Efecto de la altura de defoliación y la fertilización N sobre la estructura, la densidad de las plantas y el desempeño productivo de pasturas de Kikuyo (Cenchrus clandestinus)

dc.contributor.advisorCarulla Fornaguera, Juan Evangelista
dc.contributor.advisorAvellaneda Avellaneda, Yesid
dc.contributor.authorMancipe Muñoz, Edgar Augusto
dc.contributor.orcidMancipe Muñoz, Edgar Augusto [000000019831673X]spa
dc.contributor.researchgroupMicrobiologia y Nutricion animal del trópicospa
dc.date.accessioned2024-10-24T18:16:44Z
dc.date.available2024-10-24T18:16:44Z
dc.date.issued2024
dc.descriptionilustraciones, diagramas, fotografías,
dc.description.abstractEl trabajo evaluó como la intensidad de defoliación (altura residual, AR) y fertilización modifican el crecimiento, estructura, calidad y acumulación de C y N en pasturas de Kikuyo; mediante un diseño de parcelas divididas con tres repeticiones al defoliar a 5 hojas las parcelas. Defoliar a 6 cm vs 12 cm de AR redujo la relación hoja:tallo 2.5 veces (p<0.001) y aumentó el intervalo de defoliación (ID) (+8 d) y la tasa de crecimiento (TDC) (+19%). Además, aumentó la densidad de brotes (DB) y proporción de material muerto (PMM) (interacción, p<0.05), donde las pasturas más fertilizadas tuvieron menor DB y PMM. La calidad de la pastura fue similar entre AR. La cantidad de C fue inferior en la biomasa subterránea (BS) a 6 cm AR (11.2 vs 12.7 t ha-1). Aumentar la fertilización redujo el ID (-2.4 d; p<0.01); incremento la altura de la pastura (+4.7 cm; p<0.001), la TDC (+13 kgMS ha-1; p<0.001), la proteína en hojas y tallos (p<0.001) y la longitud de los estolones (141 vs 228 vs 480 cm; p<0.01). También, aumentó la acumulación de tallos al defoliar a 6 cm (6.4 vs 10.6 y 11.0 kgMS ha-1) pero no a 12 cm de AR; interacción (p<0.001). La cantidad de C en la BS fue mayor para el nivel medio de fertilización (11.2 vs 13.4 vs 11.3; p<0.05). En conclusión, las pasturas de Kikuyo mantuvieron su productividad con una AR de 6 cm aumentando la DB, pero viéndose comprometidas la altura y la relación hoja:tallo. La fertilización aumento la productividad de las pasturas y compensó los efectos de la AR. Sin embargo, estas prácticas de manejo podrían tener impactos negativos sobre la BS. (Texto tomado de la fuente)spa
dc.description.abstractThe work evaluated how the intensity of defoliation (residual height, AR) and fertilization modify the growth, structure, quality and accumulation of C and N in Kikuyu pastures; through a divided plot design with three repetitions when defoliating the plots to 5 leaves. Defoliating at 6 cm vs 12 cm HR reduced the leaf-stem ratio 2.5 times (p<0.001) and increased the defoliation interval (DI) (+8 d) and growth rate (DGR) (+19%). In addition, tiller density (TD) and proportion of dead material (PDM) increased (interaction, p<0.05), where the most fertilized pastures had lower TD and PDM. Pasture quality was similar between HR. The amount of C was lower in the underground biomass (UB) at 6 cm HR (11.2 vs 12.7 t ha-1). Increasing fertilization reduced DI (-2.4 d; p<0.01); increased pasture height (+4.7 cm; p<0.001), DGR (+13 kgDM ha-1; p<0.001), protein in leaves and stems (p<0.001) and stolon length (141 vs 228 vs 480 cm; p<0.01). Also, stem accumulation increased when defoliating at 6 cm (6.4 vs 10.6 and 11.0 kgMS ha-1) but not at 12 cm of HR; interaction (p<0.001). The amount of C in the UB was greater for the medium fertilization level (11.2 vs 13.4 vs 11.3; p<0.05). In conclusion, Kikuyu pastures maintained their productivity with an HR of 6 cm, increasing TD, but height and the leaf-stem ratio were compromised. Fertilization increased pasture productivity and offset the effects of HR. However, these management practices could have negative impacts on UB.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Salud Animal o Magíster en Producción Animalspa
dc.description.researchareaPastos y forrajesspa
dc.format.extent169 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87041
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Medicina Veterinaria y de Zootecniaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Medicina Veterinaria y de Zootecnia - Maestría en Salud y Producción Animalspa
dc.relation.referencesAcero-Camelo, A., Pabón, ML., Fischer, G., & Carulla, JE. 2020. Optimum harvest time for Kikuyu Grass (Cenchrus clandestinus) according to the number of leaves per tiller and nitrogen fertilization. Rev. Fac. Nac. Agron. Medellin, 73(3):9243-9253 doi:10.1546/rfnam.v73n3.82257spa
dc.relation.referencesAcero-Camelo, RA., Molina, MRE., Coronado, AP., Fischer, G., & Fornaguera, JE. 2021. Base growth temperature and phyllochron for Kikuyu grass (Cenchrus clandestinus; Poaceae). Acta Biológica Colombiana, 26(2):160-169.spa
dc.relation.referencesAcero, RA. 2019. Aspectos ambientales y de manejo que determinan el crecimiento del kikuyo (Cenchrus clandestinus Hochst. ex Chiov. Morrone) en la Provincia de Ubaté. Tesis de Doctorado. Facultad de Medicina Veterinaria y de Zootecnia. Universidad Nacional de Colombia. Bogotá, Colombiaspa
dc.relation.referencesAgnusdei, MG. 2013. Rol de la ecofisiología en el diseño de manejos especializados de pasturas. Archivos Latinoamericanos de Producción Animal, 21(1):63-78spa
dc.relation.referencesAlbrecht, A., & Kandji, S. 2003. Carbon sequestration in tropical agro-forestry systems. Agriculture, Ecosystems and Environment, 99(1-3):15-27.spa
dc.relation.referencesAnderson, TM., Starmer, WT., & Thorne, M. 2007. Bimodal root diameter distributions in Serengeti grasses exhibit plasticity in response to defoliation and soil texture: implications for nitrogen uptake. Functional Ecology, 21:50-60spa
dc.relation.referencesAnis, SD., Chozin, MA., Hardjosoewignyo, S., Ghulamahdi, M., & Sudradjat. 2011. The effects of cutting heights and intervals of defoliation on productivity and nutrient content of Brachiaria humidicola (Rendle) Schweick. Indonesian Journal of Agronomy, 39(3):217-222 doi:10.24831/jai.v39i3.13482spa
dc.relation.referencesAOAC. 2016. Official Methods of Analysis of AOAC International. 20th Edition. Editor: George W Latimer, Jr. Rockville, Maryland, USAspa
dc.relation.referencesApolinário, VXO., Dubeux, JCB., Mello, ACL., Vendramini, JMB., Lira, MA., Santos, MVF., & Muir, JP. 2013. Deposition and decomposition of signal grass pasture litter under varying nitrogen fertilizer and stocking rates. Crop Ecology & Physiology, 105(4):999-1004spa
dc.relation.referencesApráez, JE., & Moncayo, AO. 2003. Caracterización agronómica y bromatológica de una pradera de kikuyo (Cenchrus clandestinus (Hoechst ex Chiov. Morrone) sometida a rehabilitación mediante labranza y fertilización orgánica y/o mineral. Colombia Lead, 10:25-35spa
dc.relation.referencesArango-Gaviria, J., Cardona-Naranjo, FA., López-Herrera, A., Correa-Londoño, G., & Echeverri-Zuluaga, JJ. 2017. Variación de caracteres morfológicos del pasto Kikuyo (Cenchrus clandestinus) en el trópico alto de Antioquia. CES Medicina Veterinaria y Zootecnia, 12(1):44-52.spa
dc.relation.referencesArango-Gaviria, J., Echeverri-Zuluaga, J., & López-Herrera, A. 2019. Diversity Kikuyu Grass (Cenchrus clandestinus): A review. Respuestas, 24(2):81-88spa
dc.relation.referencesAriza-Nieto, C., Mayorga, OL., Mojica, B., Parra, D., & Afanador, G. 2017. Use of LOCAL algorithm with near infrared spectroscopy in forage resources for grazing systems in Colombia. J Near Infrared Spec., 26:44-52. doi:10.1177/0967033517746900spa
dc.relation.referencesArnáez, E., Moreira, I. 2002. Metodologías para el estudio de raíces. Cartago. CR, Instituto Tecnológico de Costa Rica. Escuela de Biología. 22 p. (Serie de lecturas complementarias No. 9)spa
dc.relation.referencesArredondo, JT., & Johnson, DA. 1998. Clipping effects on root architecture and morphology of 3 range grasses. Journal of Range Management, 51(2):207-214spa
dc.relation.referencesAugustine, DJ., Blumenthal, DM., Springer, TL., Lecain, DR., Gunter, SA., & Derner, JD. 2018. Elevated CO2 induces substantial and persistent decline in forage quality irrespective of warming in mixedgrass prairie. Ecological Society of America. Ecol. Appl., 28(3):721-735.spa
dc.relation.referencesAvellaneda-Avellaneda, Y., Mancipe-Muñoz, EA., & Vargas-Martínez, JJ. 2020. Efecto de la edad de rebrote sobre el desarrollo morfológico y la composición química del pasto kikuyo (Cenchrus clandestinus) en el trópico alto colombiano. CES Medicina Veterinaria y Zootecnia, 15(2):23-37.spa
dc.relation.referencesAvila, RE. 2009. Contenido y digestibilidad in vitro de la fibra de láminas de Chloris gayana Kunth con relación a la edad y tamaño foliar (Tesis de Maestría). Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Argentina.spa
dc.relation.referencesAvila, RE., Di Marco, O., & Agnusdei, M. 2011. Calidad nutritiva de láminas de Chloris gayana en estado vegetativo. Efecto de la reducción del tamaño foliar y envejecimiento. Archivos Latinoamericanos de Producción Animal, 20(1-2):17-27spa
dc.relation.referencesBalocchi, O., Niklitschek, M., & Loaiza, P. 2021. Dinámica de crecimiento y calidad nutritiva de una pradera de Lolium perenne L. sometida a dos frecuencias de defoliación y dosis crecientes de nitrógeno. Agro sur, 49(2):7-20.spa
dc.relation.referencesBarreto, L., & León, J. 2005. Masa total y contenido de nutrientes en raíces finas de ecosistemas forestales (Pinus patula Schltdl y Cham, Cupressus lusitánica Mil y Quercus humboldtii Bonpl.) de Piedras Blancas, Antioquia, Colombia. Facultad Nacional de Agronomía, 58(2):2907-2929.spa
dc.relation.referencesBasile-Doelsch, I., Balesdent, J., & Pellerin, S. 2020. Reviews and syntheses: The mechanisms underlying carbon storage in soil. Biogeosciences, 17(21):5223-5242 https://doi.org/10.5194/ bg-17-5223-2020spa
dc.relation.referencesBenvenutti, MA., Pavetti, DR., Poppi, DP., Gordon, IJ., & Cangiano, CA. 2015. Defoliation patterns and their implications for the management of vegetative tropical pastures to control intake and diet quality by cattle. Grass and Forage Science, 71(3):424-436. doi: 10.1111/gfs.12186spa
dc.relation.referencesBenvenutti, MA., Findsen, C., Savian, JV., Mayer, DG., & Barber, DG. 2020. The effect of stage of regrowth on the physical composition and nutritive value of the various vertical strata of Kikuyu (Cenchrus clandestinus) pastures. Tropical Grasslands, 8(2):141-146. doi: 10.17138/TGFT(8)141-146spa
dc.relation.referencesBernal, J. 1994. Pastos y forrajes Tropicales. Producción y manejo. 3a Edición. Bogotá, Colombia: Banco Ganadero. 575p.spa
dc.relation.referencesBernal, J. 1998. Capitulo VII: Pastos mejorados. Guerrero R, (Ed). Fertilización de cultivos en clima frío. (278-328). Santafé de Bogotá, Monómeros Colombo Venezolanos S.A. ISBN: 958-96408-0-Xspa
dc.relation.referencesBernal, J., & Espinosa, J. 2003. Manual de nutrición y fertilización de pastos. Quito, Ecuador. International Plant Nutrition Institute. 94pspa
dc.relation.referencesBetancur, D., & Ferrés, L. 2020. Evaluación del efecto residual de la fertilización nitrogenada de campo natural en el periodo otoño-invernal bajo pastoreo vacuno. Tesis. Facultad de Agronomía, Universidad de la Republica. Montevideo, Uruguay. p. 138.spa
dc.relation.referencesBlanco-Váldes Y. 2019. Importancia de la calidad de la luz entre las plantas arvenses-cultivo. Cultivos tropicales 40(4):e09.spa
dc.relation.referencesBloom, AJ., Meyerhoff, PA., Taylor, AR., & Rost, TL. 2003. Root development and absorption of ammonium and nitrate from the rhizosphere. Journal of Plant Growth Regulation, 21:416-431.spa
dc.relation.referencesBoddey, RM., Macedo, R., Tarre, RM., Ferreira, E., Oliveira, OC., Rezende, CP., et al. 2004. Nitrogen cycling in Brachiaria pastures: The key to understanding the process of pasture decline. Agric. Ecosyst. Environ., 103:389–403. doi:10.1016/j.agee.2003.12.010spa
dc.relation.referencesBorges, JA., Barrios, M., & Escalona, O. 2012. Efecto de la fertilización orgánica e inorgánica sobre variables agroproductivas y composición química del pasto estrella (Cynodon nlemfuensis). Zootecnia Tropical, 30(1):17-25.spa
dc.relation.referencesBorrajo, I., & Alonso, S. 2014. Tasa de elongación foliar en materiales de Agropiro Alargado: efecto de la fenología y el agregado de nitrógeno. En: 37° Congreso AAPA – 2nd Joint Meeting ASAS-AAPA – XXXIX Congreso de la Sociedad Chilena de Producción Animal. Octubre 20, 21 y 22 de 2014.spa
dc.relation.referencesBrown, RW. 1995. The water relations of range plants: adaptions to water deficits. In: Bedunah DJ, Sosebbe R, eds. Wildland plants: physiological ecology and developmental morphology. Denver, Colorado, Society for Range Management. pp. 291-413.spa
dc.relation.referencesBurke, M., & Raynal., D. 1994. Fine root growth phenology, production, and turnover in a northern hardwood forest ecosystem. Plant and soil, 162(1):135-146spa
dc.relation.referencesCaminha, FO., da Silva, SC., Paiva, AJ., Pereira, LET., de Mesquita, P., & Guarda, VD. 2010. Estabilidade da população de perfilhos de capim-marandu sob lotação contínua e abudação nitrogenada. Pesquisa Agropecuária Brasileira, 45(2):213-220spa
dc.relation.referencesCarnevalli, RA., Da Silva, SC., Bueno, ADO., Uebele, MC., Bueno, FO., Hodgson, J., & Morais, JPG. 2006. Herbage production and grazing losses in Panicum máximum cv. Mombaça under four grazing managements. Tropical Grasslands, 40(3), 165-176.spa
dc.relation.referencesCarulla, E., & Ortega, E. 2016. Sistemas de producción lechera en Colombia: retos y oportunidades. Archivos Latinoamericanos de Producción Animal, 24(2):83-87.spa
dc.relation.referencesCarvalho, PCF. (eds.). Grassland ecophysiology and grazing ecology. Cabi Wallingford, London, UK. p. 151-168spa
dc.relation.referencesCarvalho, ALS., Martuscello, JA., Almeida, OGD., Braz, TGDS., Cunha, DDNFVD., & Jank, L. 2017. Production and quality of Mombaça grass forage under different residual heights. Acta Scientiarum. Animal Sciences, 39(2):143-148spa
dc.relation.referencesCastillo Sierra, J., Cerón-Souza, I., Avellaneda, Y., Mancipe Muñoz, EA., & Vargas Martínez, JJ. 2023. Phenotypic variation of Kikuyu Grass (Cenchrus clandestinus) across livestock production farms in Colombian highlands is explained by management and environment rather than genetic diversity. Crop & Pasture Science, 75, CP22360. https://doi.org/10.1071/CP22360spa
dc.relation.referencesChacón, EA. 2013. Principios de manejo y utilización de pasturas tropicales para la producción de leche y carne a pastoreo. En: Manejo de Pastos y Forrajes Tropicales. Cuadernos Científicos Girarz 13. Ed. Perozo Bravo A. Fundación Girarz. Ediciones Astro Data S.A. Maracaibo, Venezuela. pp. 21-32.spa
dc.relation.referencesChapman, DF., & Lemaire, G. 1993. Morphogenetic and structural determinants of plant regrowth after defoliation. In: International Grassland Congress (17th., 1993, Palmerston) Proceedings. Wellington, SIR. pp. 95-104.spa
dc.relation.referencesChapman, D., McCarthy, S., Kay, J. 2014. Hidden dollars in grazing management: Getting the most profit from your pastures. Proceedings of the South Island Dairy Event – SIDE, Conference. Invercargill, New Zealand, 21-36.spa
dc.relation.referencesChaverra, G., Dávila, S., Villamizar, R., & Bernal, J. 1967. El cultivo de los pastos en la Sabana de Bogotá. ICA. Bogotá, Colombia.spa
dc.relation.referencesCéspedes, F., Fernández, JA., Gobbi, JA., & Bernardis, AC. 2012. Reservorio de carbono en suelo y raíces de un pastizal y una pradera bajo pastoreo. Revista Fitotecnia Mexicana, 35(1):79-86.spa
dc.relation.referencesColabelli, M., Agnusdei, M., Mazzanti, A., & Labreveux, M. 1998. El proceso de crecimiento y desarrollo de gramíneas forrajeras como base para el manejo de la defoliación. INTA. Boletin Técnico No. 148. 21 p.spa
dc.relation.referencesCollins, M., & Newman, Y. 2018. Chapter 2: Structure and Morphology of Grasses. In Colllins, M., Nelson, CJ., Moore, KJ., & Barnes, RF. (Eds.) Forages: Volume 1: An introduction to grassland agriculture, (Vol. 269, 7th ed). Wiley-Blackwell.spa
dc.relation.referencesConnor, EW., & Hawkes, CV. 2018. Effects of extreme changes in precipitation on the physiology of C4 grasses. Oecologia, 188:355-365 https://doi.org/10.1007/s00442-018-4212-5spa
dc.relation.referencesCorrea, HJ., Escalante, LF., & Jaimes, LJ. 2018. Efecto de la época del año y la altura remanente posterior al pastoreo sobre el crecimiento y calidad nutricional del pasto Kikuyo (Cenchrus clandestinus) en el norte de Antioquia. Livestock Research for Rural Development, 30(6). http://www.Irrd.org/Irrd30/6/hjcor30097.htmlspa
dc.relation.referencesCransberg, L. 1995. Kikuyu the forgotten pasture?. Farm note No. 11/95. Department of Agriculture. Western, Australia.spa
dc.relation.referencesCruz, P., & Boval, M. 2000. Effect of nitrogen on some morphogenetic traits of temperate and tropical perennial forage grasses. Chapter 8. In: Grassland Ecophysiology and grazing Ecology. Edited by Lemaire G, Hodgson J, Moraes A, Nabinger C, Carvalho PC. New York, USA. CABI International.spa
dc.relation.referencesCruz-Hernández, A., Hernández-Garay, A., Vaquera-Huerta, H., Chay-Canul, A., Enríquez-Quiroz, J., & Ramírez-Vera, S. 2017. Componentes morfogenéticos y acumulación del pasto mulato a diferente frecuencia e intensidad de pastoreo. Revista mexicana de Ciencias Pecuarias, 8(1):101-109spa
dc.relation.referencesCunha, AMQ., Macedo, VHM., de Oliveira, JKS., Melo, DDM., Domingues, FN., Cȃndido, EP., Fatury, C., & do Rȇgo, AC. 2022. Nitrogen fertilisation as a strategy for intensifying production and improving the quality of Massai Grass grown in a humid tropical climate. Journal of Plant Nutrition, 45(14):2213-2227. https://doi.org/10.1080/01904167.2022.2046078spa
dc.relation.referencesDai, L., Guo, X., Ke, X., Zhang, F., Li, Y., Peng, C., Shu, K., Li, Q., Lin, L., Cao, G., & Dy, Y. 2019. Moderate grazing promotes the root biomass in Kobresia meadow on the northern Qinghai-Tibet Plateau. Ecology and evolution, 9:9395-9406. doi.10.1002/ece3.5494spa
dc.relation.referencesDa Silva, TC., Perazzo, AF., Macedo, CHO., Batista, ED., Pinho, RMA., Bezerra, HFC., & Santos, EM. 2012. Morfogȇnese e estructura de Brachiaria decumbens em resposta ao corte e adubaçȃo nitrogenada. Archivos de Zootecnia, 61(233):91-102. https://doi.org/10.4321/S0004-05922012000100010spa
dc.relation.referencesDa Silva, SC., Sbrissia, AF. & Pereira, LET. 2015. Ecophysiology of C4 forage grasses-understanding plant growth for optimising their use and management. Agriculture, 5(3):598-625spa
dc.relation.referencesDa Silva, HMS., Dubeux Jr, JCB., Silveira, ML., dos Santos, MVF., de Freitas, EV., & Lira, MA. 2019. Root descomposition of grazed signal grass in response to stocking and nitrogen fertilization rates. Crop Science, 59:811-818. https://doi.org/10.2135/cropsci2018.08.0523spa
dc.relation.referencesDawson, LA., Grayston, SJ., & Paterson, E. 2000. Effects of grazing on the roots and rhizosphere of grasses. In: Lemaire G, Hodgson J, de Moraes A, Nabinger C, and de F Carvalho PC. Eds., Grassland Ecophysiology and Grazing Ecology. CAB International, Wallingford, Oxfordshire, 61-84. http://dx.doi/10.1079/9780851994529.0015spa
dc.relation.referencesD´Antonio, CM., & Vitousek, PM. 1992. Biological invasions by exotic grasses, the grass/fire cycle, and global change. Annu. Rev. Ecol. Syst., 23:63-87spa
dc.relation.referencesDelevatti, LM., Cardoso, AS., Barbero, RP. et al. 2019. Effect of nitrogen application rate on yield, forage quality, and animal performance in a tropical pasture. Scientific Reports, 9:7596. https://doi.org/10.1038/s41598-019-44138-xspa
dc.relation.referencesDe Almeida, OG., Pedreira, CGS., de Assis, JA., Pedreira, BC., Gomes, FJ., & Nave, RLG. 2023. Defoliation management and nitrogen fertiliser rate affect canopy structural traits of grazed guineagrass (Megathyrsus maximus) cv Zuri under rotational stocking. Crop and Pasture Science, 74(12):1201-1209 https://doi.org/10.1071/CP22388spa
dc.relation.referencesDe Visser, R., Vianden, H., & Schnyder, H. 1997. Kinects and relative significance of remobilized and current C and N incorporation in leaf and root growth zones of Lolium perenne after defoliation: Assessment by 13C and 15N steady-state labelling. Plant Cell Environment, 20:37-46.spa
dc.relation.referencesDel Pozo, PP. 2002. Bases ecofisiológicas para el manejo de los pastos tropicales. Pastos: Revista de la Sociedad Española para el estudio de los pastos, 32(2):109-137spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística – DANE. 2017. Encuesta Nacional Agropecuaria (ENA), Boletin Técnico. https://www.agronet.gov.co/Documents/boletin_ena_2017.pdfspa
dc.relation.referencesDifante, GDS., Nascimento Júnior, DD., Euclides, VPB., Silva, SCD., Barbosa, RA., & Gonçalves, WV. 2009. Sward structure and nutritive value of Tanzania guineagrass subjected to rotational stocking managements. Revista Brasileira de Zootecnia, 38(1):9-19 https://doi.org/10.1590/S1516-35982009000100002spa
dc.relation.referencesDodd, MB., Crush, JR., Mackay, AD., & Barker, DJ. 2011. The “root” to more soil carbon under pastures. Proceedings of the New Zealand Grassland Association, 73:43-50spa
dc.relation.referencesDourado, RL., Souza, AL., Zanine, AM., Toral, FLB., Ferreira, DJ., & Abreu, JG. 2015. Structural and production characteristics of Piatã grass Forage submitted to levels of Nitrogen. American Journal of Plant Sciences, 6:693-701 http://dx.doi.org/10.4236/ajps.2015.65075spa
dc.relation.referencesDubeux, JCB., Sollenberger, LE., Interrante, SM., Vendramini, JMB., & Stewart, RL. 2006. Litter decomposition and mineralization in Bahiagrass pastures managed at different intensities. Crop Sci., 46:1305–1310. doi:10.2135/cropsci2005.08-0263spa
dc.relation.referencesDubeux, JCB., Sollenberger, LE., Mathews, BW., Scholberg, JM., & Santos, HQ. 2007. Nutrient cycling in warm-climate grasslands. Crop Sci., 47:915–928. doi:10.2135/cropsci2006.09.0581spa
dc.relation.referencesEndo, RM. 1967. Root tip degeneration of turf grasses, natural and induced. California Turfgrass Culture, 17(3):17-18.spa
dc.relation.referencesEscobar-Charry, MA., Cárdenas, EA., & Carulla, JE. 2020. Effect of altitude and defoliation frequency in the quality and growth of Kikuyu grass (Cenchrus clandestinus). Rev. Fac. Nac. Agron. Medellín, 73(1):9121-9130 doi: 10.15446/rfnam.v73n1.77330spa
dc.relation.referencesFales, SL., Muller, LD., Ford, SA., O´Sallivan, M., Hoover, RJ., Holden, LA., Lanyon, LE., & Buckmaster, DR. 1995. Stocking rate affects production and profitability in a rotationally grazed Pasture System. Journal Production Agriculture, 8(1):88-96.spa
dc.relation.referencesFAO - Organización de la Naciones Unidas para la Alimentación y la Agricultura y GTIS -Grupo Técnico Intergubernamental del Suelo. 2015. Estado Mundial del Recurso Suelo (EMRS) - Resumen Técnico. Organizaciones de las Naciones Unidas para la Alimentación y la Agricultura y Grupo Técnico Intergubernamental del Suelo. Roma, Italia. http://www.fao.org/3/a-i5126s.pdfspa
dc.relation.referencesFernandes Rodrigues, L., dos Santos, A., Silveira Junior, O., & Donizetti dos Santos, JG. 2017. Productivity of Urochloa brizantha “Marandú” influenced by strategic rest periods and nitrogen levels. Semina: Ciências Agrárias, 38(5):3203-3213 [fecha de Consulta 31 de octubre de 2020]. ISSN: 1676-546X. Disponible en: https://www.redalyc.org/articulo.oa?id=4457/445753229031spa
dc.relation.referencesFerri, CM., Sáenz, AM., & Jouve, VV. 2015. Términos de uso frecuente en producción y utilización de pasturas. Semiárida Rev. Fac. Agron. UNLPam, 25(1): 41-61spa
dc.relation.referencesFigueroa, N., Etchevers, B., Velásquez, M., & Acosta, M. 2005. Concentración de carbono en diferentes tipos de vegetación de la sierra norte de Oxaca. Terra Latinoamericana, 23:57-64.spa
dc.relation.referencesFinn, D., Page, K., Catton, K., Strounina, E., Kienzle, M., Robertson, F., Armstrong, R., & Dalal, R. 2015. Effect of added nitrogen on plant litter descomposition depends on initial soil carbon and nitrogen stoichiometry. Soil Biology & Biochemistry, 91:160-168. https://dx.doi.org/10.1016./j.soilbio.2015.09.001spa
dc.relation.referencesFlores, E. 1999. La planta, estructura y función. Cartago, Costa Rica: Asociación de Editoriales Universitarias de América Latina y el Caribe. ISBN: 978-9968-801-02-7. 884 p.spa
dc.relation.referencesFollett, RF., Stewart, CE., Bradford, J., Pruessner, EG., Sims, PL., & Vigil, MF. 2020. Long-term pasture management impacts on eolian sand soils in the southern mixed-grass prairie. Quaternary International, 565:84-93.spa
dc.relation.referencesFonseca, C., Balocchi, O., Keim, JP., & Rodriguez, C. 2016. Efecto de la frecuencia de la defoliación en el rendimiento y composicion nutricional de Pennisetum clandestinum Hochst. ex Chiov. Agro Sur, 44(3): 67-76 doi:10.4206/agrosur.2016.v44n3-07spa
dc.relation.referencesFortes, D., Herrera, RS., & Gonzáles, S. 2004. Estrategias para la resistencia de las plantas a la defoliación. Revista Cubana de Ciencia Agrícola, 38(2): 111-119spa
dc.relation.referencesFulkerson, WJ., & Michell, PJ. 1987. The effect of height and frequency of mowing on the yield and composition of perennial ryegrass, white clover swards in the autumn to spring period. Grass and Forage Science, 42(2):169-174 https://doi.org/10.1111/j.1365-2494.1987.tb02104.xspa
dc.relation.referencesFulkerson, WJ., Slack, K., & Havilah, E. 1999. The effect of defoliation Interval and height on growth and herbage quality of Kikuyu grass (Pennisetum clandestinum). Tropical Grasslands, 33:138-145.spa
dc.relation.referencesFulkerson, WJ., & Donaghy, DJ. 2001. Plant-soluble Carbohydrate reserves and senescence – key criteria for developing an effective grazing management System for ryegrass-based pastures: a review. Aust J Esp Agr., 41:261-275.spa
dc.relation.referencesFulkerson, B., Griffiths, N., Sinclair, K., & Beale, P. 2010. Primefact 1068, Milk production from Kikuyu grass based pastures. Forage for milk production. Industry & Investment NSW. Disponible en https://www.dpi.nsw.gov.au/__data/assets/pdf_file/0012/359949/Milk-production-from-kikuyu-grass-based-pastures.pdfspa
dc.relation.referencesGarcía, SC., Islam, MR., Clark, CEF., & Martin, PM. 2014. Kikuyu-based pasture for dairy production: a review. Crop and Pasture Science, 65: 787-797.spa
dc.relation.referencesGarcía, SC., Fulkerson, WJ., & Brookes, SU. 2008. Dry matter production, nutritive value and efficiency of nutrient utilization of a complementary forage rotation compared to a grass pasture system. Grass and Forage Science, 63:284-300. Doi:10.1111/j.1365-2494.2008.00636.xspa
dc.relation.referencesGarcia-Pausas, J., Casals, P., Rovira, P., Vallecillo, S., Sebastiá, MT., & Romanya, J. 2012. Decomposition of labelled roots and root-C and-N allocation between soil fractions in mountain grasslands. Soil Biol. Biochem., 49:61–69. doi:10.1016/j.soilbio.2012.02.015spa
dc.relation.referencesGastal, F., & Durand, JL. 2000. Effects of Nitrogen and water supply on N and C fluxes and partitioning in defoliated swards. In: Lemaire, G., Hodgson, J., de Moraes, A., Nabinger, C., & de F Carvalho, PC. Eds., Grassland Ecophysiology and grazing Ecology. CAB International, Wallingford, Oxfordshire, 15-39.spa
dc.relation.referencesGastal, F., & Lemaire, G. 2002. N uptake and distribution in crops: an agronomical and ecophysiological perspective. Journal of Experimental Botany. Inorganic Nitrogen Assimilation Special Issue, 53(370): 789-799.spa
dc.relation.referencesGastal, F., & Lemaire, G. 2015. Defoliation, shoot plasticity, sward structure and herbage utilisation in pasture: Review of the underlying ecophysiological processes. Agriculture, 5:1146-1171. doi:10.3390/agriculture5041146spa
dc.relation.referencesGiolo M., Sallenave R., Pornaro C., Velasco-Cruz C., Macolino S., Leinauer B. 2021. Base temperatures affect accuracy of growing degree day model to predict emergence of bermudagrasses. Agronomy Journal 113(3):2960-2966. doi:10.1002/agj2.20660spa
dc.relation.referencesGiraldo-Cañas, D. 2011. Catálogo de la familia Poaceae en Colombia. Darwiniana, Nueva Serie. 49(2):139-247spa
dc.relation.referencesGiraldo-Cañas, D. 2013. Las gramíneas en Colombia. Riqueza, distribución, endemismo, invasión, migración, usos y taxonomías populares. [E-book]. Availabe at: http://ciencias.bogota.unal.edu.co/fileadmin/Facultad_de_Ciencias/Publicaciones/Archivos_Libros/Serie_Biblioteca_Jose_Jeronimo_Triana/Las-gramineas-POACEAE-en-Colombia-2013-Giraldo-Canas.pdf. Consultado: 9 noviembre de 2022.spa
dc.relation.referencesGiraldo, A., Zapata, M., & Montoya, E. 2008. Captura y flujo de carbono en un sistema silvopastoril de la zona Andina Colombiana. Archivos Latinoamericanos de Producción Animal, 16(4):241-245spa
dc.relation.referencesGonzález, B., & Yanes, O. 1995. Efecto de la presión de pastoreo y fraccionamiento del nitrógeno sobre el rendimiento y el valor nutritivo de la materia seca del pasto estrella (Cynodon nlemfuensis) en la época húmeda. Revista Facultad de Agronomía (Luz), 12:353-363.spa
dc.relation.referencesGrant, SA., Barthram, GT., & Torvell, L. 1981. Components of regrowth in grazed and cut Lolium perenne swards. Grass and Forage Science, 36(3):155-168. Doi:10.1111/j.1365-2494.1981.tb01552.xspa
dc.relation.referencesGuertal, EA., & Evans, DL. 2006. Nitrogen rate and mowing height effects on TifEagle bermudagrass establishment. Crop Sci., 46:1772–1778. doi:10.2135/cropsci2006.01-0006spa
dc.relation.referencesGuillet, M., Lemaire, G., & Gosse, G. 1984. Essai d´élaboration d´un schema global de la croissance des graminées fourragéres. Agronomie, 4(1):75-82spa
dc.relation.referencesGuo, YJ., Han, L., Li, GD., Han, JG., Wang, GL., Li, ZY., & Wilson, B. 2012. The effects of defoliation on plant community, root biomass and nutrient allocation and soil chemical properties on semi-arid steppes in northern China. Journal of Arid Environments, 78:128-134.spa
dc.relation.referencesGurgel, ALC., Difante G dos, S., Montagner, DB., de Araujo, AR., Días, AM., Santana, JCS., Rodrigues, JG., & Pereira, M de G. 2020. Nitrogen fertilisation in tropical pastures: What are the impacts of this practice? Australian Journal of Crop Science, 14(6):978-984. https://search.informit.org/doi/10.3316/informit.339455489008340spa
dc.relation.referencesHe, M., Zhou, G., Yuan, T., Groenigen, KJ., Shao, J. & Zhou, X. 2019. Grazing intensity significantly changes the C:N:P stoichiometry in grassland ecosystems. Global Ecology and Biogeography, 29(2):355-369. doi: 10.1111/geb.13028spa
dc.relation.referencesHeal, OW., Anderson, JM., & Swift, MJ. 1997. Plant litter quality and decomposition: An historical overview. In: G. Cadisch, and K.E. Giller, editors, Driven by nature: Plant litter quality and decomposition. CAB Int., Wallingford, England. p. 3–30.spa
dc.relation.referencesHernández-Garay, A., Matthew, C., & Hodgson, J.1999. Tiller size/density compensation in perennial ryegrass miniature swards subject to different defoliation heights and a proposed productivity index. Grass Forage Science, 54:347-356.spa
dc.relation.referencesHerrero, M., Fawcett, RH., Silveira, V., Busqué, J., Bernués, A., & Dent, JB. 2000a. Modelling the growth and utilisation of Kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterization. Agricultural Systems, 65: 73-97spa
dc.relation.referencesHerrero, M., Fawcett, RH., & Dent, JB. 2000b. Modelling the growth and utilisation of kikuyu grass (Pennisetum clandestinum) under grazing. 2. Model validation and analysis of management practices. Agricultural Systems, 65(2): 99-111spa
dc.relation.referencesHerrera, RS. 2020. Relación entre los elementos climáticos y el comportamiento de los pastos y forrajes en Cuba. Avances en Investigación Agropecuaria, 24(2):23-38spa
dc.relation.referencesHerrero, M., Fawcett, RH., Silveira, V., Busqué, J., Bernués, A., & Dent, JB. 2000a. Modelling the growth and utilisation of Kikuyu grass (Pennisetum clandestinum) under grazing. 1. Model definition and parameterization. Agricultural Systems, 65: 73-97spa
dc.relation.referencesHodgson, J. 1990. Grazing Management. Science into Practice. Longman Scientific & Technical, Harlow, England. 240 p.spa
dc.relation.referencesHolland, JN., Cheng, WX., Crossley, DA. 1996. Herbivore induced changes in plant carbon allocation: assessment of belowground C fluxes using C14. Oecologia, 107:8794.spa
dc.relation.referencesHolliday, J. 2007. Management of Kikuyu (Pennisetum clandestinum) for improved dairy production. Doctoral thesis Doctoral. Faculty of Science and Agriculture. University of Kwazulu-Natal. Pietermaritzburg, Sudáfrica.spa
dc.relation.referencesIbrahim, M., Mora, J., & Rosales, M. 2006. Potencialidades de los sistemas silvopastoriles para la generación de servicios ambientales: memorias de una conferencia electrónica realizada entre septiembre y diciembre de 2001. CATIE. Turrialba, Costa Rica.spa
dc.relation.referencesIgnatavičius, G., Sinkevičius, S., & Ložytė, A. 2013. Effects of grassland management on plan communities. Ekologija, 59(2):99-110.spa
dc.relation.referencesInstituto Agropecuario Colombiano - ICA. 1992. Fertilización en diversos cultivos: quinta aproximación. Produmedios. Recuperado de: http://hdl.handle.net/20.500.12324/14124spa
dc.relation.referencesInsua, JR., Agnusdei, MG., & Di Marco, ON. 2012. Calidad nutritiva de láminas de dos cultivares de festuca alta (Festuca arundinacea Schreb) Revista de Investigaciones Agropecuarias, 38(2):190-195 [Fecha de consulta 27 de noviembre de 2022] Recuperado de: https://www.redalyc.org/articulo.oa?id=86423631015spa
dc.relation.referencesIPCC. 2003. Good practice guidance for land use, land-use change and forestry. 632 p. Institute for Global Environment Strategies, Kanagawa, Japan.spa
dc.relation.referencesJaramillo, VJ. 2004. El ciclo global del carbono. En: Cambio climático: una visión desde México. Instituto Nacional de Ecología, Secretaría del Medio Ambiente y Recursos Naturales. México, DF. p. 77-85.spa
dc.relation.referencesJiménez-Rodríguez, C., & Arias-Aguilar, D. 2004. Distribución de la biomasa y densidad de raíces finas en un gradiente sucesional de bosques en la Zona Norte de Costa Rica. Revista Forestal Mesoamericana Kurú, 1(2):44-63spa
dc.relation.referencesJin, D., Yan, R., Li, L., Qi, J., Chen, J., Xu, H., Yan, Y., & Xin, X. 2021. Variation of livestock grazing intensity modified the magnitude of Carbon sequestration and flow within the plant-soil system of a meadow steppe ecosystem. Preprint. https://doi.org/10.21203/rs.3.rs-353876/v1spa
dc.relation.referencesKádar, I., & Ragályi, P. 2012. Mineral fertilization and grass productivity in a long-term field experiment. Archives of Agronomy and Soil Science, 58:127-131spa
dc.relation.referencesKeller, AB., Walter, CA., Blumenthal, DM., Borer, ET., Collins, SL., Delancey, LC., Fay, PA., Hofmockel, KS., Knops, JMH., Leakey, ADB., Mayes, MA., Seabloom, EW., & Hobbie, SE. 2022. Stronger fertilization effects on aboveground versus belowground plant properties across nine U.S. grasslands. Ecology, 104(2), e3891. https://doi.org/10.1002/ecy.3891spa
dc.relation.referencesKering, MK., Butler, TJ., Biermacher, JT. & Guretzky JA. 2012. Biomass yield and nutrient removal rates of perennial grasses under nitrogen fertilization. Bioenergy Research, 5:61-70.spa
dc.relation.referencesKuzyakov, Y., Siniakina, SV., Ruehlmann, J., Domanski, G., Stahr, K. 2002. Effect of nitrogen fertilisation on below-ground carbon allocation in lettuce. J. Sci. Food Agric., 82(13):1432-1441spa
dc.relation.referencesLal, R., Reicosky, DC., & Hanson, JD. 2007. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Tillage Res., 93:1-12.spa
dc.relation.referencesLambers, H., Chapin, FS., & Pons, TL. 2008. Plant physiological ecology. 2nd ed. Springer Science, Berlin, Germany. p. 610. doi:10.1007/978-0-387-78341-3spa
dc.relation.referencesLemaire, G., & Chapman, D. 1996. Tissue flows in grazed plant communities. In: Hodgson J, Illius AW eds. The ecology and management of grazing systems. Wallingford, CABI. p. 3-36.spa
dc.relation.referencesLemaire, G., & Gastal, F. 1997. N uptake and distribution in plant canopies. In: Lemaire, G. (Ed.) Diagnosis on the nitrogen status in crops. Springer-Verlag Heidelberg. p. 3-43.spa
dc.relation.referencesLemaire, G., & Agnusdei, MG. 1999. Leaf tissue turnover and efficiency of herbage utilization. In: International Symposium Grassland Ecophysiology and Grazing Ecology (1st., 1999, Curitiba). Proceedings. Anais. Curitiba, Universidade Federal do Paraná. pp. 265-287.spa
dc.relation.referencesLemaire, G. 2001. Ecophysiology of grasslands: dynamic aspects of forage plant population in grazed swards. Proc. XIX International Grassland Congress. Sao Paulo, Brasil. pp: 29-37.spa
dc.relation.referencesLeón, R., Bonifaz, N., & Gutiérrez, F. 2018 Pastos y forrajes del Ecuador: siembra y producción de pasturas. 1ra Edición. Editorial Universitaria Abya-Yala. ISBN 9789978103180. 616 p.spa
dc.relation.referencesLeslie, EM., Evelyn, HM., James, FC., Noorallah, GJ. 2010. Festuca campestris alters root morphology and growth in response to simulated grazing and nitrogen form. Functional Ecology, 24:283-294.spa
dc.relation.referencesLi, JH., Yang, YJ., Li, BW., Li, WJ., Wang, G., & Knops, JMH. 2014 Effects of Nitrogen and Phosphorus fertilization on soil Carbon fractions in Alpine meadows on the Qinghai-Tibetan Plateau. PLoS ONE, 9(7): e103266. doi:10.1371/journal.pone.0103266spa
dc.relation.referencesLiu, K., Sollenberger, LE., Silveira, ML., Vendramini, JMB., & Newman, YC. 2011. Grazing intensity and nitrogen fertilization affect litter responses in ‘Tifton 85’ bermudagrass pastures: II. Decomposition and nutrient mineralization. Agron. J., 103:163–168. doi:10.2134/agronj2010.0320spa
dc.relation.referencesLiu, Y., Yang, X., Tian, D., Cong, R., Zhang, X., Pan, Q., & Shi, Z. 2018. Resource reallocation of two Grass species during regrowth after defoliation. Frontiers in Plant Science, 9:1767. doi:10.3389/fpls.2018.01767spa
dc.relation.referencesLopes, CM., Paciullo, DSC., Araújo, SA do C., Morenz, MJF., Gomide, CA de M., Maurício, RM., & Braz, TG do S. 2017. Plant morphology and herbage accumulation of signal Grass with or without fertilization, under different light regimes. Ciȇncia Rural, 47(2), 20160472. https://doi.org/10.1590/0103-8478cr20160472spa
dc.relation.referencesLópez, SB., Garay, AH., Moya, EG., Pérez, JP., Shibata, JK., Haro, JGH., & Muñoz, SSG. 2005. Efecto de la altura y frecuencia de corte en el crecimiento y rendimiento del pasto Buffel (Cenchrus ciliaris L.) en un invernadero. Agrociencia, 39(2):137-147.spa
dc.relation.referencesLópez, MS., & Villalobos, LV. 2022. Fertilización nitrogenada en pastos del género Cynodon. Nutrición animal tropical, 16(1):82-104.spa
dc.relation.referencesLyons, RK., Manchen, R., & Forbes, TD. 1999. ¿Por qué cambia la calidad del forraje de los pastizales?. AgriLife Extension, 1-8spa
dc.relation.referencesMa, Z., Chang, SX., Bork, EW., Steinaker, DF., Wilson, SD., White, SR., & Cahill, JF. 2020. Climate change and defoliation interact to affect root length across northern temperate grasslands. Functional Ecology, 34:2611-2621. https://doi.org/10.1111/1365-2435.13669spa
dc.relation.referencesMa, Z., Bork, EW., Li, J., Chen, G., & Chang, SX. 2021. Photosynthetic carbon allocation to live roots increases the year following high intensity defoliation across two ecosites in a temperate mixed grassland. Agriculture, Ecosystem & Environment, 316:107450. doi:10.1016/j.agee.2021.107450spa
dc.relation.referencesMancipe-Muñoz, EA., Castillo-Sierra, J., Avellaneda-Avellaneda, Y., & Vargas-Martinez, JDJ. 2022. Efecto de la frecuencia de cosecha y la aplicación de enmiendas en la productividad de Cenchrus clandestinus Hochst. ex Chiov Morrone. Pastos y Forrajes, 45:eE20. Recuperado el 1 de diciembre de 2023. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864-03942022000100020&lng=es&nrm=isospa
dc.relation.referencesMarais, JP. 2001. Factors affecting the nutritive value of Kikuyu grass (Pennisetum clandestinum) – A review. Trop Grasslands, 35:65-84.spa
dc.relation.referencesMaranhão, SR., Ponpeu, RCFF., de Souza, HA., de Araújo, RA., Fontinele, RG., & Cȃndido, MJD. 2019. Morphophysiology of buffel Grass grown under different water supplies in the dry and dry-rainy seasons. Revista Brasileira De Engenharia Agrícola E Ambiental, 23(8):566-571 https://doi.org/10.1590/1807-1929/agriambi.v23n8p566-571spa
dc.relation.referencesMarín Gómez, A., Laca, EA., Baldissera, TC., Pinto, CE., Garagorry, FC., Zubieta, AS., et al. 2022. Determining the pre-grazing sward height of Kikuyu Grass (Cenchrus clandestinus - Hochst. Ex Chiov.) for optimizing nutrient intake rate of dairy heifers. PLoS ONE, 17(7):e0269716. https://doi.org/10.1371/journal.pone.0269716spa
dc.relation.referencesMartins, CDM., Schmitt, D., Duchini, PG., Miqueloto, T., & Sbrissia, AF. 2020. Defoliation intensity and leaf area index recovery in defoliated swards: implications for forage accumulation. Scientia Agricola, 78(2). doi: http://dx.doi.org/10.1590/1678-992X-2019-0095spa
dc.relation.referencesMartínez, H., Fuentes, E., & Acevedo, H. 2008. Carbono orgánico y propiedades del suelo. Revista de la ciencia del suelo y nutrición vegetal, 8:68-96.spa
dc.relation.referencesMatthew, C., Xia, JX., Chu, ACP., Mackay, AD., & Hodgson, J. 1991. Relationship between root production and tiller appearance rates in perennial ryegrass (Lolium perenne L.) In: Plant root growth. Ed. Atkinson D. British Ecological Society, Oxford. pp. 281-290.spa
dc.relation.referencesMatthew, C., Assuero, SG., Black, CK., Sackville Hamilton, NR. 2000. Tiller dynamics of grazed swards. In: Lemaire, G., Hodgson, J., Moraes, A., de Carvalho, PC., Nabinger, C. (Ed). Grassland ecophysiology and grazing ecology. Wallingford: CABI. p. 127-150spa
dc.relation.referencesMawdsley, JL., & Bardgett, RD. 1997. Continuous defoliation of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens) and associated changes in the microbial population of an upland grassland soil. Biology and Fertility of Soils, 24:52-58.spa
dc.relation.referencesMayel, S., Jarrah, M., & Kuka, K. 2021. How does grassland management affect physical and biochemical properties of temperate grassland soils? A review study. Grass and forage science, 76(2):215-244spa
dc.relation.referencesMazzanti, AE., & Lemaire, G. 1994. Effect of nitrogen fertilization on herbage production of tall fescue swards continuously grazed with sheep. 2. Consumption and efficiency of herbage utilization. Graas and Forage Science, 49:352-359.spa
dc.relation.referencesMedina, S., Barahona, R., Velásquez, A., Acevedo, J., & Cerón, M. 2022. Existencias de carbono orgánico en suelos cultivados con pasto kikuyo en el norte de Antioquia. Acta Agronómica, 71(2): 119-129.spa
dc.relation.referencesMejía, AC., Ochoa, R., & Medina, M. 2014. Efecto de diferentes dosis de fertilizante compuesto en la calidad del pasto kikuyo (Pennisetum clandestinum Hochst . Ex Chiov.). Pastos y Forrajes, 37(1): 31–37.spa
dc.relation.referencesMillot, JC., Methol, R., & Risso, D. 1987. Relevamiento de pasturas naturales y mejoramientos extensivos en áreas ganaderas del Uruguay, Montevideo. FUCREA. p. 199.spa
dc.relation.referencesMiqueloto, T., Winter, Fl., Bernardon, A., Cavalcantu, HS., de Medeiros, C., Mederios, CD., & Sbrissia, AF. 2019. Canopy structure of mixed kikuyugrass-tall fescue pasture in response to grazing management. Crop Science, 1-8. Doi:10.1002/csc2.20005spa
dc.relation.referencesMiqueloto, T., Bernardon, A., Winter, FL., & Fischer Sbrissia, A. 2020.Population Dynamics in mixed canopies composed of Kikuyu-grass and Tall Fescue. Agronomy, 10(5): 684. doi:10.3390/agronomy10050684spa
dc.relation.referencesMocelin, NG., Schmitt, D., Zanini, GD., Camacho, PAG., & Sbrissia, AF. 2022. Grazing management targets for Tangolagrass pastures. Agriculture, 12(2),279. https://doi.org/10.3390/agriculture12020279spa
dc.relation.referencesMolina, MRE. 2018. Altura de defoliación y recuperación de la pastura de Kikuyo (Cenchrus clandestinus) en la provincia de Ubaté (Tesis de Maestría). Universidad Nacional de Colombia, Sede Bogotá. Colombiaspa
dc.relation.referencesMolinar, F., Galt, D., & Holechek, J. 2001. Managing for mulch. Rangelands, 23:3-7.spa
dc.relation.referencesMoot DJ,., Scott WR., Roy AM. and Nicholls AC. 2000. Base temperature and thermal time requirements for germination and emergence of temperate pasture species. New Zealand Journal of Agricultural Research, 43(1):15-25 doi: 10.1080/00288233.2000.9513404spa
dc.relation.referencesMoot, D., Black, A., Lyons, EM., Egan, LM., & Hofmann, RW. 2021. Pasture resilience reflects differences in root and shoot responses to defoliation, and water and nitrogen deficits. New Zealand Grassland Association. Resilient Pastures Symposium, 17:71-80 https://doi.org/10.33584/rps.17.2021.3472spa
dc.relation.referencesMorales, A. 1997. Apuntes metodológicos para el estudio de raíces en plantaciones forestales y bosques naturales. En: Simposio Internacional – Posibilidades del manejo forestal sostenible en America tropical. Santa Cruz de la Sierra, Bolivia. CATIE. 11 p.spa
dc.relation.referencesMoreno LSB., Pedreira CGS., Boote KJ. and Alves RR. 2014. Base temperature determination of tropical Panicum spp. grasses and its effects on degree-day-based models. Agricultural and Forest Meteorology 186:26-33 https://doi.org/10.1016/j.agrformet.2013.09.213spa
dc.relation.referencesMorvan-Bertrand, A., Boucaud, J., Le Saos, J., & Prud´homme, MP. 2001. Roles of the fructans form leaf sheaths and from the elongating leaf bases in the regrowth following defoliation of Lolium perenne L. Planta, 213:109-120spa
dc.relation.referencesMotazedian, I., & Sharrow, SH. 1990. Defoliation frequency and intensity effects on pasture forage quality. Rangeland Ecology & Management/Journal of Range Management Archives, 43(3):198-201.spa
dc.relation.referencesMunns, R., Passioura, JB., Guo, J., Chazen, O., & Cramer, GR. 2000. Water relations and leaf expansion: importance of time scale. Journal of Experimental Botany, 51(350):1495-1504.spa
dc.relation.referencesNabinger, C. 1998. Princípios de manejo e produtividade de pastagens. In; Ciclo de Palestras em Produção e Manejo de Bovinos de Corte (3ª., 1998, Canoas, RS). Ênfase, manejo e utilização sustentável de pastagens: anais. Canoas, s.e. pp. 54.spa
dc.relation.referencesNeal, JS., Fulkerson, WJ., & Sutton, BG. 2011. Differences in water-use efficiency among perennial forages used by the dairy industry under optimum and deficit irrigation. Irrigation Science, 29:213-232.spa
dc.relation.referencesNelson, CJ., & Moore, KJ. 2020. Chapter 2: Grass Morphology. In: Forage: The Science of Grassland Agriculture. Moore, KJ., Collins, M., Nelson, CJ., Redfearn, DD. Eds., John Wiley & Sons Ltd. 23-49.spa
dc.relation.referencesOrtiz, AA. 2015. Respuesta del pasto Kikuyo a la inoculación: con hongos micorrícicos y a diferentes niveles de nitrógeno y fósforo. Colombia. MSc, Tesis. Universidad de Antioquia.spa
dc.relation.referencesOrtiz, A., Arboleda, E., & Medina, M. 2021. Calidad bromatológica del pasto kikuyo en respuesta a la inoculación con hongos micorrícicos y fertilización química. Rev. Investig. Vet. Perú., 32(3): e17645. https://dx.doi.org/10.15381/ripev.v32i3.17645spa
dc.relation.referencesParsons, AJ., & Penning, PD. 1988. The effect of the duration of regrowth on photosynthesis, leaf death and the average rate of growth in a rationally grazed sward. Grass and Forage Science, 43:15-27.spa
dc.relation.referencesPascuet, ML. 2003. Dinámica del pastoreo de bovinos sobre pasturas de agropiro alargado (Thinopyrum ponticum) mantenidas a diferentes alturas en primavera y otoño (Tesis de Maestría). Universidad Nacional de Mar del Plata, Facultad de Ciencias Agrarias. Unidad integrada Balcarce, Argentina. 83 p.spa
dc.relation.referencesPastrana, I., Reza, S., Espinosa, M., Suárez, E., & Díaz, E. 2011. Efecto de la fertilización nitrogenada en la dinámica del óxido nitroso y metano en Brachiaria humidicola (Rendle) Schweickerdt. Revista Corpoica – Ciencia y tecnología Agropecuaria, 12(2):134-142spa
dc.relation.referencesPavlů, K., Kassahun, T., Pavlů, VV., Pavlů, L., Blazek, P., & Homolka, P. 2021. The effects of first defoliation and previous management intensity on forage quality of a semi-natural species-rich grasslands. Plos one, 16(3):e0248804. https://doi.org/10.1371/journal.pone.0248804spa
dc.relation.referencesPembletona, KG., Rawnsleya, RP., & Burkittb, LL. 2012. Environmental influences on optimum nitrogen fertiliser rates for temperate dairy pastures. European Journal of Agronomy, 45:132-141.spa
dc.relation.referencesPeni, D., Stolarski, MJ., & Debowski, M. 2022. Green biomass quality of perennial herbaceous crops depending on the species, type and level of fertilization. Industrial Crops and Products, 184,115026spa
dc.relation.referencesPérez Atehortúa, M., Medina Aguirre, MF., Hurtado Granada, A., Arboleda Zapata, EM., & Medina Sierra, M. 2019. Reservas de carbono del pasto Cenchrus clandestinus (Poaceae) en los sistemas de manejo tradicional y silvopastoril, en diferentes relieves. Revista de Biología Tropical, 67(4):769-783. https://doi.org/10.15517/RBT.V67I4.34529spa
dc.relation.referencesPeyraud, J., & Astigarraga, L. 1998. Review of the effect of nitrogen fertilization on the chemical composition, intake, digestion and nutritive value of fresh herbage: Consequences on animal nutrition and N balance. Animal Feed Science Technology, 72:235-259spa
dc.relation.referencesPirela, MF. 2005. Valor nutritivo de los pastos tropicales. En: Manual de ganadería Doble Propósito. C. González-Stagnaro, E. Soto-Belloso (eds.) Ediciones Astro Data, S.A. Maracaibo-Venezuela. VIII (1):176-181.spa
dc.relation.referencesPrieto, GS., & Ernst, O. 2010. Manejo del suelo y rotación con pasturas. Efecto sobre la calidad del suelo, el rendimiento de los cultivos y el uso de insumos. Informaciones Agronómicas del Cono Sur, 45:22-26spa
dc.relation.referencesPulido, JI. 2005. Caracterización de los sistemas de producción de leche del trópico de altura en los departamentos de Boyacá y Cundinamarca. Informe técnico final. CORPOICA, Bogotá, 112p.spa
dc.relation.referencesRamos-Hernández, E., & Martínez-Sánchez, L. 2020. Almacenes de biomasa y carbón aéreo y radical en pastizales de Urochloa decumbens y Paspalum notatum (Poaceae) en el sureste de México. Revista de Biología Tropical, 68(2):440-451.spa
dc.relation.referencesRao, I., Rippstein, G., Escobar, G., & Ricaurte, J. 2001. Producción de biomasa vegetal epígea e hipógea en las sábanas nativas. En: Agroecología y biodiversidad de las sábanas en los Llanos Orientales de Colombia. CIAT, CIRAD. ISBN: 958-694-033-0spa
dc.relation.referencesReeves, M., & Fulkerson, WJ. 1996. Establishment of an optimal grazing time of kikuyu pastures for dairy cows. In: Proceedings of the 8th Australian Agronomy Conference; 1996 enero 30 – febrero 2, Toowoomba, Queesland. 4p.spa
dc.relation.referencesReyes, C., Hepp, C., Naguil, A., & Solís, C. 2018. Guía de forrajeras para la zona intermedia de la Región de Aysén. Boletín Técnico No. 386. Instituto de Investigaciones Agropecuarias, Centro de Investigación INIA Tamel Aike, Coyhaique, Aysén-Patagonia, Chile. 70 p. ISSN 0717-4829.spa
dc.relation.referencesRichards, JH. 1993. Physiology of plants recovering from defoliation. Proc. XVII International Grassland Congress. Palmerston North, New Zealand pp: 95-104.spa
dc.relation.referencesRobson, M., Ryle, GJA., & Woldedge, J. 1988. The grass plant: its form and function. In: Jones MB, Lazenby A., eds. The grass crops: the physiological basis of production. New York, Chapman and Hall. pp. 25-83.spa
dc.relation.referencesRodriguez, F., & Bernal, J. 1991. Curso de pastos y forrajes. ICA. Biblioteca Agropecuaria de Colombia. p. 330.spa
dc.relation.referencesRojas-Solano, J., Brenes-Gamboa, S., & Abarca-Monge, S. 2022. Carbono en el suelo: comparación entre un área de pastos y un bosque. InterSedes, 23(47):184-205. https://dx.doi.org/10.15517/isucr.v23i47.47695spa
dc.relation.referencesRomero, C., & Márquez, O. 2002. Efecto de la fertilización fosforada en pasto Brachiaria humidicola sobre la producción láctea de vacas doble propósito. Revista Científica, 12(2):578-580.spa
dc.relation.referencesSalazar, JAE. 2020. Estimación del suministro de proteína metabolizable en una ración para ganado de leche. Nutrición Animal Tropical, 14(2): 85-100 https://doi.org/10.15517/nat.v14i2.44256spa
dc.relation.referencesSalvador, PR., Pötter, L., Rocha, M., Hundertmarck, A., Sichonany, J., Amaral, LG., Negrini, M., & Moterle, P. 2016. Sward structure and nutritive value of Alexandergrass fertilized with nitrogen. Annals of the Brazilian Academy of Sciences, 88(1):385-395spa
dc.relation.referencesSánchez, L., & Villaneda, E. 2009. Renovación y manejo de praderas de sistemas de producción de leche especializada en el trópico alto colombiano. AGROSAVIAspa
dc.relation.referencesSanderson, M., Jones, J. 1993. Stand dynamics and yield components of alfalfa as affects by phosphorus fertility. Agron. J., 85:241-246.spa
dc.relation.referencesSantos, MER., Silveira, MCT., Gomes, VM., Da Fonseca, DM., Sousa, BML., & Santos, AD. 2013. Pasture height at the beginning of deferment as a determinant of signal grass structure and potential selectivity by cattle. Acta Scientiarum Animal Sciences, 35(4): 379-385. doi: 10.4025/actascianimsci.v35i4.20421spa
dc.relation.referencesSAS, Institute Inc. Online Doc 9.4. SAS Institute Inc., NC, USA. 2014spa
dc.relation.referencesSaraiva, FM., Dubeux Jr, JCB., Lira, MA., de Mello, ACL., dos Santos, MVF., Cabral, FA., &Teixeira, VI. 2014. Root development and soil carbon stocks of tropical pastures managed under different grazing intensities. Tropical Grasslands, 2:254-261 https://doi.org/10.17138/TGFT(2)254-261spa
dc.relation.referencesSbrissia, AF., da Silva, SC., Matthew, C., de Carvalho, CAB., Carnevalli, RA., Pinto, LF., Fagundes, JL., & Pedreira, CGS. 2003. Tiller size/density compensation in grazed Tifton 85 bermudagrass swards. Pesquisa Agropecuária Brasileira, 38(12): 1459-1468. https://dx.doi.org/10.1590/S0100-204X2003001200013spa
dc.relation.referencesSbrissia, AF., Euclides, V., Barbosa, RA., Montagner, DB., Padilha, DA., Santos, GT., Zanini, GD., Duchini, PG., & Da Silva, SC. 2013. Grazing management flexibility in pastures subjected to rotational stocking management: herbage production and chemical composition of kikuyu-grass swards. Procedings of the 22nd International Grassland Congress. The Ecology of Grassland and Forage Ecosystems, 22(1):1038-1040spa
dc.relation.referencesSbrissia, AF., Duchini, PG., Zanini, GD., Santos, GT., Padilha, DA., & Schmitt, D. 2018. Defoliation strategies in pastures submitted to intermittent stocking method: Underlying mechanisms buffering Forage accumulation over a range of grazing heights. Crop Science, 58:945-954. doi: 10.2135/cropsci2017.07.0447spa
dc.relation.referencesSchmitt, D., Padilha, DA., Medeiros-Neto, C., Ribeiro, HMN., Sollenberger, LE. & Sbrissia, AF. 2019. Herbage intake by catlte in kikuyugrass pastures under intermittent stocking method. Revista Ciȇncia Agronȏmica, 50(3):493-501spa
dc.relation.referencesSidari, M., Panuccio, MR., & Muscolo, A. 2004. Influence of acidity on growth and biochemistry of Pennisetum clandestinum. Biol Plantarum, 48:133-136spa
dc.relation.referencesSiqueira da Silva, HM., Batista Dubeux Jr, JC., Silveira, ML., Viana de Freitas, E., Ferreira dos Santos, MV., & de Andrade Lira, M. 2015. Stocking rate and nitrogen fertilization affect root decomposition of elephant grass. Agronomy Journal, 107(4):1331-1338.spa
dc.relation.referencesSkinner, RH., Nelson, CJ. 1995. Elongation of the grass leaf and its relationship to the phyllochron. Crop Science, 35:4-10.spa
dc.relation.referencesSnyder, GH., & Cisar, JL. 2000. Nitrogen/potassium fertilization ratios for bermudagrass turf. Crop Sci., 40:1719–1723. doi:10.2135/cropsci2000.4061719xspa
dc.relation.referencesSoares Filho, CV., Cecato, U., Ribeiro, OL., Roma, CFDC., Jobim, CC., Beloni, T., & Perri, SHV. 2013 Root system and root and stem base organic reserves of pasture Tanzania grass fertilizer with nitrogen under grazing. Semina: Ciências Agrárias Londrina, 34(5):2415-2426. doi: 10.5433/1679-0359.2013v34n5p2415spa
dc.relation.referencesSoto, C., Valencia, A., Galvis, RD., & Correa, HJ. 2005. Efecto de la edad de corte y del nivel de fertilización nitrogenada sobre el valor energético y proteico del pasto Kikuyo (Pennisetum clandestinum). Rev Col Cienc Pec., 18(1):17-26spa
dc.relation.referencesSousa, CCC,. Montagner, DB., de Araújo, AR., Euclides, VPB., dos Santos Difante, G., Gurgel, ALC., & de Souza, DL. 2021. La interfaz suelo-planta en Megathyrsus maximus cv. Mombasa sometida a diferentes dosis de nitrógeno en pastoreo rotacional. Rev Mex Cienc Pecu., 12(4):1098-1116.spa
dc.relation.referencesSprivulis, R. 1978. Kikuyu grass: establishment, management and utilisation in the southwest. Department of Primary Industries and Regional Development. Western Australia, Perth. Bulletin.spa
dc.relation.referencesTilley, JMA., & Terry, RA. 1963. A Two-Stage Technique for in vitro digestion of forage crops. Grass and forage Science, 18 (2):104-111. doi: 10.1111/j.1365-2494-1963.tb00335.xspa
dc.relation.referencesTrenholm, LE., Dudeck, AE., Sartain, JB. & Cisar, JL. 1998. Bermudagrass growth, total nonstructural carbohydrate concentration, and quality as influenced by nitrogen and potassium. Crop Sci., 38:168–174. doi:10.2135/cropsci1998.0011183X003800010028xspa
dc.relation.referencesThornton, B., & Millard, P. 1996. Effects of severity of defoliation on root functioning in grasses. Journal of Range Management, 49(5):443-447spa
dc.relation.referencesTitlyanova, A., Romanova, I., Kosykh, N., & Mironycheva-Tokareva, N. 1999. Pattern and process in above-ground and belowground components of grassland ecosystems. Journal of vegetation Science, 10(3):307-320. https://doi.org/10.2307/3237060spa
dc.relation.referencesUnidad de Planificación Rural Agropecuaria – UPRA, 2019. Noticias: Por primera vez en Colombia se identifican las áreas aptas para el cultivo de pastos. Zona UPRA, No. 8. https://www.upra.gov.co/documents/10184/0/Bolet%C3%ADn+Externo+Noviembre/6fd031ad-82ec-41b1-87f1-84cd17c98c15spa
dc.relation.referencesValdez, ZP., Hockaday, WC., Masiello, CA., Gallagher, ME., & Philip Robertson, G. 2017. Soil Carbon and nitrogen responses to nitrogen fertilizer and harvesting rates in switchgrass cropping systems. BioEnergy Research, 10:456-464.spa
dc.relation.referencesVallentine, JF. 2001. Grazing management. Second Edition. Ebook ISBN: 9780080532592spa
dc.relation.referencesVargas, J., Sierra, A., Mancipe, E., & Avellaneda, Y. 2018. El Kikuyo, una gramínea presente en los sistemas de rumiantes en trópico alto colombiano. Rev. CES Med. Zootec., 13(2):137-156spa
dc.relation.referencesViljoen, C., van der Colf, J., & Swanepoel, PA. 2020. Benefits are limited with high Nitrogen fertiliser rates in Kikuyu-Ryegrass Pasture Systems. Land, 9(6):173-. doi: 10.3390/land9060173spa
dc.relation.referencesVitor, CMT., Da Fonseca, DM., Cóser, AC., Martins, CE., Nascimento Júnior, D., & Ribeiro Júnior, JI. 2009 Produção de materia seca e valor nutritive de pastagem de capim-e-lefante sob irrigação e adubação nitrogenada. Revista Brasileira de Zootecnia, 38(3):435-442. doi:10.1590/S1516-35982009000300006spa
dc.relation.referencesVolenec, JJ., Ourry, A., Joern, BCA. 1996. A role to nitrogen reserves in the regrowth of forages and tolerance for stress. Physiology Plantarum, 97(1):185-193.spa
dc.relation.referencesWaghorn, GC., & Clark, DA. 2004. Feeding value of pastures for ruminants, New Zealand Veterinary Journal, 52(6):320-331 doi:10.1080/00480169.2004.36448spa
dc.relation.referencesWang, WY., Wang, QJ., Wang, CY., Shi, HL., Li, Y., Wang, G. 2005. The effect of land management of carbon and nitrogen status in plants and soils of alpine meadows on the Tibetan plateau. Land Degrad. Dev., 16:405-415.spa
dc.relation.referencesWherley, BG., Sinclair, TR., Dukes, MD., & Schreffler, AK. 2011. Nitrogen and cutting height influence root development during warm season turfgrass sod establishment. Agronomy Journal, 103(6):1629-1634. doi:10.2134/agronj2011.0146spa
dc.relation.referencesYaranga, RM., & Custodio, M. 2013. Almacenamiento de carbono en pastos naturales altoandinos. Scientia Agropecuaria, 4(4):313-319.spa
dc.relation.referencesZhang, L., Yang, L., Zhou, H., Ren, L., Li, W., Bai, W., & Zhang, WH. 2022. Carbon allocation patterns in forbs and grasses differ in responses to mowing and nitrogen fertilization in a temperate grassland. Ecological Indicators, 135,108588. https://doi.org/10.1016/j.ecolind.2022.108588spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::636 - Producción animalspa
dc.subject.proposalAcumulación Cspa
dc.subject.proposalDensidad brotesspa
dc.subject.proposalEstolónspa
dc.subject.proposalIntensidad defoliaciónspa
dc.subject.proposalPrácticas de manejospa
dc.subject.proposalRizomaspa
dc.subject.proposalAccumulation Ceng
dc.subject.proposalDefoliation intensityeng
dc.subject.proposalManagement practiceseng
dc.subject.proposalRhizomeeng
dc.subject.proposalShoot densityeng
dc.subject.proposalStoloneng
dc.subject.wikidataCenchrus clandestinus
dc.subject.wikidataCenchrus setaceus
dc.subject.wikidataKikuyu grass
dc.subject.wikidataPurple fountain grass
dc.titleEfecto de la altura de defoliación y la fertilización N sobre la estructura, la densidad de las plantas y el desempeño productivo de pasturas de Kikuyo (Cenchrus clandestinus)spa
dc.title.translatedEffect of defoliation height and nitrogen fertilization on plant structure and nutritional quality of Kikuyu grass pastures (Cenchrus clandestinus)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameMinisterio de Agricultura y Desarrollo Ruralspa
oaire.fundernameCorporación Colombiana de Investigación Agropecuaria - AGROSAVIAspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
80807674.2024.pdf
Tamaño:
2.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestria en Producción Animal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: