Diseño de moldes para inyección de plásticos y metales mediante el método de optimización topológica

dc.contributor.advisorMontealegre Rubio, Wilfredo
dc.contributor.authorBenitez Lozano, Adrian José
dc.contributor.cvlacBENITEZ LOZANO, ADRIAN JOSEspa
dc.contributor.googlescholarhttps://scholar.google.com/citations?user=FLjw_qEAAAAJ&hl=esspa
dc.contributor.orcidBenitez Lozano, Adrian Jose [0000000208721158]spa
dc.contributor.researchgatehttps://www.researchgate.net/profile/Benitez-Adrianspa
dc.contributor.researchgroupDiseño y Optimización Aplicada (Doa)spa
dc.contributor.scopushttps://www.scopus.com/authid/detail.uri?authorId=56469664700spa
dc.date.accessioned2025-05-12T14:27:29Z
dc.date.available2025-05-12T14:27:29Z
dc.date.issued2025-05-02
dc.descriptionIlustracionesspa
dc.description.abstractUno de los principales problemas en los procesos de fabricación del moldeo por inyección radica en la atención a la producción eficiente, lo cual significa menores tiempos de ciclo y procesamiento, determinados en gran parte por los tiempos de refrigeración, piezas con medidas precisas y exactas, tolerancias dimensionales y geométricas, mayor vida útil del molde, aprovechamiento de los materiales y la obtención de productos a precios razonables, que muestran una economía sólida para la producción de grandes series. En el presente trabajo, se desarrolla un molde mediante optimización topológica, considerando la compensación térmica, la cual significa que, las deformaciones del molde, causadas por el gradiente térmico y las fuerzas de cierre del molde que son cíclicas, se minimizan en las cavidades del molde (zona de contacto entre el molde y el material fundido en el proceso de llenado), con el fin de mejorar las tolerancias de la pieza. El método de optimización topológica se basa en el modelo del material Solid Isotropic Material with Penalization (SIMP), y en la implementación de la programación lineal secuencial (SLP), para posteriormente aplicar el método de asíntotas móviles (MMA). Así, se optimiza el problema y función objetivo formulada, considerando un análisis lineal termo estructural. El dominio de diseño se encuentra en un espacio tridimensional (3D) y la implementación numérica se desarrolla en un software de programación (Matlab). Los resultados permiten el diseño de concepto del proceso de inyección de moldes para materiales plásticos y metálicos, basados en el enfoque de optimización topológica, considerando compensación térmica. Con los diseños y geometrías optimizadas, se realizó la fabricación de moldes de inyección optimizados, que fueron sometidos a un diseño de experimentos, en los cuales, se evaluó su comportamiento ante cambios en las variables de material de molde, fuerza de cierre y geometría de cavidades. (Texto tomado de la fuente)spa
dc.description.abstractOne of the main issues in the injection moulding manufacturing processes lies in attention to the efficient material production, this means minor cycle time, representing by cooling times, accuracy dimension parts, geometric and dimensional tolerances, major lifecycle for moulds and obtaining products at reasonable prices, which show a solid economy for large series production. In the present work, a topology optimization (OT) mold is developed, considering thermal compensation. Thermal compensation means that the mold-deformations, which is caused for gradient temperature and cycling injection forces in the mold, are minimized in the mold cavity zones (contact zone between the mold and the material injected in the filling process), to improve piece tolerances. The OT design is based on traditional SIMP material model and SLP implementation, considering linear thermo-structural analysis. The domain design is considered as a 3D domain and the numerical implementation will be developed in a programming software *.m code (MATLAB implementation). Due to all previously mentioned, in this work is achieved as a starting point the objective function for topology optimization and his sensitivity which will be implemented in a thermo structural programming code for topology optimization in the mold. The results allow the concept design for the mold injection process for plastics materials based on the topology optimization approach. With optimized designs and geometries, moulds were manufactured, which involved a design of experiments in which their behavior was evaluated in response to changes in the variables of mould material, clamping force and cavity geometry.eng
dc.description.curricularareaÁrea Curricular de Ingeniería Mecánicaspa
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ingenieríaspa
dc.description.researchareaOptimización topológica aplicada al diseño de sistemas mecánicos y mecatrónicosspa
dc.format.extent198 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88167
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Doctorado en Ingeniería - Ingeniería Mecánica y Mecatrónicaspa
dc.relation.referencesAchillas, C. ; T. D. ; R. M. O. (2017). Alternative production strategies based on the comparison of additive and traditional manufacturing technologies. International Journal of Production Research , 55(12).spa
dc.relation.referencesAgazzi, A., Legoff, R., & Truc-Vu, C. (2016). On the use of topology optimization for improving heat transfer in molding process. AIP Conference Proceedings, 1769. https://doi.org/10.1063/1.4963424spa
dc.relation.referencesAguirre, H. de. (2016). Propiedades típicas para procesos de inyección - PP Homopolímero PH1310 (p. 1). Plassol S.A.S - Petroquim.spa
dc.relation.referencesAkindoyo, J. O., Beg, M. D. H., Ghazali, S., Heim, H. P., Feldmann, M., & Mariatti, M. (2019). Oxidative induction and performance of oil palm fiber reinforced polypropylene composites – Effects of coupling agent and UV stabilizer. Composites Part A: Applied Science and Manufacturing, 125(April), 105577. https://doi.org/10.1016/j.compositesa.2019.105577spa
dc.relation.referencesAlberto Naranjo C. (2014). Diseño y operación de sistemas de enfriamiento en moldes de inyección para termoplásticos. Tecnología Del Plástico, 1, 4.spa
dc.relation.referencesAltaf, K., Qayyum, J. A., Rani, A. M. A., Ahmad, F., Megat-Yusoff, P. S. M., Baharom, M., Aziz, A. R. A., Jahanzaib, M., & German, R. M. (2018). Performance analysis of enhanced 3D printed polymer molds for metal injection molding process. Metals, 8(6). https://doi.org/10.3390/met8060433spa
dc.relation.referencesASCAMM, F. (2003). La importancia de la refrigeración del molde en el proceso de inyección de material plástico. Informador Técnico.Sena ASTIN, 67(1), 7. https://doi.org/10.23850/22565035.817spa
dc.relation.referencesAsteco. (2018). Productos - Ficha técnica de material duraluminio 7075,composición, propiedades y aplicaciones. (p. 1). Asteco. https://www.asteco.com.co/images/imagenes/productos/aceros/acerosparamoldes/fichastecnicas/7075.pdfspa
dc.relation.referencesASTM International. (2018). ASTM-E1933-14: Standard Practice for Measuring and Compensating for Emissivity Using Infrared Imaging Radiometers. ASTM International, 9–11. https://doi.org/10.1520/E1933-14.2spa
dc.relation.referencesBagalkot, A., Pons, D., Clucas, D., & Symons, D. (2019). A methodology for setting the injection moulding process parameters for polymer rapid tooling inserts. Rapid Prototyping Journal, 25(9), 1493–1505. https://doi.org/10.1108/RPJ-10-2017-0217spa
dc.relation.referencesBarbeiro, S., Enguiça, R., & Lobo, D. (2022). Automatic Generation of Conformal Cooling Channels in Injection Moulding. CAD Computer Aided Design, 150. https://doi.org/10.1016/j.cad.2022.103312spa
dc.relation.referencesBarbosa, R. C. N., Campilho, R. D. S. G., & Silva, F. J. G. (2018). Injection mold design for a plastic component with blowing agent. Procedia Manufacturing, 17, 774–782. https://doi.org/10.1016/j.promfg.2018.10.128spa
dc.relation.referencesBenchmarking Analysis of Polymers Using CAE Simulation for a Cattle Control Application (2017).spa
dc.relation.referencesBendsoe, M. P., & Sigmund, O. (2004). Topology Optimization (Springer-Verlag, Ed.; Vol. 87, Issue 5).spa
dc.relation.referencesBenitez, A., Montealegre, W., & Vargas, C. (2019). Simulación de moldeo por inyección basado en el método de volúmenes finitos (FVM). In F. I. de I. Mecánica (Ed.), Actualidad de la Ingeniería Mecánica en Iberoamérica - XIV CIBIM (XIV, p. 283).spa
dc.relation.referencesBenitez Lozano, A., Nelli Silva, E. C., & Rubio, W. M. (2021). Topology Optimization based on Thermal Compensation Applied to Mold Injection Design. In A. Conference (Ed.), 14th INTERNATIONAL CONFERENCE ON ADVANCED COMPUTATIONAL ENGINEERING AND EXPERIMENTING - ACE-X 2021 (pp. 167–168). icc-conferences. https://drive.google.com/file/d/1zYQpR7mSoz6f5JVPSry1qRe5eOes1Wh_/viewspa
dc.relation.referencesBerger, G. R., Zorn, D., Friesenbichler, W., Bevc, F., & Bodor, C. J. (2018). Efficient Cooling of Hot Spots in Injection Molding . A Biomimetic Cooling Channel Versus a Heat-Conductive Mold Material and a Heat Conductive Plastics. 1–9. https://doi.org/10.1002/pen.25024spa
dc.relation.referencesBogaerts, L., Faes, M., Bergen, J., Cloots, J., Vasiliauskaite, E., Vogeler, F., & Moens, D. (2020). Influence of thermo-mechanical loads on the lifetime of plastic inserts for injection moulds produced via additive manufacturing. Procedia CIRP, 96, 109–114. https://doi.org/10.1016/j.procir.2021.01.061spa
dc.relation.referencesBusachi, A., Erkoyuncu, J., Colegrove, P., Drake, R., Watts, C., Martina, F., Tapoglou, N., & Lockett, H. (2018). A System Approach for Modelling Additive Manufacturing in Defence Acquisition Programs. Procedia CIRP, 67, 209–214. https://doi.org/10.1016/j.procir.2017.12.201spa
dc.relation.referencesChang, C.-Y. (2011). Simulation of compression effect on filling process in compression resin transfer molding. Advanced Composite Materials, 20(2), 197–211. https://doi.org/10.1163/092430410X547038spa
dc.relation.referencesCharalambis, A., Kerbache, L., Tosello, G., Pedersen, D. B., Mischkot, M., & Hansen, H. N. (n.d.). Economic trade-offs of additive manufacturing integration in injection moulding process chain. www.euspen.euspa
dc.relation.referencesChen, Y., & Zhu, J. (2019). Warpage analysis and optimization of thin-walled injection molding parts based on numerical simulation and orthogonal experiment. IOP Conference Series: Materials Science and Engineering, 688(3). https://doi.org/10.1088/1757-899X/688/3/033027spa
dc.relation.referencesCompany, P. E. (2009). Consejos para el Diseño de Moldes de Inyección Termoendurecida. Plenco, 1–16.spa
dc.relation.referencesCorazza, E. J., Sacchelli, C. M., & Marangoni, C. (2012). Reducción del Tiempo de Ciclo de Inyección de Termoplásticos con el uso de Moldes con Tratamiento Superficial por Nitruración. Informacion Tecnologica, 23(3), 51–58. https://doi.org/10.4067/S0718-07642012000300007spa
dc.relation.referencesDeepika, S. S., Patil, B. T., & Shaikh, V. A. (2020). Plastic injection molded door handle cooling time reduction investigation using conformal cooling channels. Materials Today: Proceedings, 27, 519–523. https://doi.org/10.1016/j.matpr.2019.11.316spa
dc.relation.referencesEck, N. J. van, & Waltman, L. (n.d.). VOSviewer - Visualizing scientific landscapes. Leiden University in the Netherlands.spa
dc.relation.referencesEleonora Atzeni, L. I. P. M. A. S. (2010). Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyping Journal.spa
dc.relation.referencesEschenauer, H. A., & Olhoff, N. (2001). Topology Optimization of Continuum Structures: A review*. Applied Mechanics Reviews, 54(4), 331–390. https://doi.org/10.1115/1.1388075spa
dc.relation.referencesEstadística para todos. (2025, March 29). Diagrama de Caja y Bigotes. Https://Www.Estadisticaparatodos.Es/Taller/Graficas/Cajas.Html.spa
dc.relation.referencesEvan Malone, H. L. (2007). Fab@Home: the personal desktop fabricator kit. Rapid Prototyping Journal, 13(4), 245–255.spa
dc.relation.referencesFeng, S., Kamat, A. M., & Pei, Y. (2021). Design and fabrication of conformal cooling channels in molds: Review and progress updates. International Journal of Heat and Mass Transfer, 171. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121082spa
dc.relation.referencesFlores, R. A. (1999). Sin Molde no hay Inyección. Plasticos.spa
dc.relation.referencesFlórez, L. (2005). Simulación en inyección en América Latina. http://www.plastico.com/temas/Simulacion-en-inyeccion-en-America-Latina+3040060?pagina=4spa
dc.relation.referencesFranchetti, M., & Kress, C. (2017). An economic analysis comparing the cost feasibility of replacing injection molding processes with emerging additive manufacturing techniques. International Journal of Advanced Manufacturing Technology, 88(9–12), 2573–2579. https://doi.org/10.1007/s00170-016-8968-7spa
dc.relation.referencesFrancisco, A. R. L. (2013). Plastics Mold Engineering Handbook 4th Edition. Journal of Chemical Information and Modeling, 53(9), 1689–1699. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesFrizelle, W. G. (2016). Injection Molding Technology. In E. Sevier (Ed.), Applied Plastics Engineering Handbook: Processing, Materials, and Applications: (Second Ed.). William Andrew. https://doi.org/10.1016/B978-0-323-39040-8.00010-9spa
dc.relation.referencesFu, J., & Ma, Y. (2018). Computer-aided engineering analysis for early-ejected plastic part dimension prediction and quality assurance. International Journal of Advanced Manufacturing Technology, 1–11. https://doi.org/10.1007/s00170-018-2376-0spa
dc.relation.referencesFu, J., & Ma, Y. (2019). A method to predict early-ejected plastic part air-cooling behavior towards quality mold design and less molding cycle time. Robotics and Computer Integrated Manufacturing, 56(March 2017), 66–74. https://doi.org/10.1016/j.rcim.2018.08.004spa
dc.relation.referencesGabriel Antonio Mendible, J. A. R. S. P. J. (2017). Comparative study of rapid and conventional tooling for plastics injection molding. Rapid Prototyping Journal.spa
dc.relation.referencesGao, Z., Dong, G., Tang, Y., & Zhao, Y. F. (2023). Machine learning aided design of conformal cooling channels for injection molding. Journal of Intelligent Manufacturing, 34(3), 1183–1201. https://doi.org/10.1007/s10845-021-01841-9spa
dc.relation.referencesGeng, T., Li, D., Zhou, H., & Shao, Y. (2005). Simulation of temperature field in filling stage of injection molding using three-dimensional model. Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 56(9).spa
dc.relation.referencesGisario, A., Kazarian, M., Martina, F., & Mehrpouya, M. (2019). Metal additive manufacturing in the commercial aviation industry: A review. In Journal of Manufacturing Systems (Vol. 53, pp. 124–149). Elsevier B.V. https://doi.org/10.1016/j.jmsy.2019.08.005spa
dc.relation.referencesGonçalves Martinho, P., António, &, & Pouzada, S. (n.d.). Alternative materials in moulding elements of hybrid moulds: structural integrity and tribological aspects. https://doi.org/10.1007/s00170-021-06630-5/Publishedspa
dc.relation.referencesGordillo, A., Sánchez, M. S., & Martínez, A. B. (1997). La simulación del proceso de inyección en el diseño de las piezas de plástico.spa
dc.relation.referencesGuevara-Morales, A., & Figueroa-López, U. (2014). Residual stresses in injection molded products. Journal of Materials Science, 49(13), 4399–4415. https://doi.org/10.1007/s10853-014-8170-yspa
dc.relation.referencesHaertel, J. H. K., & Nellis, G. F. (2017). A fully developed flow thermofluid model for topology optimization of 3D-printed air-cooled heat exchangers. Applied Thermal Engineering, 119, 10–24. https://doi.org/http://dx.doi.org/10.1016/j.applthermaleng.2017.03.030spa
dc.relation.referencesHopkinson, N., & Dickens, P. (n.d.). Analysis of rapid manufacturing - using layer manufacturing processes for production.spa
dc.relation.referencesInstituto Colombiano Agropecuario. (2016). Ficha técnica de dispositivo de identificación nacional DIN (C. D. D. E. Identificaci, N. D. I. N. Est, N. Del, & D. I. N. El, Eds.).spa
dc.relation.referencesJ. K. Guest, J. H. Prévost, & T. Belytschko. (2004). Achieving minimum length scale in topology optimization using nodal design variables and projection functions. International Journal for Numerical Methods in Engineering, 61(2), 238–254.spa
dc.relation.referencesJahan, S. A., Wu, T., Zhang, Y., El-Mounayri, H., Tovar, A., Zhang, J., Acheson, D., Nalim, R., Guo, X., & Lee, W. H. (2016a). Implementation of Conformal Cooling & Topology Optimization in 3D Printed Stainless Steel Porous Structure Injection Molds. Procedia Manufacturing, 5, 901–915. https://doi.org/10.1016/j.promfg.2016.08.077spa
dc.relation.referencesJahan, S., Wu, T., Shin, Y., Tovar, A., & El-Mounayri, H. (2019a). Thermo-fluid topology optimization and experimental study of conformal cooling channels for 3D printed plastic injection molds. 34, 631–639. https://doi.org/10.1016/j.promfg.2019.06.120spa
dc.relation.referencesJayswal, S., Jangade, H., Abhishek, K., & Ramkumar, P. L. (n.d.). Design and Simulation of Seat Handle Using Plastic Injection Molding Process. Springer Singapore. https://doi.org/10.1007/978-981-13-1966-2spa
dc.relation.referencesJohn Ryan C. Dizon Open the ORCID record for John Ryan C. Dizon[Opens in a new window], A. D. V. L. R. S. A. H. E. Jr. , Q. C. and R. C. A. (2019). Three-dimensional-printed molds and materials for injection molding and rapid tooling applications. MRS Communications, 9(4).spa
dc.relation.referencesJosé Martín, & Melchor Leal. (2014). Estudio de recubrimientos y tratamientos de superficie de nueva generación para optimizar la vida útil del molde de inyección de polímeros que usan la resina Noryl. CIATEQ -Centro de Tecnología Avanzada.spa
dc.relation.referencesKadir, A. Z. A., Yusof, Y., & Wahab, M. S. (2020). Additive manufacturing cost estimation models—a classification review. In International Journal of Advanced Manufacturing Technology (Vol. 107, Issues 9–10, pp. 4033–4053). Springer. https://doi.org/10.1007/s00170-020-05262-5spa
dc.relation.referencesKampker, A., Ayvaz, P., & Lukas, G. (2020). Direct Polymer Additive Tooling - Economic Analysis of Additive Manufacturing Technologies for Fabrication of Polymer Tools for Injection Molding. Key Engineering Materials, 843, 9–18. https://doi.org/10.4028/www.scientific.net/KEM.843.9spa
dc.relation.referencesKampker, A., Triebs, J., Alves, B., Kawollek, S., & Ayvaz, P. (2018). Potential analysis of additive manufacturing technologies for fabrication of polymer tools for injection moulding – A comparative study. 2018 IEEE International Conference on Advanced Manufacturing (ICAM), 49–52. https://doi.org/10.1109/AMCON.2018.8614915spa
dc.relation.referencesKazmer, D. O. (2016). Injection Mold Design Engineering. In Injection Mold Design Engineering. https://doi.org/10.3139/9781569905715.fmspa
dc.relation.referencesKeller, A., Dransfeld, C., & Masania, K. (2018). Flow and heat transfer during compression resin transfer moulding of highly reactive epoxies. Composites Part B: Engineering, 153, 167–175. https://doi.org/10.1016/j.compositesb.2018.07.041spa
dc.relation.referencesKitayama, S., & Natsume, S. (2014). Multi-objective optimization of volume shrinkage and clamping force for plastic injection molding via sequential approximate optimization. Simulation Modelling Practice and Theory, 48, 35–44. https://doi.org/10.1016/j.simpat.2014.07.004spa
dc.relation.referencesKitayama, S., Yamazaki, Y., Takano, M., & Aiba, S. (2018a). Numerical and experimental investigation of process parameters optimization in plastic injection molding using multi-criteria decision making. Simulation Modelling Practice and Theory, 85, 95–105. https://doi.org/10.1016/j.simpat.2018.04.004spa
dc.relation.referencesKnorr, L., Setter, R., Rietzel, D., Wudy, K., & Osswald, T. (2020). Comparative analysis of the impact of additively manufactured polymer tools on the fiber conguration of injection molded long-fiber-reinforced thermoplastics. Journal of Composites Science, 4(3). https://doi.org/10.3390/jcs4030136spa
dc.relation.referencesKrizsma, S., Kovács, N. K., Kovács, J. G., & Suplicz, A. (2021). In-situ monitoring of deformation in rapid prototyped injection molds. Additive Manufacturing, 42. https://doi.org/10.1016/j.addma.2021.102001spa
dc.relation.referencesKuehl Robert. (2001). Principios estadísticos para el diseño y análisis de investigaciones (Thomson Learning, Ed.). https://doi.org/10.4067/S0071-17132000003500023spa
dc.relation.referencesKuo, C.-C., & Xu, W.-C. (2018). Effects of different cooling channels on the cooling efficiency in the wax injection molding process. International Journal of Advanced Manufacturing Technology, 98(1–4), 887–895. https://doi.org/10.1007/s00170-018-2345-7spa
dc.relation.referencesLakkanna, M., Mohan Kumar, G. C., & Kadoli, R. (2016). Computational design of mould sprue for injection moulding thermoplastics. Journal of Computational Design and Engineering, 3(1), 37–52. https://doi.org/10.1016/j.jcde.2015.06.006spa
dc.relation.referencesLiu, K., & Tovar, A. (2014). An efficient 3D topology optimization code written in Matlab. Structural and Multidisciplinary Optimization, 50(6), 1175–1196. https://doi.org/10.1007/s00158-014-1107-xspa
dc.relation.referencesLiu, M., Zhan, J., Zhu, B., & Zhang, X. (2020). Topology optimization of compliant mechanism considering actual output displacement using adaptive output spring stiffness. Mechanism and Machine Theory, 146. https://doi.org/10.1016/j.mechmachtheory.2019.103728spa
dc.relation.referencesLozano, A. B., Álvarez, S. H., Isaza, C. V., & Montealegre-Rubio, W. (2022). Analysis and Advances in Additive Manufacturing as a New Technology to Make Polymer Injection Molds for World-Class Production Systems. In Polymers (Vol. 14, Issue 9). MDPI. https://doi.org/10.3390/polym14091646spa
dc.relation.referencesLuo, Y., Li, M., & Kang, Z. (2016). Topology optimization of hyperelastic structures with frictionless contact supports. International Journal of Solids and Structures, 81, 373–382. https://doi.org/10.1016/j.ijsolstr.2015.12.018spa
dc.relation.referencesM Ruffo and R Hague. (2007). Cost estimation for rapid manufacturing ’ simultaneous production of mixed components using laser sintering. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221(11).spa
dc.relation.referencesMadhusudan, I., Karl, G., & Bahgat, S. (2014). Cooling of Microelectronic and Nanoelectronic Equipment: Advances and Emerging Research (Vol. 3). World Scientific Publishing Co. Pte. Ltd.spa
dc.relation.referencesMalacara Hernández, D. (2005). La metrología óptica y sus aplicaciones. Acta Universitaria, 15(1), 5–12. http://www.redalyc.org/articulo.oa?id=41615101spa
dc.relation.referencesMalca, C., Santos, C., Sena, M., & Mateus, A. (2018). Development of SLM cellular structures for injection molds manufacturing. Science and Technology of Materials, 30(1), 13–22. https://doi.org/10.1016/j.stmat.2018.03.001spa
dc.relation.referencesManuel, J., Sánchez, A., Director, I., Manini, J., & Madrid, G. (2014). Diseño Y Fabricación De Un Molde Para Inyección En Plástico. 129.spa
dc.relation.referencesMenges, G., Michaeli, W., Mohren, P., Menges, G., Michaeli, W., & Mohren, P. (2001). How to Make Injection Molds. In How to Make Injection Molds. https://doi.org/10.3139/9783446401808.fmspa
dc.relation.referencesMercado-Colmenero, J. M., Rubio-Paramio, M. A., Marquez-Sevillano, J. D. J., & Martin-Doñate, C. (2018a). A new method for the automated design of cooling systems in injection molds. CAD Computer Aided Design, 104, 60–86. https://doi.org/10.1016/j.cad.2018.06.001spa
dc.relation.referencesMontealegre Rubio, W., Nishiwaki, S., & Nelli Silva, E. C. (2010). Design of compliant mechanisms considering thermal effect compensation and topology optimization. Finite Elements in Analysis and Design, 46(12), 1049–1060. https://doi.org/10.1016/j.finel.2010.06.010spa
dc.relation.referencesMontealegre Rubio y E. C. Nelli. (2005). ‘MEMS’ Eletrotermomecânicos Usando o Método de Otimização Topológica. Master Thesis Universidade de São Paulo., 238.spa
dc.relation.referencesMontgomery, D. C. (2001). Design and analysis of experiments (J. W. & Sons, Ed.; 5th ed.).spa
dc.relation.referencesM.P, B., & Sigmund, O. (2003). Topology Optimization. Theory, Methods and Applications (Springer, Ed.).spa
dc.relation.referencesMuñoz, D. A., Arango, J. P., González, C., Puerto, E., & Garzón, M. (2018). Topology optimization applied to the design of cooling channels for plastic injection. Journal of Physics: Conference Series, 1002(1). https://doi.org/10.1088/1742-6596/1002/1/012004spa
dc.relation.referencesOrtega, E. M. (2007). Diseño de moldes de inyección de plástico con Ingeniería concurrente . 98. https://doi.org/10.1016/B978-1-4557-7898-0.00005-6spa
dc.relation.referencesOsswald Tim, Menges Georg, Flórez Jairo, F. L. (2010). Ciencia de los polímeros para ingenieros. Editorial Guaduales Limitada.spa
dc.relation.referencesPark, H. S., & Dang, X. P. (2017). Development of a Smart Plastic Injection Mold with Conformal Cooling Channels. Procedia Manufacturing, 10, 48–59. https://doi.org/10.1016/j.promfg.2017.07.020spa
dc.relation.referencesPark, S. J., Lee, J. H., Yang, J., Heogh, W., Kang, D., Yeon, S. M., Kim, S. H., Hong, S., Son, Y., & Park, J. (2022). Lightweight injection mold using additively manufactured Ti-6Al-4V lattice structures. Journal of Manufacturing Processes, 79(December 2021), 759–766. https://doi.org/10.1016/j.jmapro.2022.05.022spa
dc.relation.referencesPham, T., Hoyle, C., Zhang, Y., & Nguyen, T. H. (2016). Topology Optimization of Hyperelastic Continua. Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 1–8. https://doi.org/10.1115/DETC2016-59776spa
dc.relation.referencesPhotocentric group. (2023, January 10). Datasheet and Commercial Information for DL 400 High Temp Resin .spa
dc.relation.referencesPlenco, P. E. C. (2009). Filosofía de Soluciones de Problemas en Moldeo (Plenco, Ed.; pp. 1–12).spa
dc.relation.referencesPötsch, G., Michaeli, W. (2007). Injection Molding 2E. An Introduction. Hanser Gardner Publications.spa
dc.relation.referencesProspector. (2019). Poliuretano termoplástico (TPU) Propiedades típicas Generic TPU-Polyether. Página Web. https://plastics.ulprospector.com/es/generics/54/c/t/poliuretano-termoplastico-tpu-properties-processing/sp/10spa
dc.relation.referencesQayyum, J. A. and A. K. and A. R. A. M. and A. F. and J. M. (2017). Performance of 3D printed polymer mold for metal injection molding process. Engineering and Applied Sciences, 12(22).spa
dc.relation.referencesR Hague, I. C. and P. D. (2023). Implications on design of rapid manufacturing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 217(1).spa
dc.relation.referencesRamírez Gil, F. J. (2013). Diseño óptimo de micromecanismos tridimensionales con actuación electrotérmica utilizando optimización topológica y unidades de procesamiento gráfico (GPU). http://www.bdigital.unal.edu.co/11617/1/1037544577_2013.pdfspa
dc.relation.referencesRashid, O., Low, K. W. Q., & Pittman, J. F. T. (2020). Mold cooling in thermoplastics injection molding: Effectiveness and energy efficiency. Journal of Cleaner Production, 264. https://doi.org/10.1016/j.jclepro.2020.121375spa
dc.relation.referencesRoberto Hernández Sampieri, Carlos Fernández Collado, & Pilar Baptista Lucio. (2007). Fundamentos de la metodología de la investigación (Mc Graw-Hill / Interamericana de España, Ed.; Vol. 1).spa
dc.relation.referencesRosa, N., Costa, J., & Lopes, A. G. (2023). CFD study of transient heating and cooling of a blank mould with a conformal cooling channel for manufacturing glass containers. Results in Engineering, 17. https://doi.org/10.1016/j.rineng.2023.100932spa
dc.relation.referencesRubio, W. M., Francisco, R., & Esteban, S. (2017). Mecanismos flexibles: desde el diseño conceptual hasta su manufactura. Revista Politécnica, 13(24), 65–78. http://revistas.elpoli.edu.co/index.php/pol/article/view/1091spa
dc.relation.referencesRuffo, M., Tuck, C., & Hague, R. (2006). Cost estimation for rapid manufacturing - Laser sintering production for low to medium volumes. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 220(9), 1417–1427. https://doi.org/10.1243/09544054JEM517spa
dc.relation.referencesRuso, C. (2013). Metodología de la Investigación. Zeus.Inf.Ucv.Cl/~rsoto/Cursos/DII711/Programa_DII711.Pd, 19. http://www.inf.ucv.cl/~rsoto/cursos/DII711/Cap4_DII711.pdfspa
dc.relation.referencesSchwartz, J. (2018). Understanding Injection Molding Cooling Times. https://revpart.com/understanding-injection-molding-cooling-time/spa
dc.relation.referencesShen, S., Kanbur, B. B., Zhou, Y., & Duan, F. (2020). Thermal and Mechanical Assessments of the 3D-Printed Conformal Cooling Channels: Computational Analysis and Multi-objective Optimization. Journal of Materials Engineering and Performance, 29(12), 8261–8270. https://doi.org/10.1007/s11665-020-05251-5spa
dc.relation.referencesSigmund, O. (2000). Topology optimization : a tool for the tailoring of structures and materials. The Royal Society, 358, 211–227.spa
dc.relation.referencesSigmund, O. (2001). A 99 line topology optimization code written in matlab. Structural and Multidisciplinary Optimization, 21(2), 120–127. https://doi.org/10.1007/s001580050176spa
dc.relation.referencesSigmund, O. (2007). Morphology-based black and white filters for topology optimization. Structural and Multidisciplinary Optimization, 33(4–5), 401–424. https://doi.org/10.1007/s00158-006-0087-xspa
dc.relation.referencesSigmund, O., & Petersson, J. (1998). Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Structural Optimization, 16(1), 68–75. https://doi.org/10.1007/BF01214002spa
dc.relation.referencesStelson, K. A. (2003). Calculating cooling times for polymer injection moulding. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 217(5), 709–713. https://doi.org/10.1243/095440503322011443spa
dc.relation.referencesSteve Melito. (2022, December 19). The Ultimate Guide to Injection Molding Tolerances. Https://Www.Fictiv.Com/Articles/Injection-Molding-Tolerances-an-in-Depth-Look.spa
dc.relation.referencesTan, C., Wang, D., Ma, W., Chen, Y., Chen, S., Yang, Y., & Zhou, K. (2020). Design and additive manufacturing of novel conformal cooling molds. Materials and Design, 196. https://doi.org/10.1016/j.matdes.2020.109147spa
dc.relation.referencesTomasoni, D., Colosio, S., Giorleo, L., & Ceretti, E. (2020a). Design for additive manufacturing: Thermoforming mold optimization via conformal cooling channel technology. Procedia Manufacturing, 47, 1117–1122. https://doi.org/10.1016/j.promfg.2020.04.128spa
dc.relation.referencesTosello, G., Charalambis, A., Kerbache, L., Mischkot, M., Pedersen, D. B., Calaon, M., & Hansen, H. N. (2019). Value chain and production cost optimization by integrating additive manufacturing in injection molding process chain. International Journal of Advanced Manufacturing Technology, 100(1–4), 783–795. https://doi.org/10.1007/s00170-018-2762-7spa
dc.relation.referencesTran, N. T., & Gehde, M. (2019). Creating material data for thermoset injection molding simulation process. Polymer Testing, 73(November 2018), 284–292. https://doi.org/10.1016/j.polymertesting.2018.11.042spa
dc.relation.referencesValdés, S. S., Flores, I. G. Y., & Fernández, O. S. R. (2001). Moldeo por inyección de termoplásticos (L. N. Editores, Ed.).spa
dc.relation.referencesVargas, C., Sierra, J., Posada, J., & Botero, J. (2017). Analysis and modeling of simulated residual stress of mold injected plastic parts by using robust correlations. Revista Materia, 22(4). https://doi.org/http://dx.doi.org/10.1590/s1517-707620170004.0228spa
dc.relation.referencesVolpato, N., Solis, D. M., & Costa, C. A. (2016). An analysis of Digital ABS as a rapid tooling material for polymer injection moulding. International Journal of Materials and Product Technology, 52(1–2), 3–16. https://doi.org/10.1504/IJMPT.2016.073616spa
dc.relation.referencesWahl, J. P., Niedermeyer, J., Bernhard, R., Hermsdorf, J., & Kaierle, S. (2022a). Design of additively manufacturable injection molds with conformal cooling. Procedia CIRP, 111, 97–100. https://doi.org/10.1016/j.procir.2022.08.146spa
dc.relation.referencesWang, F., Lazarov, B. S., & Sigmund, O. (2011). On projection methods, convergence and robust formulations in topology optimization. Structural and Multidisciplinary Optimization, 43(6), 767–784. https://doi.org/10.1007/s00158-010-0602-yspa
dc.relation.referencesWu, T., Brand, K., & Tovar, A. (2018). Multiscale, thermomechanical topology optimization of cellular structures for porous injection molds. Advances in Structural and Multidisciplinary Optimization, January, 1–13. https://doi.org/10.1007/978-3-319-67988-4spa
dc.relation.referencesWu, T., Jahan, S. A., Zhang, Y., Zhang, J., Elmounayri, H., & Tovar, A. (2017). Design Optimization of Plastic Injection Tooling for Additive Manufacturing. Procedia Manufacturing, 10, 923–934. https://doi.org/10.1016/j.promfg.2017.07.082spa
dc.relation.referencesWu, T., Liu, K., & Tovar, A. (2016). Multiphase Thermomechanical Topology Optimization of Functionally Graded Lattice Injection Molds. Proceedings of the ASME IDETC-CIE, 1–10. https://doi.org/10.1115/DETC2016-60538spa
dc.relation.referencesWu, T., Liu, K., & Tovar, A. (2017b). Multiphase topology optimization of lattice injection molds. Computers and Structures, 192, 71–82. https://doi.org/10.1016/j.compstruc.2017.07.007spa
dc.relation.referencesXu, F. ; W. Y. ; L. H. (2001). Toward generic models for comparative evaluation and process selection in rapid prototyping and manufacturing. Journal of Manufacturing Systems, 19(5), 283–296.spa
dc.relation.referencesXu, S., Cai, Y., & Cheng, G. (2010). Volume preserving nonlinear density filter based on heaviside functions. Structural and Multidisciplinary Optimization, 41(4), 495–505. https://doi.org/10.1007/s00158-009-0452-7spa
dc.relation.referencesYang, W., & Lu, S. (2019). Nonisothermal simulation on pressure during resin transfer molding. 47492, 1–10. https://doi.org/10.1002/app.47492spa
dc.relation.referencesZhang, Y., Hou, B., Wang, Q., Huang, Z., & Zhou, H. (2018). Automatic generation of venting system on complex surfaces of injection mold. International Journal of Advanced Manufacturing Technology, 98(5–8), 1379–1389. https://doi.org/10.1007/s00170-018-2327-9spa
dc.relation.referencesZhou, M., & Rozvany, G. I. N. (1991). The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Computer Methods in Applied Mechanics and Engineering, 89(1–3), 309–336. https://doi.org/10.1016/0045-7825(91)90046-9spa
dc.relation.referencesZhou, X., Zhang, Y., Mao, T., Ruan, Y., Gao, H., & Zhou, H. (2018). Feature extraction and physical interpretation of melt pressure during injection molding process. Journal of Materials Processing Technology, 261, 50–60. https://doi.org/10.1016/j.jmatprotec.2018.05.026spa
dc.relation.referencesZhu, X., Zhao, C., Wang, X., Zhou, Y., Hu, P., & Ma, Z. D. (2019). Temperature-constrained topology optimization of thermo-mechanical coupled problems. Engineering Optimization, 51(10), 1687–1709. https://doi.org/10.1080/0305215X.2018.1554065spa
dc.relation.referencesZink, B., Kovács, N. K., & Kovács, J. G. (2019). Thermal analysis based method development for novel rapid tooling applications. International Communications in Heat and Mass Transfer, 108. https://doi.org/10.1016/j.icheatmasstransfer.2019.104297spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.armarcPiezas moldeadas (fundición)
dc.subject.ddc670 - Manufacturaspa
dc.subject.lembTermoplásticos
dc.subject.proposalDiseño de moldes de inyecciónspa
dc.subject.proposalCompensación térmicaspa
dc.subject.proposalMétodo de elementos finitosspa
dc.subject.proposalTopology Optimizationeng
dc.subject.proposalThermal compensationeng
dc.subject.proposalMould injection designeng
dc.subject.proposalFinite element methodeng
dc.subject.proposalMétodo de optimización topológicaspa
dc.subject.wikidataDiseño de producto
dc.titleDiseño de moldes para inyección de plásticos y metales mediante el método de optimización topológicaspa
dc.title.translatedDesign of Plastic and Metal Injection Molds Using Topological Optimizationeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1017136379.2025.pdf
Tamaño:
8.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de doctorado en Ingeniería: Ingeniería Mecánica y Mecatrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: