Ecuaciones parabólicas degeneradas en forma mixta

dc.contributor.advisorLópez Rodríguez, Bibianaspa
dc.contributor.advisorAcevedo Martínez, Ramiro Miguelspa
dc.contributor.authorGómez Mosquera, Christian Camilospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.date.accessioned2020-08-19T19:24:51Zspa
dc.date.available2020-08-19T19:24:51Zspa
dc.date.issued2020-08-13spa
dc.description.abstractThe aim of this work is to show an abstract framework to analyze the family of linear degenerate parabolic problems and family of linear degenerate parabolic mixed problems. To linear degenerate parabolic mixed equations, we deduce sufficient conditions to existence and uniqueness of solution by combining the theory for the degenerate parabolic equations and the classical Babuska-Brezzi theory. The numerical approximation was made through the finite element method in space and a Backward-Euler scheme in time. To degenerate parabolic and degenerate parabolic mixed problems, we obtain sufficient conditions to ensure that the fully-discrete problem has a unique solution and to prove quasi-optimal error estimates for the approximation. Moreover, we present a degenerate parabolic problem which arises from electromagnetic applications and deduce its well-posedness and convergence by using the developed abstract theory, including numerical tests to illustrate the performance of the method and confirm the theoretical results. Finally, we present the linear degenerate parabolic mixed (0 g) equations. We deduce that the fully-discrete problem has a unique solution and prove quasi-optimal error estimates for the approximation.spa
dc.description.abstractEl objetivo de este trabajo es mostrar un análisis numérico abstracto para una familia de problemas parabólicos degenerados lineales y una familia de problemas parabólicos degenerados en forma mixta lineales. En los problemas parabólicos degenerados ya se conocen resultados de existencia y unicidad, por lo cual se realizan algunos detalles de las demostraciones de los mismos por ilustración, mientras que en los problemas parabólicos degenerados en forma mixta se presenta un marco teórico, se demuestra un teorema de existencia, unicidad y dependencia continua de los datos, esto es, buen planteamiento del problema. Para la aproximación numérica de las soluciones de ambos problemas parabólicos, se propone en la variable espacial un método de elementos finitos y en la variable temporal el método de Euler implícito. Se demuestran resultados de existencia y unicidad de los esquemas totalmente discretos propuestos y bajo ciertas suposiciones de regularidad, se obtienen estimaciones del error que sugieren obtener ordenes óptimos de convergencia de los esquemas. En ambos casos se presenta modelos de aplicación que caen dentro del marco teórico estudiado, provenientes del modelo de corrientes inducidas. Por \'ultimo, se presentan experimentos numéricos que permiten confirmar los resultados teóricos obtenidos. Finalmente, se realiza un estudio de aproximación de problemas parabólicos degenerados mixtos en la forma (0 g) en donde se demuestra que el esquema totalmente discreto propuesto tiene única solución y bajo el supuesto que el problema continuo tiene solución, se realizan estimaciones del error.spa
dc.description.degreelevelDoctoradospa
dc.description.projectEcuaciones degeneradas en forma mixtaspa
dc.description.sponsorshipColcienciasspa
dc.format.extent107spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78086
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de matemáticasspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesAcevedo, R., Meddahi, S. and Rodríguez, R. An E-based mixed formulation for a time-dependent eddy current problem, Mathematics of Computation, 78, pp. 1929-1949, 2009.spa
dc.relation.referencesAcevedo R. and Meddahi S. An E-based mixed FEM and BEM coupling for a time-dependent eddy current problem, IMA Journal of Numerical Analysis, 31, pp. 667-697, 2011.spa
dc.relation.referencesAlonso-Rodríguez, A. and Valli, A. Eddy Current Approximation of Maxwell Equations: Theory, algorithms and applications, Springer, 2010.spa
dc.relation.referencesBernardi, C. & Raugel, G. A conforming nite element method for the time-dependent Navier-Stokes equations, SIAM Journal on Numerical Analysis, 22, pp. 455-473, 1985.spa
dc.relation.referencesBermúdez, A., Muñoz, R., Reales, C., Rodríguez, R. and Salgado, P. A transient eddy current problem on a moving domain. Numerical analysis, Advances in Computational Mathematics, 42, pp. 757{789, 2016.spa
dc.relation.referencesBermúdez, A., Muñoz, R., Reales, C., Rodríguez, R. and Salgado, P. A transient eddy current problem on a moving domain. Mathematical analysis. SIAM Journal on Mathematical Analysis, 45 (2013), pp. 3629-3650.spa
dc.relation.referencesBermúdez, A., López-Rodríguez. B., Rodríguez R. and Salgado, P. An eddy current problem in terms of a time-primitive of the electric eld with non-local source conditions., ESAIM. Mathematical Modelling and Numerical Analysis, 47, 875-902, 2013.spa
dc.relation.referencesBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Numerical solution of a transient three-dimensional eddy current model with moving conductors., JNAM International Journal of Numerical Analysis and Modeling, 16, no. 5, 695-717, 2019.spa
dc.relation.referencesBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Numerical solution of transient eddy current problems with input current intensities as boundary data., IMA Journal of Numerical Analysis, 47, 1001-1029, 2012.spa
dc.relation.referencesBermúdez, A., López-Rodríguez. B., Rodríguez, R. and Salgado, P. Equivalence between two nite element methods for the eddy current problem, Comptes Rendus de l'Académie des Sciences, 34, 769-774, 2010.spa
dc.relation.referencesBoffi, D. & Gastaldi, L. Analysis of nite element approximation of evolution problems in mixed form, SIAM Journal on Numerical Analysis, 42, pp. 1502-1526, 2004spa
dc.relation.referencesBossavit, A. Computational Electromagnetism, Academic Press Inc., 1998.spa
dc.relation.referencesBrezzi F. and Fortin M., Mixed and Hybrid Finited Elements Methods, Springer-Verlag, USA, 1991.spa
dc.relation.referencesBuffa, A. & Ciarlet Jr., P. On traces for functional spaces related to Maxwell equations. I. An integration by parts formula in Lipschitz polyhedra, Mathematical Methods in the Applied Sciences, 24,pp. 9-30, 2001.spa
dc.relation.referencesBuffa A., Costabel, M. & Sheen, D. On traces for H(curl; Ω) in Lipschitz domains, Journal of Mathematical Analysis and Applications, 276, pp. 845-867, 2002.spa
dc.relation.referencesCiarlet, P. The Finite Element Method for Elliptic Problems, SIAM, 2002.spa
dc.relation.referencesDautray R. and Lions J-L. Matematical Analysis and Numerical Methods for Science and Technology, Volumen 5, Evolution Problems I.spa
dc.relation.referencesHiptmair. R. Finite elements in computational electromagnetism, Numerica 11, pp. 237-339, 2002spa
dc.relation.referencesK. Kuttler, A degenerate nonlinear Cauchy problem Applicable Analysis, 13, pp. 307-322, 1982.spa
dc.relation.referencesKuttler K., The Galerkin method and degenerate evolution equations, Journal of Mathematical Analysis and Applications, 107, pp. 396-413, 1985spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalParabolic degenerate problemeng
dc.subject.proposalProblemas parabólicos degeneradosspa
dc.subject.proposalEstimaciones del errorspa
dc.subject.proposalMixed problemseng
dc.subject.proposalWell-posednesseng
dc.subject.proposalEsquemas totalmente discretosspa
dc.subject.proposalModelo de corrientes inducidasspa
dc.subject.proposalFinite element methodeng
dc.subject.proposalfully-discrete approximationeng
dc.subject.proposalError estimateseng
dc.subject.proposalEddy current modeleng
dc.titleEcuaciones parabólicas degeneradas en forma mixtaspa
dc.title.alternativeDegenerate parabolic equations in mixed formspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1061705720.2020.pdf
Tamaño:
2.58 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis Doctor en Ciencias -Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: