 %), WT1 y KIT (11,8 %). El 66% de los pacientes fueron estratificados como alto riesgo al final de la inducción. FLT3-ITD presentó una probabilidad mayor a recaída 11,25 OR (IC 95 % 1,89-66,72, p 0,006) y NRAS con muerte durante la inducción 16,71 OR (IC 95 % 1,51-184,59, p 0,022). Los pacientes portadores del genotipo GG en ABCB1 (1236G>A, rs1128503) tuvieron un mayor probabilidad a presentar cardiotoxicidad OR de 6,8 (IC 95 % 1,08-42,73, p 0,044) en comparación con los pacientes portadores de los genotipos AA o GA 0,14 OR (IC 95 % 0,023- 0,92, p 0,044). Para ABCB1 (1236G>A rs1128503/ 2677C>A/T rs2032582/ 3435G>A rs1045642) los genotipos combinados AA/AA/AA tuvieron con una mayor probabilidad a presentar muerte después del trasplante de precursores hematopoyéticos OR 13,73 (IC 95% 1,94-97,17, p 0,009). Los genotipos combinados GG/CC/GG con genotipo CA de CDA (79A>C, rs2072671) o el genotipo CT en CDA (-451C>T rs532545), tuvieron un OR de 4,11 (IC 95% 2,32-725, p 0,007) y OR de 3,8 (IC 95% 2,23-6,47, p 0,027) con enfermedad residual medible >0,1% después del primer ciclo de quimioterapia, respectivamente. Se encontraron frecuencias alélicas y genotípicas diferentes para las variantes genéticas analizadas en los tres principales grupos étnicos de Colombia. En general, se encontraron frecuencias más altas de genotipos asociados con riesgo de toxicidad en Afr-Col en comparación con Adm-Col y población Amer. Por otro lado, el análisis de ancestría en las muestras de pacientes pediátricos con LMA mostró una distribución similar de mezcla étnica a la encontrada en la población Adm-Col. Este resultado por el momento descarta que el componente de ancestría en la muestra de pacientes pediátricos con LMA en esta cohorte esté asociado a un mayor riesgo de eventos adversos y toxicidad en la muestra analizada. Conclusiones: Nuestro estudio destaca la importancia de una rápida incorporación de las pruebas genéticas en el diagnóstico y tratamiento de la LMA pediátrica en Colombia, ya que incide directamente en la estratificación del riesgo y el tratamiento. Por otro lado, estos resultados resaltan la importancia del análisis farmacogenético en la LMA pediátrica, particularmente en poblaciones con un alto grado de mezcla, los cuales podrían ser útiles como una herramienta futura en la estratificación de pacientes para el tratamiento. Por último, los resultados de ancestría obtenidos en la muestra de pacientes pediátricos analizados son similares a los obtenidos para la muestra de población colombiana mezclada derivada de europeos (Adm-Col) de la región andina colombiana, y descartarían la contribución de un componente de ancestría específico (Adm-Col) asociado a eventos adversos o toxicidad (Texto tomado de la fuente).spa
dc.description.abstractIntroduction and objective: There are few studies that describe genomic alterations in pediatric patients with acute myeloid leukemia (AML) in Latin American countries. The objective was to identify genomic alterations, clinical characteristics and outcomes in a cohort of pediatric patients with non-promyelocytic AML from Bogotá D.C. On the other hand, different studies have demonstrated pharmacogenetic variants related to drug toxicity in patients with acute myeloid leukemia. Resistance development to chemotherapy is a relevant factor in the treatment of AML and is partly responsible for relapses and increased toxicity in second-line therapies. On the other hand, Colombia is a multiethnic and pluricultural country, composed of three main ethnic groups: mixed population derived from Europe (Adm-Col), Afro-descendants (Afr-Col) and Amerindian population (Amer); therefore, it was important to determine the ancestry components in pediatric patients with AML, as well as in a representative sample of the three main ethnic groups of the country to know if ancestry could be associated with outcomes in the analyzed sample. The aim was to identify the frequency of genomic alterations (chromosomal and genetic) through cytogenomics studies, rapid PCR-capillary electrophoresis tests, next-generation sequencing analysis with a panel of 30 genes recurrently altered in AML, the allelic frequency and genotypic analysis of the ABCB1, CDA, DCK, GSTT1 and GSTM1 gene variants in pediatric patients with AML and in a representative sample of the Colombian population, ancestry analysis using 46 Indel-type ancestry informative markers (AIM-Indel) and to evaluate the association of these genetic variants with clinical outcomes and toxicity in pediatric patients with acute myeloid leukemia. Materials and methods: Descriptive observational cohort study, 51 patients with de novo AML (non-promyelocytic) up to 18 years of age were included. Conventional cytogenetics and FISH analysis, next generation sequence (ABL1, ASXL1, BRAF, CALR, CBL, CEBPA, CSF3R, DNMT3A, ETV6, EZH2, FLT3, HRAS, IDH1, IDH2, JAK2, KIT, KRAS, MPL, NPM1, NRAS, PTPN11, RUNX1, SETBP1, SF3B1, SRSF2, TET2, TP53, U2AF1, WT1, ZRSR2) using the Myeloid Plus panel kit from SOPHIA Genetics (Sophia Genetics SA, Saint Sulpice, Switzerland) and rapid EC-PCR tests for FLT3, NPM1 and CEBPA was carried out in each sample. The correlation between genomic data, treatment response and outcomes were evaluated. Additionally, 457 samples from the three main ethnic groups of Colombia (Adm-Col, Afr-Col and Amer) were included. A SNaPshot™ test and conventional PCR were used to evaluate the ABCB1 variants rs1045642 (3435G>A), rs1128503 (1236G>A), rs2032582 (2677C>A/T); CDA rs2072671 (79A>C), rs532545 (-451C>T); DCK rs2306744 (-201C>T), rs3771182313 (72C>T) as control, and null genotype in GSTT1 and GSTM1. Ancestry analysis was performed by amplification of 46 AIM-Indels by multiplex PCR, followed by capillary electrophoresis and comparison with reference populations. Clinical outcomes and toxicity associations were evaluated using odds ratios and chi-square analyses. Also, we evaluated event-free survival. The ancestry component was evaluated using the STRUCTURE program. Results: 67.4% of the cohort presented a cytogenetic alteration and 74.5% had genetic variants. Variants in FLT3 were identified in 27.4%, followed by NRAS (21.6%), KRAS (13.7%), WT1, and KIT (11.8%). 66% of patients were stratified as high risk at the end of induction. FLT3-ITD was associated with relapse 11.25 OR (CI 1.89-66.72, p 0.006) and NRAS with death during induction 16.71 OR (CI 1.51-184.59, p 0.022). Patients carrying the GG genotype in ABCB1 (1236G>A, rs1128503) had an OR of 6.8 (95% CI 1.08-42.73, p 0.044) for cardiotoxicity compared to patients carrying the AA or GA 0.14 OR (95% CI 0.023- 0.92, p 0.044). For ABCB1 (1236G>A rs1128503/ 2677C>A/T rs2032582/ 3435G>A rs1045642) the combined AA/AA/AA genotypes were associated with death after transplantation of hematopoietic precursors OR 13.73 (95% CI 1.94- 97.17, p 0.009). The combined GG/CC/GG genotypes with CA genotype of CDA (79A>C, rs2072671) or the CT genotype in CDA (-451C>T rs532545), had an OR of 4.11 (95% CI 2.32-725, p 0.007) and OR of 3.8 (95% CI 2.23-6.47, p 0.027) with measurable residual disease >0.1% after the first cycle of chemotherapy, respectively. Different allelic and genotypic frequencies were found for the genetic variants analyzed in the three main ethnic groups of Colombia. Overall, higher frequencies of genotypes associated with toxicity risk were found in Afr-Col compared to Adm-Col and Amer populations. On the other hand, the ancestry analysis in the samples of pediatric patients with AML showed a similar distribution of ethnic mixture to that found in the Adm-col population. This result, for the moment, rules out that the ancestry component in the sample of pediatric patients with AML in this cohort is associated with a higher risk of adverse events and toxicity in the sample analyzed. Conclusions: Our study highlights the importance of rapid incorporation of genetic testing in the diagnosis and treatment of pediatric AML in Colombia, since it directly affects risk stratification and treatment. On the other hand, these results highlight the importance of pharmacogenetic analysis in pediatric AML, particularly in populations with a high degree of admixture, which could be useful as a future tool in the stratification of patients for treatment. Finally, the ancestry results obtained in the sample of pediatric patients are similar to those obtained for the mixed Colombian population sample derived from Europeans (Adm-Col) from the Colombian Andean region, and would rule out the contribution of a specific ancestry component (Adm-Col) associated with adverse events or toxicity.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctora en Oncologíaspa
dc.description.researchareaAlteraciones moleculares en leucemias y linfomasspa
dc.description.researchareaCáncer Infantilspa
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86783
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicinaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina - Doctorado en Oncologíaspa
dc.relation.referencesHyman DM, Taylor BS, Baselga J. Implementing Genome-Driven Oncology. Cell. 2017;168(4):584-99.spa
dc.relation.referencesShyr D, Liu Q. Next generation sequencing in cancer research and clinical application. Biol Proced Online. 2013;15(1):4.spa
dc.relation.referencesHanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646-74.spa
dc.relation.referencesHanahan D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022;12(1):31-46.spa
dc.relation.referencesCacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).spa
dc.relation.referencesTomizawa D, Tsujimoto SI. Risk-Stratified Therapy for Pediatric Acute Myeloid Leukemia. Cancers (Basel). 2023;15(16).spa
dc.relation.referencesKhoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, et al. The 5th edition of the World Health Organization Classification of Haematolymphoid Tumours: Myeloid and Histiocytic/Dendritic Neoplasms. Leukemia. 2022;36(7):1703-19.spa
dc.relation.referencesPadmakumar D, Chandraprabha VR, Gopinath P, Vimala Devi ART, Anitha GRJ, Sreelatha MM, et al. A concise review on the molecular genetics of acute myeloid leukemia. Leuk Res. 2021;111:106727.spa
dc.relation.referencesArber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391-405.spa
dc.relation.referencesRenneville A, Roumier C, Biggio V, Nibourel O, Boissel N, Fenaux P, et al. Cooperating gene mutations in acute myeloid leukemia: a review of the literature. Leukemia. 2008;22(5):915-31.spa
dc.relation.referencesMegias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.spa
dc.relation.referencesBertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.spa
dc.relation.referencesStrianese O, Rizzo F, Ciccarelli M, Galasso G, D'Agostino Y, Salvati A, et al. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel). 2020;11(7).spa
dc.relation.referencesAshley EA. Towards precision medicine. Nat Rev Genet. 2016;17(9):507-22.spa
dc.relation.referencesKabbani D, Akika R, Wahid A, Daly AK, Cascorbi I, Zgheib NK. Pharmacogenomics in practice: a review and implementation guide. Front Pharmacol. 2023;14:1189976.spa
dc.relation.referencesCreutzig U, van den Heuvel-Eibrink MM, Gibson B, Dworzak MN, Adachi S, de Bont E, et al. Diagnosis and management of acute myeloid leukemia in children and adolescents: recommendations from an international expert panel. Blood. 2012;120(16):3187-205.spa
dc.relation.referencesLin L, Li Z, Yan L, Liu Y, Yang H, Li H. Global, regional, and national cancer incidence and death for 29 cancer groups in 2019 and trends analysis of the global cancer burden, 1990-2019. J Hematol Oncol. 2021;14(1):197.spa
dc.relation.referencesOlbara G, Martijn HA, Njuguna F, Langat S, Martin S, Skiles J, et al. Influence of health insurance status on childhood cancer treatment outcomes in Kenya. Support Care Cancer. 2020;28(2):917-24.spa
dc.relation.referencesSteliarova-Foucher E, Colombet M, Ries LAG, Moreno F, Dolya A, Bray F, et al. International incidence of childhood cancer, 2001-10: a population-based registry study. Lancet Oncol. 2017;18(6):719-31.spa
dc.relation.referencesInternational Agency for Research on Cancer. GLOBOCAN [Internet]. 2023.spa
dc.relation.referencesCuenta de Alto Costo FCdEdAC. Situación del cáncer en la población pediátrica atendida en el SGSSS de Colombia 2021. 2022.spa
dc.relation.referencesBain BJ. Leukaemia Diagnosis: Wiley; 2017.spa
dc.relation.referencesBennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, et al. Proposals for the classification of the acute leukaemias. French-American-British (FAB) co-operative group. Br J Haematol. 1976;33(4):451-8.spa
dc.relation.referencesVardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood. 2002;100(7):2292-302.spa
dc.relation.referencesHuber S, Baer C, Hutter S, Dicker F, Meggendorfer M, Pohlkamp C, et al. AML classification in the year 2023: How to avoid a Babylonian confusion of languages. Leukemia. 2023;37(7):1413-20.spa
dc.relation.referencesCheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.spa
dc.relation.referencesPatnaik MM. The importance of FLT3 mutational analysis in acute myeloid leukemia. Leuk Lymphoma. 2017:1-14.spa
dc.relation.referencesDohner H, Estey E, Grimwade D, Amadori S, Appelbaum FR, Buchner T, et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood. 2017;129(4):424-47.spa
dc.relation.referencesGilliland DG, Griffin JD. The roles of FLT3 in hematopoiesis and leukemia. Blood. 2002;100(5):1532-42.spa
dc.relation.referencesWelch JS, Ley TJ, Link DC, Miller CA, Larson DE, Koboldt DC, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264-78.spa
dc.relation.referencesLeick MB, Levis MJ. The Future of Targeting FLT3 Activation in AML. Curr Hematol Malig Rep. 2017;12(3):153-67.spa
dc.relation.referencesMetzker ML. Sequencing technologies - the next generation. Nat Rev Genet. 2010;11(1):31-46.spa
dc.relation.referencesWold B, Myers RM. Sequence census methods for functional genomics. Nat Methods. 2008;5(1):19-21.spa
dc.relation.referencesIlyas AM, Ahmad S, Faheem M, Naseer MI, Kumosani TA, Al-Qahtani MH, et al. Next Generation Sequencing of Acute Myeloid Leukemia: Influencing Prognosis. BMC Genomics. 162015. p. S5.spa
dc.relation.referencesLey TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, et al. DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature. 2008;456(7218):66-72.spa
dc.relation.referencesMardis ER, Ding L, Dooling DJ, Larson DE, McLellan MD, Chen K, et al. Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med. 2009;361(11):1058-66.spa
dc.relation.referencesLey TJ, Ding L, Walter MJ, McLellan MD, Lamprecht T, Larson DE, et al. DNMT3A mutations in acute myeloid leukemia. N Engl J Med. 2010;363(25):2424-33.spa
dc.relation.referencesLey TJ, Miller C, Ding L, Raphael BJ, Mungall AJ, Robertson A, et al. Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. N Engl J Med. 2013;368(22):2059-74.spa
dc.relation.referencesPapaemmanuil E, Gerstung M, Bullinger L, Gaidzik VI, Paschka P, Roberts ND, et al. Genomic Classification and Prognosis in Acute Myeloid Leukemia. N Engl J Med. 2016;374(23):2209-21.spa
dc.relation.referencesMerker JD, Valouev A, Gotlib J. Next-generation sequencing in hematologic malignancies: what will be the dividends? Ther Adv Hematol. 2012;3(6):333-9.spa
dc.relation.referencesRoumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.spa
dc.relation.referencesRasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.spa
dc.relation.referencesTomizawa D, Tanaka S, Hasegawa D, Iwamoto S, Hiramatsu H, Kiyokawa N, et al. Evaluation of high-dose cytarabine in induction therapy for children with de novo acute myeloid leukemia: a study protocol of the Japan Children's Cancer Group Multi-Center Seamless Phase II-III Randomized Trial (JPLSG AML-12). Jpn J Clin Oncol. 2018;48(6):587-93.spa
dc.relation.referencesRubnitz JE, Inaba H, Dahl G, Ribeiro RC, Bowman WP, Taub J, et al. Minimal residual disease-directed therapy for childhood acute myeloid leukaemia: results of the AML02 multicentre trial. Lancet Oncol. 2010;11(6):543-52.spa
dc.relation.referencesCreutzig U, Ritter J, Zimmermann M, Reinhardt D, Hermann J, Berthold F, et al. Improved treatment results in high-risk pediatric acute myeloid leukemia patients after intensification with high-dose cytarabine and mitoxantrone: results of Study Acute Myeloid Leukemia-Berlin-Frankfurt-Münster 93. J Clin Oncol. 2001;19(10):2705-13.spa
dc.relation.referencesCreutzig U, Zimmermann M, Bourquin JP, Dworzak MN, von Neuhoff C, Sander A, et al. Second induction with high-dose cytarabine and mitoxantrone: different impact on pediatric AML patients with t(8;21) and with inv(16). Blood. 2011;118(20):5409-15.spa
dc.relation.referencesCreutzig U, Zimmermann M, Bourquin J-P, Dworzak MN, Fleischhack G, Graf N, et al. Randomized trial comparing liposomal daunorubicin with idarubicin as induction for pediatric acute myeloid leukemia: results from Study AML-BFM 2004. Blood. 2013;122(1):37-43.spa
dc.relation.referencesGibson BE, Webb DK, Howman AJ, De Graaf SS, Harrison CJ, Wheatley K. Results of a randomized trial in children with Acute Myeloid Leukaemia: medical research council AML12 trial. Br J Haematol. 2011;155(3):366-76.spa
dc.relation.referencesCreutzig U, Ritter J, Zimmermann M, Hermann J, Gadner H, Sawatzki DB, et al. Idarubicin improves blast cell clearance during induction therapy in children with AML: results of study AML-BFM 93. AML-BFM Study Group. Leukemia. 2001;15(3):348-54.spa
dc.relation.referencesAplenc R, Meshinchi S, Sung L, Alonzo T, Choi J, Fisher B, et al. Bortezomib with standard chemotherapy for children with acute myeloid leukemia does not improve treatment outcomes: a report from the Children's Oncology Group. Haematologica. 2020;105(7):1879-86.spa
dc.relation.referencesRubnitz JE, Lacayo NJ, Inaba H, Heym K, Ribeiro RC, Taub J, et al. Clofarabine Can Replace Anthracyclines and Etoposide in Remission Induction Therapy for Childhood Acute Myeloid Leukemia: The AML08 Multicenter, Randomized Phase III Trial. J Clin Oncol. 2019;37(23):2072-81.spa
dc.relation.referencesGamis AS, Alonzo TA, Meshinchi S, Sung L, Gerbing RB, Raimondi SC, et al. Gemtuzumab ozogamicin in children and adolescents with de novo acute myeloid leukemia improves event-free survival by reducing relapse risk: results from the randomized phase III Children’s Oncology Group trial AAML0531. J Clin Oncol. 2014;32(27):3021-32.spa
dc.relation.referencesKim H. Treatments for children and adolescents with AML. Blood Res. 2020;55(S1):S5-s13.spa
dc.relation.referencesCreutzig U, Dworzak MN, Zimmermann M, Reinhardt D, Sramkova L, Bourquin JP, et al. Characteristics and outcome in patients with central nervous system involvement treated in European pediatric acute myeloid leukemia study groups. Pediatr Blood Cancer. 2017;64(12).spa
dc.relation.referencesEvans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.spa
dc.relation.referencesArbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.spa
dc.relation.referencesCheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.spa
dc.relation.referencesScott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.spa
dc.relation.referencesIssa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.spa
dc.relation.referencesShastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.spa
dc.relation.referencesConti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.spa
dc.relation.referencesSutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.spa
dc.relation.referencesDe Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.spa
dc.relation.referencesSabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.spa
dc.relation.referencesBargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.spa
dc.relation.referencesDries DL. Genetic ancestry, population admixture, and the genetic epidemiology of complex disease. Circ Cardiovasc Genet. 2. United States2009. p. 540-3.spa
dc.relation.referencesRoyal CD, Novembre J, Fullerton SM, Goldstein DB, Long JC, Bamshad MJ, et al. Inferring genetic ancestry: opportunities, challenges, and implications. Am J Hum Genet. 2010;86(5):661-73.spa
dc.relation.referencesPereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.spa
dc.relation.referencesAplenc R, Alonzo TA, Gerbing RB, Smith FO, Meshinchi S, Ross JA, et al. Ethnicity and survival in childhood acute myeloid leukemia: a report from the Children's Oncology Group. Blood. 2006;108(1):74-80.spa
dc.relation.referencesGrimwade D, Ivey A, Huntly BJ. Molecular landscape of acute myeloid leukemia in younger adults and its clinical relevance. Blood. 2016;127(1):29-41.spa
dc.relation.referenceswww.cuentadealtocosto.org. Capítulo 16. Leucemia Mieloide Aguda. Situación del cáncer en Colombia. Cuenta de Alto Costo. Fondo Colombiano de Enfermedades de Alto Costo. 2015.spa
dc.relation.referencesCINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.spa
dc.relation.referencesMinisterio de Salud y Protección Social C, Instituto Nacional de Cancerología, ESE. Guía de práctica clínica para la detección, tratamiento y seguimiento de leucemias linfoblástica y mieloide en población mayor de 18 años. Colombia2017.spa
dc.relation.referencesKarol SE, Coustan-Smith E, Cao X, Shurtleff SA, Raimondi SC, Choi JK, et al. Prognostic factors in children with acute myeloid leukaemia and excellent response to remission induction therapy. Br J Haematol. 2015;168(1):94-101.spa
dc.relation.referencesBalgobind BV, Lugthart S, Hollink IH, Arentsen-Peters STJCM, van Wering ER, de Graaf SSN, et al. EVI1 overexpression in distinct subtypes of pediatric acute myeloid leukemia. Leukemia. 2010;24:942.spa
dc.relation.referencesPui CH, Carroll WL, Meshinchi S, Arceci RJ. Biology, risk stratification, and therapy of pediatric acute leukemias: an update. J Clin Oncol. 2011;29(5):551-65.spa
dc.relation.referencesSood R, Kamikubo Y, Liu P. Role of RUNX1 in hematological malignancies. Blood. 2017;129(15):2070-82.spa
dc.relation.referencesOnline Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.spa
dc.relation.referencesUniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2018;46(5):2699.spa
dc.relation.referencesOnline Mendelian Inheritance in Man OM-NIoGM, Johns Hopkins University (Baltimore, MD), {date}. World Wide Web. 2019.spa
dc.relation.referencesPuumala SE, Ross JA, Aplenc R, Spector LG. Epidemiology of childhood acute myeloid leukemia. Pediatr Blood Cancer. 2013;60(5):728-33.spa
dc.relation.referencesConneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep. 2021;23(2):16.spa
dc.relation.referencesBravo LE, Garcia LS, Collazos P, Aristizabal P, Ramirez O. Descriptive epidemiology of childhood cancer in Cali: Colombia 1977-2011. Colomb Med (Cali). 2013;44(3):155-64.spa
dc.relation.referencesCINETS. CNdIeEyTeS. Guía de Práctica Clínica para la detección oportuna, diagnóstico y seguimiento de leucemia linfoide aguda y leucemia mieloide aguda en niños, niñas y adolescentes. Guía No. 9. 2013.spa
dc.relation.referencesCheson BD, Bennett JM, Kopecky KJ, Büchner T, Willman CL, Estey EH, et al. Revised recommendations of the International Working Group for Diagnosis, Standardization of Response Criteria, Treatment Outcomes, and Reporting Standards for Therapeutic Trials in Acute Myeloid Leukemia. J Clin Oncol. 2003;21(24):4642-9.spa
dc.relation.referencesCreutzig U, Kaspers GJ. Revised recommendations of the International Working Group for diagnosis, standardization of response criteria, treatment outcomes, and reporting standards for therapeutic trials in acute myeloid leukemia. J Clin Oncol. 22. United States2004. p. 3432-3.spa
dc.relation.referencesCommon Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.spa
dc.relation.referencesAlexander S, Pole JD, Gibson P, Lee M, Hesser T, Chi SN, et al. Classification of treatment-related mortality in children with cancer: a systematic assessment. Lancet Oncol. 2015;16(16):e604-10.spa
dc.relation.referencesArsham MS BM, Lawce HJ. The AGT Cytogenetics Laboratory Manual. Fourth edition. ed. Hoboken, New Jersey: Wiley-Blackwell.; 2017.spa
dc.relation.referencesMurphy KM, Levis M, Hafez MJ, Geiger T, Cooper LC, Smith BD, et al. Detection of FLT3 internal tandem duplication and D835 mutations by a multiplex polymerase chain reaction and capillary electrophoresis assay. J Mol Diagn. 2003;5(2):96-102.spa
dc.relation.referencesVerhaak RG, Goudswaard CS, van Putten W, Bijl MA, Sanders MA, Hugens W, et al. Mutations in nucleophosmin (NPM1) in acute myeloid leukemia (AML): association with other gene abnormalities and previously established gene expression signatures and their favorable prognostic significance. Blood. 2005;106(12):3747-54.spa
dc.relation.referencesFalini B, Mecucci C, Tiacci E, Alcalay M, Rosati R, Pasqualucci L, et al. Cytoplasmic nucleophosmin in acute myelogenous leukemia with a normal karyotype. N Engl J Med. 2005;352(3):254-66.spa
dc.relation.referencesLin LI, Lin TC, Chou WC, Tang JL, Lin DT, Tien HF. A novel fluorescence-based multiplex PCR assay for rapid simultaneous detection of CEBPA mutations and NPM mutations in patients with acute myeloid leukemias. Leukemia. 2006;20:1899.spa
dc.relation.referencesLi MM, Datto M, Duncavage EJ, Kulkarni S, Lindeman NI, Roy S, et al. Standards and Guidelines for the Interpretation and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of the Association for Molecular Pathology, American Society of Clinical Oncology, and College of American Pathologists. J Mol Diagn. 2017;19(1):4-23.spa
dc.relation.referencesLlimpe Y. Cytogenetic risk groups for childhood acute myeloid leukemia based on survival analysis in a cancer referral hospital from Perú. Biomedica. 2021;41(2):302-13.spa
dc.relation.referencesDeana A, Moran L, Fynn A. Resultados del protocolo GATLA 8-LMAP´07. Nuevos desafíos clínicos en leucemia mieloide aguda pediátrica de novo. Revista Hematología. 2019;23(2):82-91.spa
dc.relation.referencesTarlock K, Meshinchi S. Pediatric acute myeloid leukemia: biology and therapeutic implications of genomic variants. Pediatr Clin North Am. 2015;62(1):75-93.spa
dc.relation.referencesBolouri H, Farrar JE, Triche T, Jr., Ries RE, Lim EL, Alonzo TA, et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat Med. 2018;24(1):103-12.spa
dc.relation.referencesMolina Garay C, Carrillo Sánchez K, Flores Lagunes LL, Jiménez Olivares M, Muñoz Rivas A, Villegas Torres BE, et al. Profiling FLT3 Mutations in Mexican Acute Myeloid Leukemia Pediatric Patients: Impact on Overall Survival. Front Pediatr. 2020;8:586.spa
dc.relation.referencesMeshinchi S, Woods WG, Stirewalt DL, Sweetser DA, Buckley JD, Tjoa TK, et al. Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood. 2001;97(1):89-94.spa
dc.relation.referencesIshida H, Iguchi A, Aoe M, Nishiuchi R, Matsubara T, Keino D, et al. Panel-based next-generation sequencing facilitates the characterization of childhood acute myeloid leukemia in clinical settings. Biomed Rep. 2020;13(5):46.spa
dc.relation.referencesMeshinchi S, Alonzo TA, Stirewalt DL, Zwaan M, Zimmerman M, Reinhardt D, et al. Clinical implications of FLT3 mutations in pediatric AML. Blood. 2006;108(12):3654-61.spa
dc.relation.referencesKaburagi T, Yamato G, Shiba N, Yoshida K, Hara Y, Tabuchi K, et al. Clinical significance of RAS pathway alterations in pediatric acute myeloid leukemia. Haematologica. 2022;107(3):583-92.spa
dc.relation.referencesChen K, Zhang Y, Qian L, Wang P. Emerging strategies to target RAS signaling in human cancer therapy. J Hematol Oncol. 2021;14(1):116.spa
dc.relation.referencesCacace F, Iula R, De Novellis D, Caprioli V, D'Amico MR, De Simone G, et al. High-Risk Acute Myeloid Leukemia: A Pediatric Prospective. Biomedicines. 2022;10(6).spa
dc.relation.referencesIshikawa Y, Kawashima N, Atsuta Y, Sugiura I, Sawa M, Dobashi N, et al. Prospective evaluation of prognostic impact of KIT mutations on acute myeloid leukemia with RUNX1-RUNX1T1 and CBFB-MYH11. Blood Adv. 2020;4(1):66-75.spa
dc.relation.referencesAyatollahi H, Shajiei A, Sadeghian MH, Sheikhi M, Yazdandoust E, Ghazanfarpour M, et al. Prognostic Importance of C-KIT Mutations in Core Binding Factor Acute Myeloid Leukemia: A Systematic Review. Hematol Oncol Stem Cell Ther. 2017;10(1):1-7.spa
dc.relation.referencesEgan G, Chopra Y, Mourad S, Chiang KY, Hitzler J. Treatment of acute myeloid leukemia in children: A practical perspective. Pediatr Blood Cancer. 2021;68(7):e28979.spa
dc.relation.referencesChen J, Glasser CL. New and Emerging Targeted Therapies for Pediatric Acute Myeloid Leukemia (AML). Children (Basel). 2020;7(2).spa
dc.relation.referencesElgarten CW, Wood AC, Li Y, Alonzo TA, Brodersen LE, Gerbing RB, et al. Outcomes of intensification of induction chemotherapy for children with high-risk acute myeloid leukemia: A report from the Children's Oncology Group. Pediatr Blood Cancer. 2021;68(12):e29281.spa
dc.relation.referencesVan Weelderen RE, Klein K, Natawidjaja MD, De Vries R, Kaspers GJ. Outcome of pediatric acute myeloid leukemia (AML) in low- and middle-income countries: a systematic review of the literature. Expert Rev Anticancer Ther. 2021;21(7):765-80.spa
dc.relation.referencesEvans WE, Johnson JA. Pharmacogenomics: The Inherited Basis for Interindividual Differences in Drug Response. Annual Review of Genomics and Human Genetics. 2001;2(1):9-39.spa
dc.relation.referencesArbitrio M, Di Martino MT, Scionti F, Agapito G, Guzzi PH, Cannataro M, et al. DMET (Drug Metabolism Enzymes and Transporters): a pharmacogenomic platform for precision medicine. Oncotarget. 2016;7(33):54028-50.spa
dc.relation.referencesCheok MH, Lugthart S, Evans WE. Pharmacogenomics of acute leukemia. Annu Rev Pharmacol Toxicol. 2006;46:317-53.spa
dc.relation.referencesMegias-Vericat JE, Montesinos P, Herrero MJ, Boso V, Martinez-Cuadron D, Poveda JL, et al. Pharmacogenomics and the treatment of acute myeloid leukemia. Pharmacogenomics. 2016;17(11):1245-72.spa
dc.relation.referencesScott SA. Personalizing medicine with clinical pharmacogenetics. Genet Med. 2011;13(12):987-95.spa
dc.relation.referencesBertier G, Carrot-Zhang J, Ragoussis V, Joly Y. Integrating precision cancer medicine into healthcare-policy, practice, and research challenges. Genome Med. 2016;8(1):108.spa
dc.relation.referencesIssa AM. Personalized medicine and the practice of medicine in the 21st century. Mcgill J Med. 2007;10(1):53-7.spa
dc.relation.referencesShastry BS. Pharmacogenetics and the concept of individualized medicine. Pharmacogenomics J. 2006;6(1):16-21.spa
dc.relation.referencesConti R, Veenstra DL, Armstrong K, Lesko LJ, Grosse SD. Personalized medicine and genomics: challenges and opportunities in assessing effectiveness, cost-effectiveness, and future research priorities. Med Decis Making. 2010;30(3):328-40.spa
dc.relation.referencesRasche M, Zimmermann M, Borschel L, Bourquin JP, Dworzak M, Klingebiel T, et al. Successes and challenges in the treatment of pediatric acute myeloid leukemia: a retrospective analysis of the AML-BFM trials from 1987 to 2012. Leukemia. 2018;32(10):2167-77.spa
dc.relation.referencesSutiman N, Nwe MS, Ni Lai EE, Lee DK, Chan MY, Eng-Juh Yeoh A, et al. Excellent Survival Outcomes of Pediatric Patients With Acute Myeloid Leukemia Treated With the MASPORE 2006 Protocol. Clin Lymphoma Myeloma Leuk. 2021;21(3):e290-e300.spa
dc.relation.referencesDe Moerloose B, Reedijk A, de Bock GH, Lammens T, de Haas V, Denys B, et al. Response-guided chemotherapy for pediatric acute myeloid leukemia without hematopoietic stem cell transplantation in first complete remission: Results from protocol DB AML-01. Pediatr Blood Cancer. 2019;66(5):e27605.spa
dc.relation.referencesSabnis HS, Minson KA, Monroe C, Allen K, Metts JL, Cooper TM, et al. A strategy to reduce cumulative anthracycline exposure in low-risk pediatric acute myeloid leukemia while maintaining favorable outcomes. Leuk Res. 2020;96:106421.spa
dc.relation.referencesBargal SA, Rafiee R, Crews KR, Wu H, Cao X, Rubnitz JE, et al. Genome-wide association analysis identifies SNPs predictive of in vitro leukemic cell sensitivity to cytarabine in pediatric AML. Oncotarget. 2018;9(79):34859-75.spa
dc.relation.referencesLamba JK, Crews K, Pounds S, Schuetz EG, Gresham J, Gandhi V, et al. Pharmacogenetics of deoxycytidine kinase: identification and characterization of novel genetic variants. J Pharmacol Exp Ther. 2007;323(3):935-45.spa
dc.relation.referencesHartford CM, Duan S, Delaney SM, Mi S, Kistner EO, Lamba JK, et al. Population-specific genetic variants important in susceptibility to cytarabine arabinoside cytotoxicity. Blood. 2009;113(10):2145-53.spa
dc.relation.referencesCros E, Jordheim L, Dumontet C, Galmarini CM. Problems related to resistance to cytarabine in acute myeloid leukemia. Leuk Lymphoma. 2004;45(6):1123-32.spa
dc.relation.referencesEmadi A, Karp JE. The clinically relevant pharmacogenomic changes in acute myelogenous leukemia. Pharmacogenomics. 2012;13(11):1257-69.spa
dc.relation.referencesKufe DW, Munroe D, Herrick D, Egan E, Spriggs D. Effects of 1-beta-D-arabinofuranosylcytosine incorporation on eukaryotic DNA template function. Mol Pharmacol. 1984;26(1):128-34.spa
dc.relation.referencesLamba JK. Genetic factors influencing cytarabine therapy. Pharmacogenomics. 2009;10(10):1657-74.spa
dc.relation.referencesJones PM, George AM. The ABC transporter structure and mechanism: perspectives on recent research. Cell Mol Life Sci. 2004;61(6):682-99.spa
dc.relation.referencesBorst P, Elferink RO. Mammalian ABC transporters in health and disease. Annu Rev Biochem. 2002;71:537-92.spa
dc.relation.referencesMegías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Rojas L, et al. Impact of ABC single nucleotide polymorphisms upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2017;58(5):1197-206.spa
dc.relation.referencesHyo Kim L, Sub Cheong H, Koh Y, Ahn KS, Lee C, Kim HL, et al. Cytidine deaminase polymorphisms and worse treatment response in normal karyotype AML. J Hum Genet. 2015;60(12):749-54.spa
dc.relation.referencesAbraham A, Varatharajan S, Abbas S, Zhang W, Shaji RV, Ahmed R, et al. Cytidine deaminase genetic variants influence RNA expression and cytarabine cytotoxicity in acute myeloid leukemia. Pharmacogenomics. 2012;13(3):269-82.spa
dc.relation.referencesAbraham A, Devasia AJ, Varatharajan S, Karathedath S, Balasubramanian P, Mathews V. Effect of cytosine arabinoside metabolizing enzyme expression on drug toxicity in acute myeloid leukemia. Ann Hematol. 2015;94(5):883-5.spa
dc.relation.referencesChottiner EG, Shewach DS, Datta NS, Ashcraft E, Gribbin D, Ginsburg D, et al. Cloning and expression of human deoxycytidine kinase cDNA. Proceedings of the National Academy of Sciences. 1991;88(4):1531.spa
dc.relation.referencesOnline Mendelian Inheritance in Man, OMIM ® . [Internet]. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD). 2018. Available from: https://omim.org/.spa
dc.relation.referencesRoumier C, Cheok MH. Pharmacogenomics in acute myeloid leukemia. Pharmacogenomics. 2009;10(11):1839-51.spa
dc.relation.referencesVoso MT, D'Alo F, Putzulu R, Mele L, Scardocci A, Chiusolo P, et al. Negative prognostic value of glutathione S-transferase (GSTM1 and GSTT1) deletions in adult acute myeloid leukemia. Blood. 2002;100(8):2703-7.spa
dc.relation.referencesDavies SM, Robison LL, Buckley JD, Tjoa T, Woods WG, Radloff GA, et al. Glutathione S-transferase polymorphisms and outcome of chemotherapy in childhood acute myeloid leukemia. J Clin Oncol. 2001;19(5):1279-87.spa
dc.relation.referencesRondón González F, Barreto G. Estructura genética, ancestralidad y su relación con los estudios en salud humana. Médicas UIS. 2013;26(1).spa
dc.relation.referencesYunis JJ, Yunis EJ, Yunis E. MHC Class II haplotypes of Colombian Amerindian tribes. Genet Mol Biol. 2013;36(2):158-66.spa
dc.relation.referencesPereira R, Phillips C, Pinto N, Santos C, dos Santos SE, Amorim A, et al. Straightforward inference of ancestry and admixture proportions through ancestry-informative insertion deletion multiplexing. PLoS One. 2012;7(1):e29684.spa
dc.relation.referencesYunis JJ, Acevedo LE, Campo DS, Yunis EJ. Geno-geographic origin of Y-specific STR haplotypes in a sample of Caucasian-Mestizo and African-descent male individuals from Colombia. Biomedica. 2013;33(3):459-67.spa
dc.relation.referencesUsme-Romero S, Alonso M, Hernandez-Cuervo H, Yunis EJ, Yunis JJ. Genetic differences between Chibcha and Non-Chibcha speaking tribes based on mitochondrial DNA (mtDNA) haplogroups from 21 Amerindian tribes from Colombia. Genet Mol Biol. 2013;36(2):149-57.spa
dc.relation.referencesYunis JJ, Yunis EJ, Yunis E. Genetic relationship of the Guambino, Paez, and Ingano Amerindians of southwest Colombia using major histocompatibility complex class II haplotypes and blood groups. Hum Immunol. 2001;62(9):970-8.spa
dc.relation.referencesYunis JJ, Ossa H, Salazar M, Delgado MB, Deulofeut R, de la Hoz A, et al. Major histocompatibility complex class II alleles and haplotypes and blood groups of four Amerindian tribes of northern Colombia. Hum Immunol. 1994;41(4):248-58.spa
dc.relation.referencesBanklau C, Jindadamrongwech S, Sawangpanich R, Apibal S, Hongeng S, Paisooksantivatana K, et al. Effect of genetic alterations of cytarabine- metabolizing enzymes in childhood acute lymphoblastic leukemia. Hematol Oncol Stem Cell Ther. 2010;3(3):103-8.spa
dc.relation.referencesGeppert M, Baeta M, Núñez C, Martínez-Jarreta B, Zweynert S, Cruz OW, et al. Hierarchical Y-SNP assay to study the hidden diversity and phylogenetic relationship of native populations in South America. Forensic Sci Int Genet. 2011;5(2):100-4.spa
dc.relation.referencesExcoffier LaHELL. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources; 2010. p. 564-7.spa
dc.relation.referencesRousset F. genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Molecular Ecology Resources; 2008. p. 103-6.spa
dc.relation.referencesPritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945-59.spa
dc.relation.referencesDent A. Earl BMv. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation genetics resources; 2012. p. 359-61.spa
dc.relation.referencesEvanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14(8):2611-20.spa
dc.relation.referencesMogollón Olivares F, Moncada Madero J, Casas-Vargas A, Zea Montoya S, Suárez Medellín D, Gusmão L, et al. Contrasting the ancestry patterns of three distinct population groups from the northernmost region of South America. Am J Phys Anthropol. 2020;173(3):437-47.spa
dc.relation.referencesCommon Terminology Criteria for Adverse Events (CTCAE) Version 5.0: U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES. National Institutes of Health. National Cancer Institute.; 2017 [Available from: https://ctep.cancer.gov/protocoldevelopment/electronic_applications/ctc.htm#ctc_50.spa
dc.relation.referencesPiacentini S, Polimanti R, Porreca F, Martínez-Labarga C, De Stefano GF, Fuciarelli M. GSTT1 and GSTM1 gene polymorphisms in European and African populations. Mol Biol Rep. 2011;38(2):1225-30.spa
dc.relation.referencesYunis JJ, Acevedo LE, Campo DS, Yunis EJ. Population data of Y-STR minimal haplotypes in a sample of Caucasian-Mestizo and African descent individuals of Colombia. Forensic Sci Int. 2005;151(2-3):307-13.spa
dc.relation.referencesYunis JJ, Garcia O, Baena A, Arboleda G, Uriarte I, Yunis E. Population frequency for the short tandem repeat loci D18S849, D3S1744, and D12S1090 in Caucasian-Mestizo and African descent populations of Colombia. J Forensic Sci. 2000;45(2):429-31.spa
dc.relation.referencesNorris ET, Rishishwar L, Wang L, Conley AB, Chande AT, Dabrowski AM, et al. Assortative Mating on Ancestry-Variant Traits in Admixed Latin American Populations. Front Genet. 2019;10:359.spa
dc.relation.referencesWheeler HE, Gamazon ER, Stark AL, O'Donnell PH, Gorsic LK, Huang RS, et al. Genome-wide meta-analysis identifies variants associated with platinating agent susceptibility across populations. Pharmacogenomics J. 2013;13(1):35-43.spa
dc.relation.referencesKim DH, Park JY, Sohn SK, Lee NY, Baek JH, Jeon SB, et al. Multidrug resistance-1 gene polymorphisms associated with treatment outcomes in de novo acute myeloid leukemia. Int J Cancer. 2006;118(9):2195-201.spa
dc.relation.referencesGréen H, Falk IJ, Lotfi K, Paul E, Hermansson M, Rosenquist R, et al. Association of ABCB1 polymorphisms with survival and in vitro cytotoxicty in de novo acute myeloid leukemia with normal karyotype. Pharmacogenomics J. 2012;12(2):111-8.spa
dc.relation.referencesMegías-Vericat JE, Rojas L, Herrero MJ, Bosó V, Montesinos P, Moscardó F, et al. Influence of ABCB1 polymorphisms upon the effectiveness of standard treatment for acute myeloid leukemia: a systematic review and meta-analysis of observational studies. Pharmacogenomics J. 2015;15(2):109-18.spa
dc.relation.referencesHe H, Yin J, Li X, Zhang Y, Xu X, Zhai M, et al. Association of ABCB1 polymorphisms with prognostic outcomes of anthracycline and cytarabine in Chinese patients with acute myeloid leukemia. Eur J Clin Pharmacol. 2015;71(3):293-302.spa
dc.relation.referencesMegías-Vericat JE, Martínez-Cuadrón D, Herrero MJ, Rodríguez-Veiga R, Solana-Altabella A, Boluda B, et al. Impact of combinations of single-nucleotide polymorphisms of anthracycline transporter genes upon the efficacy and toxicity of induction chemotherapy in acute myeloid leukemia. Leuk Lymphoma. 2021;62(3):659-68.spa
dc.relation.referencesMahlknecht U, Dransfeld CL, Bulut N, Kramer M, Thiede C, Ehninger G, et al. SNP analyses in cytarabine metabolizing enzymes in AML patients and their impact on treatment response and patient survival: identification of CDA SNP C-451T as an independent prognostic parameter for survival. Leukemia. 23. England2009. p. 1929-32.spa
dc.relation.referencesParmar S, Seeringer A, Denich D, Gärtner F, Pitterle K, Syrovets T, et al. Variability in transport and biotransformation of cytarabine is associated with its toxicity in peripheral blood mononuclear cells. Pharmacogenomics. 2011;12(4):503-14.spa
dc.relation.referencesMedina-Sanson A, Ramirez-Pacheco A, Moreno-Guerrero SS, Dorantes-Acosta EM, Sanchez-Preza M, Reyes-Lopez A. Role of Genetic Polymorphisms of Deoxycytidine Kinase and Cytidine Deaminase to Predict Risk of Death in Children with Acute Myeloid Leukemia. Biomed Res Int. 2015;2015:309491.spa
dc.relation.referencesMegías-Vericat JE, Montesinos P, Herrero MJ, Moscardó F, Bosó V, Martínez-Cuadrón D, et al. Influence of cytarabine metabolic pathway polymorphisms in acute myeloid leukemia induction treatment. Leuk Lymphoma. 2017;58(12):2880-94.spa
dc.relation.referencesCarpi FM, Vincenzetti S, Ubaldi J, Pucciarelli S, Polzonetti V, Micozzi D, et al. CDA gene polymorphisms and enzyme activity: genotype-phenotype relationship in an Italian-Caucasian population. Pharmacogenomics. 2013;14(7):769-81.spa
dc.relation.referencesShi JY, Shi ZZ, Zhang SJ, Zhu YM, Gu BW, Li G, et al. Association between single nucleotide polymorphisms in deoxycytidine kinase and treatment response among acute myeloid leukaemia patients. Pharmacogenetics. 2004;14(11):759-68.spa
dc.relation.referencesAdema AD, Zuurbier L, Floor K, Hubeek I, Kaspers GJ, Albertoni F, et al. Cellular resistance against troxacitabine in human cell lines and pediatric patient acute myeloid leukemia blast cells. Nucleosides Nucleotides Nucleic Acids. 2006;25(9-11):981-6.spa
dc.relation.referencesXie XT, Jiang SY, Li BS, Yang LL. [Relationship between the expression of the genes encoding the key enzymes for cytarabine metabolism and the pharmacokinetics of cytarabine in the treatment of childhood acute leukemia with high-dose cytarabine]. Zhonghua Er Ke Za Zhi. 2008;46(4):276-80.spa
dc.relation.referencesHubeek I, Stam RW, Peters GJ, Broekhuizen R, Meijerink JP, van Wering ER, et al. The human equilibrative nucleoside transporter 1 mediates in vitro cytarabine sensitivity in childhood acute myeloid leukaemia. Br J Cancer. 2005;93(12):1388-94.spa
dc.relation.referencesBartholomae S, Gruhn B, Debatin KM, Zimmermann M, Creutzig U, Reinhardt D, et al. Coexpression of Multiple ABC-Transporters is Strongly Associated with Treatment Response in Childhood Acute Myeloid Leukemia. Pediatr Blood Cancer. 2016;63(2):242-7.spa
dc.relation.referencesAndrade FG, Feliciano SVM, Sardou-Cezar I, Brisson GD, Dos Santos-Bueno FV, Vianna DT, et al. Pediatric Acute Promyelocytic Leukemia: Epidemiology, Molecular Features, and Importance of GST-Theta 1 in Chemotherapy Response and Outcome. Front Oncol. 2021;11:642744.spa
dc.relation.referencesDen Boer ML, Pieters R, Kazemier KM, Janka-Schaub GE, Henze G, Creutzig U, et al. Different expression of glutathione S-transferase alpha, mu and pi in childhood acute lymphoblastic and myeloid leukaemia. Br J Haematol. 1999;104(2):321-7.spa
dc.relation.referencesWeich N, Nuñez MC, Galimberti G, Elena G, Acevedo S, Larripa I, et al. Polymorphic variants of GSTM1, GSTT1, and GSTP1 genes in childhood acute leukemias: A preliminary study in Argentina. Hematology. 2015;20(9):511-6.spa
dc.relation.referencesDavies SM, Robison LL, Buckley JD, Radloff GA, Ross JA, Perentesis JP. Glutathione S-transferase polymorphisms in children with myeloid leukemia: a Children's Cancer Group study. Cancer Epidemiol Biomarkers Prev. 2000;9(6):563-6.spa
dc.relation.referencesRojas W, Parra MV, Campo O, Caro MA, Lopera JG, Arias W, et al. Genetic make up and structure of Colombian populations by means of uniparental and biparental DNA markers. Am J Phys Anthropol. 2010;143(1):13-20.spa
dc.relation.referencesXavier C, Builes JJ, Gomes V, Ospino JM, Aquino J, Parson W, et al. Admixture and genetic diversity distribution patterns of non-recombining lineages of Native American ancestry in Colombian populations. PloS one. 2015;10(3):e0120155-e.spa
dc.relation.referencesOssa H, Aquino J, Pereira R, Ibarra A, Ossa RH, Pérez LA, et al. Outlining the Ancestry Landscape of Colombian Admixed Populations. PLoS One. 2016;11(10):e0164414.spa
dc.relation.referencesNoguera MC, Schwegler A, Gomes V, Briceño I, Alvarez L, Uricoechea D, et al. Colombia's racial crucible: Y chromosome evidence from six admixed communities in the Department of Bolivar. Ann Hum Biol. 2014;41(5):453-9.spa
dc.relation.referencesIbarra A, Freire-Aradas A, Martínez M, Fondevila M, Burgos G, Camacho M, et al. Comparison of the genetic background of different Colombian populations using the SNPforID 52plex identification panel. Int J Legal Med. 2014;128(1):19-25.spa
dc.relation.referencesPinto-Merino Á, Labrador J, Zubiaur P, Alcaraz R, Herrero MJ, Montesinos P, et al. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics. 2022;14(3).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéuticaspa
dc.subject.ddc570 - Biología::576 - Genética y evoluciónspa
dc.subject.ddc610 - Medicina y salud::616 - Enfermedadesspa
dc.subject.decsLeucemia Mielomonocítica Agudaspa
dc.subject.decsLeukemia, Myelomonocytic, Acuteeng
dc.subject.decsVariantes Farmacogenómicasspa
dc.subject.decsResistencia a Antineoplásicosspa
dc.subject.decsDrug Resistance, Neoplasmeng
dc.subject.decsEfectos Colaterales y Reacciones Adversas Relacionados con Medicamentosspa
dc.subject.decsDrug-Related Side Effects and Adverse Reactionseng
dc.subject.lembPharmacogenomic Variantseng
dc.subject.proposalLeucemia mieloide agudaspa
dc.subject.proposalGenómicaspa
dc.subject.proposalPediátricaspa
dc.subject.proposalColombiaspa
dc.subject.proposalLatinoaméricaspa
dc.subject.proposalABCB1spa
dc.subject.proposalDCKspa
dc.subject.proposalCDAspa
dc.subject.proposalGSTT1spa
dc.subject.proposalGSTM1spa
dc.subject.proposalCitarabinaspa
dc.subject.proposalAntraciclinasspa
dc.subject.proposalSNVspa
dc.subject.proposalAncestríaspa
dc.subject.proposalAIM-InDelspa
dc.subject.proposalAcute myeloid leukemiaeng
dc.subject.proposalGenomicseng
dc.subject.proposalPediatricseng
dc.subject.proposalLatin Americaeng
dc.subject.proposalCitarabineeng
dc.subject.proposalAntracyclineseng
dc.subject.proposalAncestryeng
dc.titleCaracterización molecular y farmacogenética en una muestra de pacientes con leucemia mieloide aguda y su correlación con la estratificación del riesgo y respuesta al tratamiento. Una aproximación hacia los patrones moleculares de la leucemia mieloide aguda pediátrica en población colombianaspa
dc.title.translatedMolecular and pharmacogenetic characterization in acute myeloid leukemia patients and the correlation with risk stratification and treatment responseeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Doctoral Luz Karime Yunis.pdf
Tamaño:
2.76 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Oncología

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: