Diseño de moldes para inyección de plásticos y metales mediante el método de optimización topológica
dc.contributor.advisor | Montealegre Rubio, Wilfredo | |
dc.contributor.author | Benitez Lozano, Adrian José | |
dc.contributor.cvlac | BENITEZ LOZANO, ADRIAN JOSE | spa |
dc.contributor.googlescholar | https://scholar.google.com/citations?user=FLjw_qEAAAAJ&hl=es | spa |
dc.contributor.orcid | Benitez Lozano, Adrian Jose [0000000208721158] | spa |
dc.contributor.researchgate | https://www.researchgate.net/profile/Benitez-Adrian | spa |
dc.contributor.researchgroup | Diseño y Optimización Aplicada (Doa) | spa |
dc.contributor.scopus | https://www.scopus.com/authid/detail.uri?authorId=56469664700 | spa |
dc.date.accessioned | 2025-05-12T14:27:29Z | |
dc.date.available | 2025-05-12T14:27:29Z | |
dc.date.issued | 2025-05-02 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Uno de los principales problemas en los procesos de fabricación del moldeo por inyección radica en la atención a la producción eficiente, lo cual significa menores tiempos de ciclo y procesamiento, determinados en gran parte por los tiempos de refrigeración, piezas con medidas precisas y exactas, tolerancias dimensionales y geométricas, mayor vida útil del molde, aprovechamiento de los materiales y la obtención de productos a precios razonables, que muestran una economía sólida para la producción de grandes series. En el presente trabajo, se desarrolla un molde mediante optimización topológica, considerando la compensación térmica, la cual significa que, las deformaciones del molde, causadas por el gradiente térmico y las fuerzas de cierre del molde que son cíclicas, se minimizan en las cavidades del molde (zona de contacto entre el molde y el material fundido en el proceso de llenado), con el fin de mejorar las tolerancias de la pieza. El método de optimización topológica se basa en el modelo del material Solid Isotropic Material with Penalization (SIMP), y en la implementación de la programación lineal secuencial (SLP), para posteriormente aplicar el método de asíntotas móviles (MMA). Así, se optimiza el problema y función objetivo formulada, considerando un análisis lineal termo estructural. El dominio de diseño se encuentra en un espacio tridimensional (3D) y la implementación numérica se desarrolla en un software de programación (Matlab). Los resultados permiten el diseño de concepto del proceso de inyección de moldes para materiales plásticos y metálicos, basados en el enfoque de optimización topológica, considerando compensación térmica. Con los diseños y geometrías optimizadas, se realizó la fabricación de moldes de inyección optimizados, que fueron sometidos a un diseño de experimentos, en los cuales, se evaluó su comportamiento ante cambios en las variables de material de molde, fuerza de cierre y geometría de cavidades. (Texto tomado de la fuente) | spa |
dc.description.abstract | One of the main issues in the injection moulding manufacturing processes lies in attention to the efficient material production, this means minor cycle time, representing by cooling times, accuracy dimension parts, geometric and dimensional tolerances, major lifecycle for moulds and obtaining products at reasonable prices, which show a solid economy for large series production. In the present work, a topology optimization (OT) mold is developed, considering thermal compensation. Thermal compensation means that the mold-deformations, which is caused for gradient temperature and cycling injection forces in the mold, are minimized in the mold cavity zones (contact zone between the mold and the material injected in the filling process), to improve piece tolerances. The OT design is based on traditional SIMP material model and SLP implementation, considering linear thermo-structural analysis. The domain design is considered as a 3D domain and the numerical implementation will be developed in a programming software *.m code (MATLAB implementation). Due to all previously mentioned, in this work is achieved as a starting point the objective function for topology optimization and his sensitivity which will be implemented in a thermo structural programming code for topology optimization in the mold. The results allow the concept design for the mold injection process for plastics materials based on the topology optimization approach. With optimized designs and geometries, moulds were manufactured, which involved a design of experiments in which their behavior was evaluated in response to changes in the variables of mould material, clamping force and cavity geometry. | eng |
dc.description.curriculararea | Área Curricular de Ingeniería Mecánica | spa |
dc.description.degreelevel | Doctorado | spa |
dc.description.degreename | Doctor en Ingeniería | spa |
dc.description.researcharea | Optimización topológica aplicada al diseño de sistemas mecánicos y mecatrónicos | spa |
dc.format.extent | 198 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88167 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Minas | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Minas - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónica | spa |
dc.relation.references | Achillas, C. ; T. D. ; R. M. O. (2017). Alternative production strategies based on the comparison of additive and traditional manufacturing technologies. International Journal of Production Research , 55(12). | spa |
dc.relation.references | Agazzi, A., Legoff, R., & Truc-Vu, C. (2016). On the use of topology optimization for improving heat transfer in molding process. AIP Conference Proceedings, 1769. https://doi.org/10.1063/1.4963424 | spa |
dc.relation.references | Aguirre, H. de. (2016). Propiedades típicas para procesos de inyección - PP Homopolímero PH1310 (p. 1). Plassol S.A.S - Petroquim. | spa |
dc.relation.references | Akindoyo, J. O., Beg, M. D. H., Ghazali, S., Heim, H. P., Feldmann, M., & Mariatti, M. (2019). Oxidative induction and performance of oil palm fiber reinforced polypropylene composites – Effects of coupling agent and UV stabilizer. Composites Part A: Applied Science and Manufacturing, 125(April), 105577. https://doi.org/10.1016/j.compositesa.2019.105577 | spa |
dc.relation.references | Alberto Naranjo C. (2014). Diseño y operación de sistemas de enfriamiento en moldes de inyección para termoplásticos. Tecnología Del Plástico, 1, 4. | spa |
dc.relation.references | Altaf, K., Qayyum, J. A., Rani, A. M. A., Ahmad, F., Megat-Yusoff, P. S. M., Baharom, M., Aziz, A. R. A., Jahanzaib, M., & German, R. M. (2018). Performance analysis of enhanced 3D printed polymer molds for metal injection molding process. Metals, 8(6). https://doi.org/10.3390/met8060433 | spa |
dc.relation.references | ASCAMM, F. (2003). La importancia de la refrigeración del molde en el proceso de inyección de material plástico. Informador Técnico.Sena ASTIN, 67(1), 7. https://doi.org/10.23850/22565035.817 | spa |
dc.relation.references | Asteco. (2018). Productos - Ficha técnica de material duraluminio 7075,composición, propiedades y aplicaciones. (p. 1). Asteco. https://www.asteco.com.co/images/imagenes/productos/aceros/acerosparamoldes/fichastecnicas/7075.pdf | spa |
dc.relation.references | ASTM International. (2018). ASTM-E1933-14: Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. ASTM International, 9–11. https://doi.org/10.1520/E1933-14.2 | spa |
dc.relation.references | Bagalkot, A., Pons, D., Clucas, D., & Symons, D. (2019). A methodology for setting the injection moulding process parameters for polymer rapid tooling inserts. Rapid Prototyping Journal, 25(9), 1493–1505. https://doi.org/10.1108/RPJ-10-2017-0217 | spa |
dc.relation.references | Barbeiro, S., Enguiça, R., & Lobo, D. (2022). Automatic Generation of Conformal Cooling Channels in Injection Moulding. CAD Computer Aided Design, 150. https://doi.org/10.1016/j.cad.2022.103312 | spa |
dc.relation.references | Barbosa, R. C. N., Campilho, R. D. S. G., & Silva, F. J. G. (2018). Injection mold design for a plastic component with blowing agent. Procedia Manufacturing, 17, 774–782. https://doi.org/10.1016/j.promfg.2018.10.128 | spa |
dc.relation.references | Benchmarking Analysis of Polymers Using CAE Simulation for a Cattle Control Application (2017). | spa |
dc.relation.references | Bendsoe, M. P., & Sigmund, O. (2004). Topology Optimization (Springer-Verlag, Ed.; Vol. 87, Issue 5). | spa |
dc.relation.references | Benitez, A., Montealegre, W., & Vargas, C. (2019). Simulación de moldeo por inyección basado en el método de volúmenes finitos (FVM). In F. I. de I. Mecánica (Ed.), Actualidad de la Ingeniería Mecánica en Iberoamérica - XIV CIBIM (XIV, p. 283). | spa |
dc.relation.references | Benitez Lozano, A., Nelli Silva, E. C., & Rubio, W. M. (2021). Topology Optimization based on Thermal Compensation Applied to Mold Injection Design. In A. Conference (Ed.), 14th INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL ENGINEERING AND EXPERIMENTING - ACE-X 2021 (pp. 167–168). icc-conferences. https://drive.google.com/file/d/1zYQpR7mSoz6f5JVPSry1qRe5eOes1Wh_/view | spa |
dc.relation.references | Berger, G. R., Zorn, D., Friesenbichler, W., Bevc, F., & Bodor, C. J. (2018). Efficient Cooling of Hot Spots in Injection Molding . A Biomimetic Cooling Channel Versus a Heat-Conductive Mold Material and a Heat Conductive Plastics. 1–9. https://doi.org/10.1002/pen.25024 | spa |
dc.relation.references | Bogaerts, L., Faes, M., Bergen, J., Cloots, J., Vasiliauskaite, E., Vogeler, F., & Moens, D. (2020). Influence of thermo-mechanical loads on the lifetime of plastic inserts for injection moulds produced via additive manufacturing. Procedia CIRP, 96, 109–114. https://doi.org/10.1016/j.procir.2021.01.061 | spa |
dc.relation.references | Busachi, A., Erkoyuncu, J., Colegrove, P., Drake, R., Watts, C., Martina, F., Tapoglou, N., & Lockett, H. (2018). A System Approach for Modelling Additive Manufacturing in Defence Acquisition Programs. Procedia CIRP, 67, 209–214. https://doi.org/10.1016/j.procir.2017.12.201 | spa |
dc.relation.references | Chang, C.-Y. (2011). Simulation of compression effect on filling process in compression resin transfer molding. Advanced Composite Materials, 20(2), 197–211. https://doi.org/10.1163/092430410X547038 | spa |
dc.relation.references | Charalambis, A., Kerbache, L., Tosello, G., Pedersen, D. B., Mischkot, M., & Hansen, H. N. (n.d.). Economic trade-offs of additive manufacturing integration in injection moulding process chain. www.euspen.eu | spa |
dc.relation.references | Chen, Y., & Zhu, J. (2019). Warpage analysis and optimization of thin-walled injection molding parts based on numerical simulation and orthogonal experiment. IOP Conference Series: Materials Science and Engineering, 688(3). https://doi.org/10.1088/1757-899X/688/3/033027 | spa |
dc.relation.references | Company, P. E. (2009). Consejos para el Diseño de Moldes de Inyección Termoendurecida. Plenco, 1–16. | spa |
dc.relation.references | Corazza, E. J., Sacchelli, C. M., & Marangoni, C. (2012). Reducción del Tiempo de Ciclo de Inyección de Termoplásticos con el uso de Moldes con Tratamiento Superficial por Nitruración. Informacion Tecnologica, 23(3), 51–58. https://doi.org/10.4067/S0718-07642012000300007 | spa |
dc.relation.references | Deepika, S. S., Patil, B. T., & Shaikh, V. A. (2020). Plastic injection molded door handle cooling time reduction investigation using conformal cooling channels. Materials Today: Proceedings, 27, 519–523. https://doi.org/10.1016/j.matpr.2019.11.316 | spa |
dc.relation.references | Eck, N. J. van, & Waltman, L. (n.d.). VOSviewer - Visualizing scientific landscapes. Leiden University in the Netherlands. | spa |
dc.relation.references | Eleonora Atzeni, L. I. P. M. A. S. (2010). Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyping Journal. | spa |
dc.relation.references | Eschenauer, H. A., & Olhoff, N. (2001). Topology Optimization of Continuum Structures: A review*. Applied Mechanics Reviews, 54(4), 331–390. https://doi.org/10.1115/1.1388075 | spa |
dc.relation.references | Estadística para todos. (2025, March 29). Diagrama de Caja y Bigotes. Https://Www.Estadisticaparatodos.Es/Taller/Graficas/Cajas.Html. | spa |
dc.relation.references | Evan Malone, H. L. (2007). Fab@Home: the personal desktop fabricator kit. Rapid Prototyping Journal, 13(4), 245–255. | spa |
dc.relation.references | Feng, S., Kamat, A. M., & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082 | spa |
dc.relation.references | Flores, R. A. (1999). Sin Molde no hay Inyección. Plasticos. | spa |
dc.relation.references | Flórez, L. (2005). Simulación en inyección en América Latina. http://www.plastico.com/temas/Simulacion-en-inyeccion-en-America-Latina+3040060?pagina=4 | spa |
dc.relation.references | Franchetti, M., & Kress, C. (2017). An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. International Journal of Advanced Manufacturing Technology, 88(9–12), 2573–2579. https://doi.org/10.1007/s00170-016-8968-7 | spa |
dc.relation.references | Francisco, A. R. L. (2013). Plastics Mold Engineering Handbook 4th Edition. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004 | spa |
dc.relation.references | Frizelle, W. G. (2016). Injection Molding Technology. In E. Sevier (Ed.), Applied Plastics Engineering Handbook: Processing, Materials, and Applications: (Second Ed.). William Andrew. https://doi.org/10.1016/B978-0-323-39040-8.00010-9 | spa |
dc.relation.references | Fu, J., & Ma, Y. (2018). Computer-aided engineering analysis for early-ejected plastic part dimension prediction and quality assurance. International Journal of Advanced Manufacturing Technology, 1–11. https://doi.org/10.1007/s00170-018-2376-0 | spa |
dc.relation.references | Fu, J., & Ma, Y. (2019). A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robotics and Computer Integrated Manufacturing, 56(March 2017), 66–74. https://doi.org/10.1016/j.rcim.2018.08.004 | spa |
dc.relation.references | Gabriel Antonio Mendible, J. A. R. S. P. J. (2017). Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyping Journal. | spa |
dc.relation.references | Gao, Z., Dong, G., Tang, Y., & Zhao, Y. F. (2023). Machine learning aided design of conformal cooling channels for injection molding. Journal of Intelligent Manufacturing, 34(3), 1183–1201. https://doi.org/10.1007/s10845-021-01841-9 | spa |
dc.relation.references | Geng, T., Li, D., Zhou, H., & Shao, Y. (2005). Simulation of temperature field in filling stage of injection molding using three-dimensional model. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 56(9). | spa |
dc.relation.references | Gisario, A., Kazarian, M., Martina, F., & Mehrpouya, M. (2019). Metal additive manufacturing in the commercial aviation industry: A review. In Journal of Manufacturing Systems (Vol. 53, pp. 124–149). Elsevier B.V. https://doi.org/10.1016/j.jmsy.2019.08.005 | spa |
dc.relation.references | Gonçalves Martinho, P., António, &, & Pouzada, S. (n.d.). Alternative materials in moulding elements of hybrid moulds: structural integrity and tribological aspects. https://doi.org/10.1007/s00170-021-06630-5/Published | spa |
dc.relation.references | Gordillo, A., Sánchez, M. S., & Martínez, A. B. (1997). La simulación del proceso de inyección en el diseño de las piezas de plástico. | spa |
dc.relation.references | Guevara-Morales, A., & Figueroa-López, U. (2014). Residual stresses in injection molded products. Journal of Materials Science, 49(13), 4399–4415. https://doi.org/10.1007/s10853-014-8170-y | spa |
dc.relation.references | Haertel, J. H. K., & Nellis, G. F. (2017). A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Applied Thermal Engineering, 119, 10–24. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2017.03.030 | spa |
dc.relation.references | Hopkinson, N., & Dickens, P. (n.d.). Analysis of rapid manufacturing - using layer manufacturing processes for production. | spa |
dc.relation.references | Instituto Colombiano Agropecuario. (2016). Ficha técnica de dispositivo de identificación nacional DIN (C. D. D. E. Identificaci, N. D. I. N. Est, N. Del, & D. I. N. El, Eds.). | spa |
dc.relation.references | J. K. Guest, J. H. Prévost, & T. Belytschko. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254. | spa |
dc.relation.references | Jahan, S. A., Wu, T., Zhang, Y., El-Mounayri, H., Tovar, A., Zhang, J., Acheson, D., Nalim, R., Guo, X., & Lee, W. H. (2016a). Implementation of Conformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds. Procedia Manufacturing, 5, 901–915. https://doi.org/10.1016/j.promfg.2016.08.077 | spa |
dc.relation.references | Jahan, S., Wu, T., Shin, Y., Tovar, A., & El-Mounayri, H. (2019a). Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3D printed plastic injection molds. 34, 631–639. https://doi.org/10.1016/j.promfg.2019.06.120 | spa |
dc.relation.references | Jayswal, S., Jangade, H., Abhishek, K., & Ramkumar, P. L. (n.d.). Design and Simulation of Seat Handle Using Plastic Injection Molding Process. Springer Singapore. https://doi.org/10.1007/978-981-13-1966-2 | spa |
dc.relation.references | John Ryan C. Dizon Open the ORCID record for John Ryan C. Dizon[Opens in a new window], A. D. V. L. R. S. A. H. E. Jr. , Q. C. and R. C. A. (2019). Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Communications, 9(4). | spa |
dc.relation.references | José Martín, & Melchor Leal. (2014). Estudio de recubrimientos y tratamientos de superficie de nueva generación para optimizar la vida útil del molde de inyección de polímeros que usan la resina Noryl. CIATEQ -Centro de Tecnología Avanzada. | spa |
dc.relation.references | Kadir, A. Z. A., Yusof, Y., & Wahab, M. S. (2020). Additive manufacturing cost estimation models—a classification review. In International Journal of Advanced Manufacturing Technology (Vol. 107, Issues 9–10, pp. 4033–4053). Springer. https://doi.org/10.1007/s00170-020-05262-5 | spa |
dc.relation.references | Kampker, A., Ayvaz, P., & Lukas, G. (2020). Direct Polymer Additive Tooling - Economic Analysis of Additive Manufacturing Technologies for Fabrication of Polymer Tools for Injection Molding. Key Engineering Materials, 843, 9–18. https://doi.org/10.4028/www.scientific.net/KEM.843.9 | spa |
dc.relation.references | Kampker, A., Triebs, J., Alves, B., Kawollek, S., & Ayvaz, P. (2018). Potential analysis of additive manufacturing technologies for fabrication of polymer tools for injection moulding – A comparative study. 2018 IEEE International Conference on Advanced Manufacturing (ICAM), 49–52. https://doi.org/10.1109/AMCON.2018.8614915 | spa |
dc.relation.references | Kazmer, D. O. (2016). Injection Mold Design Engineering. In Injection Mold Design Engineering. https://doi.org/10.3139/9781569905715.fm | spa |
dc.relation.references | Keller, A., Dransfeld, C., & Masania, K. (2018). Flow and heat transfer during compression resin transfer moulding of highly reactive epoxies. Composites Part B: Engineering, 153, 167–175. https://doi.org/10.1016/j.compositesb.2018.07.041 | spa |
dc.relation.references | Kitayama, S., & Natsume, S. (2014). Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization. Simulation Modelling Practice and Theory, 48, 35–44. https://doi.org/10.1016/j.simpat.2014.07.004 | spa |
dc.relation.references | Kitayama, S., Yamazaki, Y., Takano, M., & Aiba, S. (2018a). Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi-criteria decision making. Simulation Modelling Practice and Theory, 85, 95–105. https://doi.org/10.1016/j.simpat.2018.04.004 | spa |
dc.relation.references | Knorr, L., Setter, R., Rietzel, D., Wudy, K., & Osswald, T. (2020). Comparative analysis of the impact of additively manufactured polymer tools on the fiber conguration of injection molded long-fiber-reinforced thermoplastics. Journal of Composites Science, 4(3). https://doi.org/10.3390/jcs4030136 | spa |
dc.relation.references | Krizsma, S., Kovács, N. K., Kovács, J. G., & Suplicz, A. (2021). In-situ monitoring of deformation in rapid prototyped injection molds. Additive Manufacturing, 42. https://doi.org/10.1016/j.addma.2021.102001 | spa |
dc.relation.references | Kuehl Robert. (2001). Principios estadísticos para el diseño y análisis de investigaciones (Thomson Learning, Ed.). https://doi.org/10.4067/S0071-17132000003500023 | spa |
dc.relation.references | Kuo, C.-C., & Xu, W.-C. (2018). Effects of different cooling channels on the cooling efficiency in the wax injection molding process. International Journal of Advanced Manufacturing Technology, 98(1–4), 887–895. https://doi.org/10.1007/s00170-018-2345-7 | spa |
dc.relation.references | Lakkanna, M., Mohan Kumar, G. C., & Kadoli, R. (2016). Computational design of mould sprue for injection moulding thermoplastics. Journal of Computational Design and Engineering, 3(1), 37–52. https://doi.org/10.1016/j.jcde.2015.06.006 | spa |
dc.relation.references | Liu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175–1196. https://doi.org/10.1007/s00158-014-1107-x | spa |
dc.relation.references | Liu, M., Zhan, J., Zhu, B., & Zhang, X. (2020). Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness. Mechanism and Machine Theory, 146. https://doi.org/10.1016/j.mechmachtheory.2019.103728 | spa |
dc.relation.references | Lozano, A. B., Álvarez, S. H., Isaza, C. V., & Montealegre-Rubio, W. (2022). Analysis and Advances in Additive Manufacturing as a New Technology to Make Polymer Injection Molds for World-Class Production Systems. In Polymers (Vol. 14, Issue 9). MDPI. https://doi.org/10.3390/polym14091646 | spa |
dc.relation.references | Luo, Y., Li, M., & Kang, Z. (2016). Topology optimization of hyperelastic structures with frictionless contact supports. International Journal of Solids and Structures, 81, 373–382. https://doi.org/10.1016/j.ijsolstr.2015.12.018 | spa |
dc.relation.references | M Ruffo and R Hague. (2007). Cost estimation for rapid manufacturing ’ simultaneous production of mixed components using laser sintering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(11). | spa |
dc.relation.references | Madhusudan, I., Karl, G., & Bahgat, S. (2014). Cooling of Microelectronic and Nanoelectronic Equipment: Advances and Emerging Research (Vol. 3). World Scientific Publishing Co. Pte. Ltd. | spa |
dc.relation.references | Malacara Hernández, D. (2005). La metrología óptica y sus aplicaciones. Acta Universitaria, 15(1), 5–12. http://www.redalyc.org/articulo.oa?id=41615101 | spa |
dc.relation.references | Malca, C., Santos, C., Sena, M., & Mateus, A. (2018). Development of SLM cellular structures for injection molds manufacturing. Science and Technology of Materials, 30(1), 13–22. https://doi.org/10.1016/j.stmat.2018.03.001 | spa |
dc.relation.references | Manuel, J., Sánchez, A., Director, I., Manini, J., & Madrid, G. (2014). Diseño Y Fabricación De Un Molde Para Inyección En Plástico. 129. | spa |
dc.relation.references | Menges, G., Michaeli, W., Mohren, P., Menges, G., Michaeli, W., & Mohren, P. (2001). How to Make Injection Molds. In How to Make Injection Molds. https://doi.org/10.3139/9783446401808.fm | spa |
dc.relation.references | Mercado-Colmenero, J. M., Rubio-Paramio, M. A., Marquez-Sevillano, J. D. J., & Martin-Doñate, C. (2018a). A new method for the automated design of cooling systems in injection molds. CAD Computer Aided Design, 104, 60–86. https://doi.org/10.1016/j.cad.2018.06.001 | spa |
dc.relation.references | Montealegre Rubio, W., Nishiwaki, S., & Nelli Silva, E. C. (2010). Design of compliant mechanisms considering thermal effect compensation and topology optimization. Finite Elements in Analysis and Design, 46(12), 1049–1060. https://doi.org/10.1016/j.finel.2010.06.010 | spa |
dc.relation.references | Montealegre Rubio y E. C. Nelli. (2005). ‘MEMS’ Eletrotermomecânicos Usando o Método de Otimização Topológica. Master Thesis Universidade de São Paulo., 238. | spa |
dc.relation.references | Montgomery, D. C. (2001). Design and analysis of experiments (J. W. & Sons, Ed.; 5th ed.). | spa |
dc.relation.references | M.P, B., & Sigmund, O. (2003). Topology Optimization. Theory, Methods and Applications (Springer, Ed.). | spa |
dc.relation.references | Muñoz, D. A., Arango, J. P., González, C., Puerto, E., & Garzón, M. (2018). Topology optimization applied to the design of cooling channels for plastic injection. Journal of Physics: Conference Series, 1002(1). https://doi.org/10.1088/1742-6596/1002/1/012004 | spa |
dc.relation.references | Ortega, E. M. (2007). Diseño de moldes de inyección de plástico con Ingeniería concurrente . 98. https://doi.org/10.1016/B978-1-4557-7898-0.00005-6 | spa |
dc.relation.references | Osswald Tim, Menges Georg, Flórez Jairo, F. L. (2010). Ciencia de los polímeros para ingenieros. Editorial Guaduales Limitada. | spa |
dc.relation.references | Park, H. S., & Dang, X. P. (2017). Development of a Smart Plastic Injection Mold with Conformal Cooling Channels. Procedia Manufacturing, 10, 48–59. https://doi.org/10.1016/j.promfg.2017.07.020 | spa |
dc.relation.references | Park, S. J., Lee, J. H., Yang, J., Heogh, W., Kang, D., Yeon, S. M., Kim, S. H., Hong, S., Son, Y., & Park, J. (2022). Lightweight injection mold using additively manufactured Ti-6Al-4V lattice structures. Journal of Manufacturing Processes, 79(December 2021), 759–766. https://doi.org/10.1016/j.jmapro.2022.05.022 | spa |
dc.relation.references | Pham, T., Hoyle, C., Zhang, Y., & Nguyen, T. H. (2016). Topology Optimization of Hyperelastic Continua. Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1–8. https://doi.org/10.1115/DETC2016-59776 | spa |
dc.relation.references | Photocentric group. (2023, January 10). Datasheet and Commercial Information for DL 400 High Temp Resin . | spa |
dc.relation.references | Plenco, P. E. C. (2009). Filosofía de Soluciones de Problemas en Moldeo (Plenco, Ed.; pp. 1–12). | spa |
dc.relation.references | Pötsch, G., Michaeli, W. (2007). Injection Molding 2E. An Introduction. Hanser Gardner Publications. | spa |
dc.relation.references | Prospector. (2019). Poliuretano termoplástico (TPU) Propiedades típicas Generic TPU-Polyether. Página Web. https://plastics.ulprospector.com/es/generics/54/c/t/poliuretano-termoplastico-tpu-properties-processing/sp/10 | spa |
dc.relation.references | Qayyum, J. A. and A. K. and A. R. A. M. and A. F. and J. M. (2017). Performance of 3D printed polymer mold for metal injection molding process. Engineering and Applied Sciences, 12(22). | spa |
dc.relation.references | R Hague, I. C. and P. D. (2023). Implications on design of rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1). | spa |
dc.relation.references | Ramírez Gil, F. J. (2013). Diseño óptimo de micromecanismos tridimensionales con actuación electrotérmica utilizando optimización topológica y unidades de procesamiento gráfico (GPU). http://www.bdigital.unal.edu.co/11617/1/1037544577_2013.pdf | spa |
dc.relation.references | Rashid, O., Low, K. W. Q., & Pittman, J. F. T. (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264. https://doi.org/10.1016/j.jclepro.2020.121375 | spa |
dc.relation.references | Roberto Hernández Sampieri, Carlos Fernández Collado, & Pilar Baptista Lucio. (2007). Fundamentos de la metodología de la investigación (Mc Graw-Hill / Interamericana de España, Ed.; Vol. 1). | spa |
dc.relation.references | Rosa, N., Costa, J., & Lopes, A. G. (2023). CFD study of transient heating and cooling of a blank mould with a conformal cooling channel for manufacturing glass containers. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100932 | spa |
dc.relation.references | Rubio, W. M., Francisco, R., & Esteban, S. (2017). Mecanismos flexibles: desde el diseño conceptual hasta su manufactura. Revista Politécnica, 13(24), 65–78. http://revistas.elpoli.edu.co/index.php/pol/article/view/1091 | spa |
dc.relation.references | Ruffo, M., Tuck, C., & Hague, R. (2006). Cost estimation for rapid manufacturing - Laser sintering production for low to medium volumes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1417–1427. https://doi.org/10.1243/09544054JEM517 | spa |
dc.relation.references | Ruso, C. (2013). Metodología de la Investigación. Zeus.Inf.Ucv.Cl/~rsoto/Cursos/DII711/Programa_DII711.Pd, 19. http://www.inf.ucv.cl/~rsoto/cursos/DII711/Cap4_DII711.pdf | spa |
dc.relation.references | Schwartz, J. (2018). Understanding Injection Molding Cooling Times. https://revpart.com/understanding-injection-molding-cooling-time/ | spa |
dc.relation.references | Shen, S., Kanbur, B. B., Zhou, Y., & Duan, F. (2020). Thermal and Mechanical Assessments of the 3D-Printed Conformal Cooling Channels: Computational Analysis and Multi-objective Optimization. Journal of Materials Engineering and Performance, 29(12), 8261–8270. https://doi.org/10.1007/s11665-020-05251-5 | spa |
dc.relation.references | Sigmund, O. (2000). Topology optimization : a tool for the tailoring of structures and materials. The Royal Society, 358, 211–227. | spa |
dc.relation.references | Sigmund, O. (2001). A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127. https://doi.org/10.1007/s001580050176 | spa |
dc.relation.references | Sigmund, O. (2007). Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33(4–5), 401–424. https://doi.org/10.1007/s00158-006-0087-x | spa |
dc.relation.references | Sigmund, O., & Petersson, J. (1998). Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 16(1), 68–75. https://doi.org/10.1007/BF01214002 | spa |
dc.relation.references | Stelson, K. A. (2003). Calculating cooling times for polymer injection moulding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(5), 709–713. https://doi.org/10.1243/095440503322011443 | spa |
dc.relation.references | Steve Melito. (2022, December 19). The Ultimate Guide to Injection Molding Tolerances. Https://Www.Fictiv.Com/Articles/Injection-Molding-Tolerances-an-in-Depth-Look. | spa |
dc.relation.references | Tan, C., Wang, D., Ma, W., Chen, Y., Chen, S., Yang, Y., & Zhou, K. (2020). Design and additive manufacturing of novel conformal cooling molds. Materials and Design, 196. https://doi.org/10.1016/j.matdes.2020.109147 | spa |
dc.relation.references | Tomasoni, D., Colosio, S., Giorleo, L., & Ceretti, E. (2020a). Design for additive manufacturing: Thermoforming mold optimization via conformal cooling channel technology. Procedia Manufacturing, 47, 1117–1122. https://doi.org/10.1016/j.promfg.2020.04.128 | spa |
dc.relation.references | Tosello, G., Charalambis, A., Kerbache, L., Mischkot, M., Pedersen, D. B., Calaon, M., & Hansen, H. N. (2019). Value chain and production cost optimization by integrating additive manufacturing in injection molding process chain. International Journal of Advanced Manufacturing Technology, 100(1–4), 783–795. https://doi.org/10.1007/s00170-018-2762-7 | spa |
dc.relation.references | Tran, N. T., & Gehde, M. (2019). Creating material data for thermoset injection molding simulation process. Polymer Testing, 73(November 2018), 284–292. https://doi.org/10.1016/j.polymertesting.2018.11.042 | spa |
dc.relation.references | Valdés, S. S., Flores, I. G. Y., & Fernández, O. S. R. (2001). Moldeo por inyección de termoplásticos (L. N. Editores, Ed.). | spa |
dc.relation.references | Vargas, C., Sierra, J., Posada, J., & Botero, J. (2017). Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations. Revista Materia, 22(4). https://doi.org/http://dx.doi.org/10.1590/s1517-707620170004.0228 | spa |
dc.relation.references | Volpato, N., Solis, D. M., & Costa, C. A. (2016). An analysis of Digital ABS as a rapid tooling material for polymer injection moulding. International Journal of Materials and Product Technology, 52(1–2), 3–16. https://doi.org/10.1504/IJMPT.2016.073616 | spa |
dc.relation.references | Wahl, J. P., Niedermeyer, J., Bernhard, R., Hermsdorf, J., & Kaierle, S. (2022a). Design of additively manufacturable injection molds with conformal cooling. Procedia CIRP, 111, 97–100. https://doi.org/10.1016/j.procir.2022.08.146 | spa |
dc.relation.references | Wang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 43(6), 767–784. https://doi.org/10.1007/s00158-010-0602-y | spa |
dc.relation.references | Wu, T., Brand, K., & Tovar, A. (2018). Multiscale, thermomechanical topology optimization of cellular structures for porous injection molds. Advances in Structural and Multidisciplinary Optimization, January, 1–13. https://doi.org/10.1007/978-3-319-67988-4 | spa |
dc.relation.references | Wu, T., Jahan, S. A., Zhang, Y., Zhang, J., Elmounayri, H., & Tovar, A. (2017). Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manufacturing, 10, 923–934. https://doi.org/10.1016/j.promfg.2017.07.082 | spa |
dc.relation.references | Wu, T., Liu, K., & Tovar, A. (2016). Multiphase Thermomechanical Topology Optimization of Functionally Graded Lattice Injection Molds. Proceedings of the ASME IDETC-CIE, 1–10. https://doi.org/10.1115/DETC2016-60538 | spa |
dc.relation.references | Wu, T., Liu, K., & Tovar, A. (2017b). Multiphase topology optimization of lattice injection molds. Computers and Structures, 192, 71–82. https://doi.org/10.1016/j.compstruc.2017.07.007 | spa |
dc.relation.references | Xu, F. ; W. Y. ; L. H. (2001). Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. Journal of Manufacturing Systems, 19(5), 283–296. | spa |
dc.relation.references | Xu, S., Cai, Y., & Cheng, G. (2010). Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41(4), 495–505. https://doi.org/10.1007/s00158-009-0452-7 | spa |
dc.relation.references | Yang, W., & Lu, S. (2019). Nonisothermal simulation on pressure during resin transfer molding. 47492, 1–10. https://doi.org/10.1002/app.47492 | spa |
dc.relation.references | Zhang, Y., Hou, B., Wang, Q., Huang, Z., & Zhou, H. (2018). Automatic generation of venting system on complex surfaces of injection mold. International Journal of Advanced Manufacturing Technology, 98(5–8), 1379–1389. https://doi.org/10.1007/s00170-018-2327-9 | spa |
dc.relation.references | Zhou, M., & Rozvany, G. I. N. (1991). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 309–336. https://doi.org/10.1016/0045-7825(91)90046-9 | spa |
dc.relation.references | Zhou, X., Zhang, Y., Mao, T., Ruan, Y., Gao, H., & Zhou, H. (2018). Feature extraction and physical interpretation of melt pressure during injection molding process. Journal of Materials Processing Technology, 261, 50–60. https://doi.org/10.1016/j.jmatprotec.2018.05.026 | spa |
dc.relation.references | Zhu, X., Zhao, C., Wang, X., Zhou, Y., Hu, P., & Ma, Z. D. (2019). Temperature-constrained topology optimization of thermo-mechanical coupled problems. Engineering Optimization, 51(10), 1687–1709. https://doi.org/10.1080/0305215X.2018.1554065 | spa |
dc.relation.references | Zink, B., Kovács, N. K., & Kovács, J. G. (2019). Thermal analysis based method development for novel rapid tooling applications. International Communications in Heat and Mass Transfer, 108. https://doi.org/10.1016/j.icheatmasstransfer.2019.104297 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.armarc | Piezas moldeadas (fundición) | |
dc.subject.ddc | 670 - Manufactura | spa |
dc.subject.lemb | Termoplásticos | |
dc.subject.proposal | Diseño de moldes de inyección | spa |
dc.subject.proposal | Compensación térmica | spa |
dc.subject.proposal | Método de elementos finitos | spa |
dc.subject.proposal | Topology Optimization | eng |
dc.subject.proposal | Thermal compensation | eng |
dc.subject.proposal | Mould injection design | eng |
dc.subject.proposal | Finite element method | eng |
dc.subject.proposal | Método de optimización topológica | spa |
dc.subject.wikidata | Diseño de producto | |
dc.title | Diseño de moldes para inyección de plásticos y metales mediante el método de optimización topológica | spa |
dc.title.translated | Design of Plastic and Metal Injection Molds Using Topological Optimization | eng |
dc.type | Trabajo de grado - Doctorado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | spa |
dc.type.version | info:eu-repo/semantics/submittedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1017136379.2025.pdf
- Tamaño:
- 8.37 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de doctorado en Ingeniería: Ingeniería Mecánica y Mecatrónica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: