Determinación del impacto de IGF2 en la comunicación entre trofoblasto y las células dNK
dc.contributor.advisor | Umaña Pérez, Yadi Adriana | spa |
dc.contributor.author | Guevara Prieto, Valentina | spa |
dc.contributor.cvlac | Guevara Prieto, Valentina [0000118585] | spa |
dc.contributor.orcid | Guevara Prieto, Valentina 0000-0003-1535-615X | spa |
dc.contributor.researchgroup | Grupo de Investigación en Hormonas | spa |
dc.date.accessioned | 2024-10-31T19:43:57Z | |
dc.date.available | 2024-10-31T19:43:57Z | |
dc.date.issued | 2024-01-30 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | En el proceso de implantación blastocística debe existir una comunicación continua entre las células de trofoblasto, las células dNK y otras poblaciones inmunes. Esta comunicación se centra en ejercer control inmunológico para mantener la receptividad materna. El aumento en la concentración de factores como el IGF2 se ha asociado a un incremento en la invasividad de las células trofoblásticas, siendo relevante estudiar los mecanismos que modulan la comunicación entre las células de trofoblasto y las células dNK en presencia de IGF2. Para esto se planteó un modelo in vitro, en el que se diferenciaron células pNK hacia un fenotipo tolerogénico similar a las células dNK (i-dNK) para co-cultivarlas con células HTR-8/SVneo. Se recogieron los medios condicionados de i-dNK (MidNK) para evaluar su efecto en la proliferación, invasión y migración de las células de trofoblasto estimuladas con IGF2 y los de células de HTR-8/SVneo estimuladas con IGF2 (MHIGF) para determinar los cambios en la expresión de marcadores de diferenciación en las células i-dNK. El análisis de los medios MHIGF muestra un incremento en la expresión de citoquinas relacionadas con la tolerogenia. Este efecto es suprimido en los medios de los co-cultivos, sugiriendo que la comunicación intercelular puede estar activando el papel regulador de las células dNK. Este resultado concuerda con los cambios en expresión génica y en cambios fenotípicos, que muestran la capacidad de las células i-dNK de ejercer regulación sobre las células de trofoblasto en respuesta al estímulo con IGF2. (Texto tomado de la fuente). | spa |
dc.description.abstract | In the process of blastocyst implantation there must be continuous communication between trophoblast cells, dNK cells and other immune populations at the maternal interphase. This communication focuses on exerting immunological control to maintain maternal receptivity. The increase in the concentration of factors such as IGF2 has been associated with an increase in the invasiveness of trophoblast cells. As a result, it is important to study the mechanisms that modulate the communication between trophoblast cells and dNK cells in the presence of IGF2. For this, an in vitro model was proposed, in which pNK cells were differentiated towards a tolerogenic phenotype similar to dNK cells (i-dNK) to co-culture them with HTR-8/SVneo cells. Conditioned media from i-dNK (MidNK) were collected to evaluate its effect on the proliferation, invasion and migration of trophoblast cells stimulated with IGF2 and those of HTR-8/SVneo cells stimulated with IGF2 (MHIGF2) to determine changes in the expression of differentiation markers in i-dNK cells. Analysis of MHIGF media shows an increase in the expression of cytokines related to tolerance. This effect is suppressed in the co-culture media, suggesting that intercellular communication may be activating the regulatory role of dNK cells. This result is consistent with the changes in gene expression and phenotypic changes, which show the ability of i-dNK cells to exert regulation on trophoblast cells in response to IGF2 stimulation. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Bioquímica | spa |
dc.description.researcharea | Trofoblasto como modelo predictivo de progresión tumoral | spa |
dc.format.extent | xvi, 51 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87134 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Bioquímica | spa |
dc.relation.indexed | Bireme | spa |
dc.relation.references | Ahluwalia, A., & S. Tarnawski, A. (2012). Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Current Medicinal Chemistry, 19(1), 90–97. https://doi.org/10.2174/092986712803413944 | spa |
dc.relation.references | Allan, D. S. J., Rybalov, B., Awong, G., Zúñiga-Pflücker, J. C., Kopcow, H. D., Carlyle, J. R., & Strominger, J. L. (2010). TGF-β affects development and differentiation of human natural killer cell subsets. European Journal of Immunology, 40(8), 2289–2295. https://doi.org/10.1002/EJI.200939910 | spa |
dc.relation.references | Ander, S. E., Diamond, M. S., & Coyne, C. B. (2019). Immune responses at the maternal-fetal interface. Science Immunology, 4(31). https://doi.org/10.1126/SCIIMMUNOL.AAT6114 | spa |
dc.relation.references | Bach, L. A. (2018). What Happened to the IGF Binding Proteins? Endocrinology, 159(2), 570–578. https://doi.org/10.1210/EN.2017-00908 | spa |
dc.relation.references | Braud, V. M., Allan, D. S. J., O’Callaghan, C. A., Soderstrom, K., D’Andrea, A., Ogg, G. S., Lazetic, S., Young, N. T., Bell, J. I., Phillips, J. H., Lanler, L. L., & McMichael, A. J. (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature, 391(6669), 795–799. https://doi.org/10.1038/35869 | spa |
dc.relation.references | Castro-Badilla, J.-J. (2021). CARACTERIZACIÓN DE LA VÍA DE SEÑALIZACIÓN INTRACELULAR MEDIADA POR IGF2R EN TROFOBLASTO HUMANO. Universidad Nacional de Colombia. | spa |
dc.relation.references | Cerdeira, A. S., Rajakumar, A., Royle, C. M., Lo, A., Husain, Z., Thadhani, R. I., Sukhatme, V. P., Karumanchi, S. A., & Kopcow, H. D. (2013). Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. Journal of Immunology (Baltimore, Md. : 1950), 190(8), 3939. https://doi.org/10.4049/JIMMUNOL.1202582 | spa |
dc.relation.references | Chakraborty, C., Gleeson, L. M., McKinnon, T., Lala, P. K., Chakraborty, C., Gleeson, L., McKinnon, T., & Lala, P. (2002). Regulation of human trophoblast migration and invasiveness 1. J. Physiol. Pharmacol, 80, 116–124. https://doi.org/10.1139/Y02-016 | spa |
dc.relation.references | Chen, C.-P., Piao, L., Chen, X., Yu, J., Masch, R., Schatz, F., Lockwood, C. J., & Huang, S. J. (2015). Expression of Interferon g by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reproductive Sciences. https://doi.org/10.1177/1933719115585148 | spa |
dc.relation.references | Cheng, S.-B., & Sharma, S. (2014). Interleukin-10: A Pleiotropic Regulator in Pregnancy. Am J Reprod Immunol. https://doi.org/10.1111/aji.12329 | spa |
dc.relation.references | Chowdhury, R., Hardy, A., & Schofield, C. J. (2008). The human oxygen sensing machinery and its manipulation. Chemical Society Reviews, 37(7). https://doi.org/10.1039/b701676j | spa |
dc.relation.references | Clemmons, D. R. (2018). 40 YEARS OF IGF1: Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. Journal of Molecular Endocrinology, 61(1), T139–T169. https://doi.org/10.1530/JME-18-0016 | spa |
dc.relation.references | Dattani, M. T., & Gevers, E. F. (2016). Endocrinology of Fetal Development. Williams Textbook of Endocrinology, 849–892. https://doi.org/10.1016/B978-0-323-29738-7.00022-8 | spa |
dc.relation.references | Du, X., Zhu, H., Jiao, D., Nian, Z., Zhang, J., Zhou, Y., Zheng, X., Tong, X., Wei, H., & Fu, B. (2022). Human-Induced CD49a+ NK Cells Promote Fetal Growth. Frontiers in Immunology, 13, 821542. https://doi.org/10.3389/FIMMU.2022.821542/BIBTEX | spa |
dc.relation.references | Forbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology. Cell Physiology, 294(6). https://doi.org/10.1152/AJPCELL.00035.2008 | spa |
dc.relation.references | Fraser, R., Whitley, G. S., Johnstone, A. P., Host, A. J., Sebire, N. J., Thilaganathan, B., & Cartwright, J. E. (2012). Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. The Journal of Pathology, 228(3), 322–332. https://doi.org/10.1002/PATH.4057 | spa |
dc.relation.references | Habets, D. H. J., Schlütter, A., van Kuijk, S. M. J., Spaanderman, M. E. A., Al-Nasiry, S., & Wieten, L. (2022). Natural killer cell profiles in recurrent pregnancy loss: Increased expression and positive associations with TACTILE and LILRB1. American Journal of Reproductive Immunology, 88(5). https://doi.org/10.1111/AJI.13612 | spa |
dc.relation.references | Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S., & Mandelboim, O. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine 2006 12:9, 12(9), 1065–1074. https://doi.org/10.1038/nm1452 | spa |
dc.relation.references | Imai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., & Yoshie, O. (1997). The T Cell-directed CC Chemokine TARC Is a Highly Specific Biological Ligand for CC Chemokine Receptor 4. Journal of Biological Chemistry, 272(23), 15036–15042. https://doi.org/10.1074/JBC.272.23.15036 | spa |
dc.relation.references | Jabrane-Ferrat, N. (2019). Features of Human Decidual NK Cells in Healthy Pregnancy and During Viral Infection. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01397 | spa |
dc.relation.references | James, J. L., Stone, P. R., & Chamley, L. W. (2005). Cytotrophoblast differentiation in the first trimester of pregnancy: evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast. Reproduction (Cambridge, England), 130(1), 95–103. https://doi.org/10.1530/REP.1.00723 | spa |
dc.relation.references | Jarmund, A. H., Giskeødegård, G. F., Ryssdal, M., Steinkjer, B., Stokkeland, L. M. T., Madssen, T. S., Stafne, S. N., Stridsklev, S., Moholdt, T., Heimstad, R., Vanky, E., & Iversen, A. C. (2021). Cytokine Patterns in Maternal Serum From First Trimester to Term and Beyond. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.752660 | spa |
dc.relation.references | Jiang, L., Fei, H., Jin, X., Liu, X., Yang, C., Li, C., Chen, J., Yang, A., Zhu, J., Wang, H., Fei, X., & Zhang, S. (2021). Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. International Journal of Biological Sciences, 17(15), 4377. https://doi.org/10.7150/IJBS.63390 | spa |
dc.relation.references | Juelke, K., Killig, M., Luetke-Eversloh, M., Parente, E., Gruen, J., Morandi, B., Ferlazzo, G., Thiel, A., Schmitt-Knosalla, I., & Romagnani, C. (2010). CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood, 116(8), 1299–1307. https://doi.org/10.1182/BLOOD-2009-11-253286 | spa |
dc.relation.references | Keskin, D. B., Allan, D. S. J., Rybalov, B., Andzelm, M. M., Stern, J. N. H., Kopcow, H. D., Koopman, L. A., & Strominger, J. L. (2007). TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proceedings of the National Academy of Sciences, 104(9), 3378–3383. https://doi.org/10.1073/PNAS.0611098104 | spa |
dc.relation.references | King, A., Hiby, S. E., Verma, S., Burrows, T., Gardner, L., & Loke, Y. W. (1997). Uterine NK Cells and Trophoblast HLA Class I Molecules. American Journal of Reproductive Immunology, 37, 459462. https://doi.org/10.1111/j.1600-0897.1997.tb00260.x | spa |
dc.relation.references | Koopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., & Strominger, J. L. (2003). Human Decidual Natural Killer Cells Are a Unique NK Cell Subset with Immunomodulatory Potential. Journal of Experimental Medicine, 198(8), 1201–1212. https://doi.org/10.1084/JEM.20030305 | spa |
dc.relation.references | Ku, C. W., Zhang, X., Zhang, V. R. Y., Allen, J. C., Tan, N. S., Østbye, T., & Tan, T. C. (2021). Gestational age-specific normative values and determinants of serum progesterone through the first trimester of pregnancy. Scientific Reports 2021 11:1, 11(1), 1–8. https://doi.org/10.1038/s41598-021-83805-w | spa |
dc.relation.references | Lash, G. E., Otun, H. A., Innes, B. A., Percival, K., Searle, R. F., Robson, S. C., & Bulmer, J. N. (2010). Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Human Reproduction (Oxford, England), 25(5), 1137–1145. https://doi.org/10.1093/humrep/deq050 | spa |
dc.relation.references | Lissauer, D., Eldershaw, S. A., Inman, C. F., Coomarasamy, A., Moss, P. A. H., & Kilby, M. D. (2015). Progesterone promotes maternal–fetal tolerance by reducing human maternal T‐cell polyfunctionality and inducing a specific cytokine profile. European Journal of Immunology, 45(10), 2858. https://doi.org/10.1002/EJI.201445404 | spa |
dc.relation.references | Liu, S., Diao, L., Huang, C., Li, Y., Zeng, Y., & Kwak-Kim, J. Y. H. (2017). The role of decidual immune cells on human pregnancy. Journal of Reproductive Immunology, 124, 44–53. https://doi.org/10.1016/J.JRI.2017.10.045 | spa |
dc.relation.references | Livak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262 | spa |
dc.relation.references | Livingstone, C. (2013). IGF2 and cancer. Endocrine-Related Cancer, 20(6). https://doi.org/10.1530/ERC-13-0231 | spa |
dc.relation.references | Lopez-Gonzalez, D.-A. (2021). Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo. Universidad Nacional de Colombia. | spa |
dc.relation.references | Lu, J., Zhou, W. H., Ren, L., & Zhang, Y. Z. (2016). CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Experimental and Molecular Pathology, 100(1), 184–191. https://doi.org/10.1016/j.yexmp.2015.12.013 | spa |
dc.relation.references | Lunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology 2007 5:1, 5(1), 1–14. https://doi.org/10.1186/1477-7827-5-6 | spa |
dc.relation.references | Manaster, I., Mizrahi, S., Goldman-Wohl, D., Sela, H. Y., Stern-Ginossar, N., Lankry, D., Gruda, R., Hurwitz, A., Bdolah, Y., Haimov-Kochman, R., Yagel, S., & Mandelboim, O. (2008). Endometrial NK cells are special immature cells that await pregnancy. Journal of Immunology (Baltimore, Md. : 1950), 181(3), 1869–1876. https://doi.org/10.4049/jimmunol.181.3.1869 | spa |
dc.relation.references | Oberlies, J., Watzl, C., Giese, T., Luckner, C., Kropf, P., Müller, I., Ho, A. D., & Munder, M. (2009). Regulation of NK Cell Function by Human Granulocyte Arginase. The Journal of Immunology, 182(9), 5259–5267. https://doi.org/10.4049/JIMMUNOL.0803523 | spa |
dc.relation.references | Pijnenborg, R., Vercruysse, L., & Hanssens, M. (2006). The Uterine Spiral Arteries In Human Pregnancy: Facts and Controversies. Placenta, 27(9–10), 939–958. https://doi.org/10.1016/J.PLACENTA.2005.12.006 | spa |
dc.relation.references | Poli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458. https://doi.org/10.1111/J.1365-2567.2008.03027.X | spa |
dc.relation.references | Pollheimer, J., Vondra, S., Baltayeva, J., Beristain, A. G., & Knöfler, M. (2018). Regulation of placental extravillous trophoblasts by the maternal uterine environment. Frontiers in Immunology, 9(NOV), 2597. https://doi.org/10.3389/FIMMU.2018.02597/BIBTEX | spa |
dc.relation.references | Prutsch, N., Fock, V., Haslinger, P., Haider, S., Fiala, C., Pollheimer, J., & Knöfler, M. (2012). The role of interleukin-1β in human trophoblast motility. Placenta, 33(9), 696–703. https://doi.org/10.1016/J.PLACENTA.2012.05.008 | spa |
dc.relation.references | Ranke, M. B., & Wit, J. M. (2018). Growth hormone — past, present and future. Nature Reviews Endocrinology 2018 14:5, 14(5), 285–300. https://doi.org/10.1038/nrendo.2018.22 | spa |
dc.relation.references | Resnik, R. (2002). Intrauterine growth restriction. Obstetrics and Gynecology, 99(3), 490–496. https://doi.org/10.1016/S0029-7844(01)01780-X | spa |
dc.relation.references | Riley, J. K., & Yokoyama, W. M. (2008). NK cell tolerance and the maternal-fetal interface. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 59(5), 371–387. https://doi.org/10.1111/j.1600-0897.2008.00593.x | spa |
dc.relation.references | Rodriguez, L. G., Wu, X., & Guan, J. L. (2005). Wound-healing assay. Methods in Molecular Biology (Clifton, N.J.), 294, 23–29. https://doi.org/10.1385/1-59259-860-9:023/COVER | spa |
dc.relation.references | Sharp, A. N., Heazell, A. E. P., Crocker, I. P., & Mor, G. (2010). Placental Apoptosis in Health and Disease. Am J Reprod Immunol. https://doi.org/10.1111/j.1600-0897.2010.00837.x | spa |
dc.relation.references | Siwetz, M., Blaschitz, A., El-Heliebi, A., Hiden, U., Desoye, G., Huppertz, B., & Gauster, M. (2016). TNF-α alters the inflammatory secretion profile of human first trimester placenta. Laboratory Investigation, 96(4), 428–438. https://doi.org/10.1038/LABINVEST.2015.159 | spa |
dc.relation.references | Staun-Ram, E., & Shalev, E. (2005). Human trophoblast function during the implantation process. Reproductive Biology and Endocrinology, 3(1), 1–12. https://doi.org/10.1186/1477-7827-3-56/METRICS | spa |
dc.relation.references | Straszewski-Chavez, S. L., Abrahams, V. M., & Mor, G. (2005). The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy. Endocrine Reviews, 26(7), 877–897. https://doi.org/10.1210/ER.2005-0003 | spa |
dc.relation.references | Suarez-Arnedo, A., Figueroa, F. T., Clavijo, C., Arbeláez, P., Cruz, J. C., & Muñoz-Camargo, C. (2020). An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE, 15(7). https://doi.org/10.1371/JOURNAL.PONE.0232565 | spa |
dc.relation.references | Talia, C., Connolly, L., & Fowler, P. A. (2021). The insulin-like growth factor system: A target for endocrine disruptors? Environment International, 147, 106311. https://doi.org/10.1016/J.ENVINT.2020.106311 | spa |
dc.relation.references | Tang, J., Yang, L., Guan, F., Miller, H., Camara, N. O. S., James, L. K., Benlagha, K., Kubo, M., Heegaard, S., Lee, P., Lei, J., Zeng, H., He, C., Zhai, Z., & Liu, C. (2023). The role of Raptor in lymphocytes differentiation and function. In Frontiers in Immunology (Vol. 14). https://doi.org/10.3389/fimmu.2023.1146628 | spa |
dc.relation.references | Vacca, P., Moretta, L., Moretta, A., & Mingari, M. C. (2011). Origin, phenotype and function of human natural killer cells in pregnancy. Trends in Immunology, 32(11), 517–523. https://doi.org/10.1016/J.IT.2011.06.013 | spa |
dc.relation.references | Velicky, P., Meinhardt, G., Plessl, K., Vondra, S., Weiss, T., Haslinger, P., Lendl, T., Aumayr, K., Mairhofer, M., Zhu, X., Schütz, B., Hannibal, R. L., Lindau, R., Weil, B., Ernerudh, J., Neesen, J., Egger, G., Mikula, M., Röhrl, C., … Pollheimer, J. (2018). Genome amplification and cellular senescence are hallmarks of human placenta development. PLOS Genetics, 14(10), e1007698. https://doi.org/10.1371/JOURNAL.PGEN.1007698 | spa |
dc.relation.references | Vilotić, A., Nacka-Aleksić, M., Pirković, A., Bojić-Trbojević, Ž., Dekanski, D., & Jovanović Krivokuća, M. (2022). IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. In International Journal of Molecular Sciences (Vol. 23, Issue 23). MDPI. https://doi.org/10.3390/ijms232314574 | spa |
dc.relation.references | Wallace, A. E., Fraser, R., & Cartwright, J. E. (2012). Extravillous trophoblast and decidual natural killer cells: a remodelling partnership Human Reproduction Update Advance Access Downloaded from. Human Reproduction Update, 0(0), 1–14. https://doi.org/10.1093/humupd/dms015 | spa |
dc.relation.references | Wallace, A. E., Host, A. J., Whitley, G. S., & Cartwright, J. E. (2013). Decidual Natural Killer Cell Interactions with Trophoblasts Are Impaired in Pregnancies at Increased Risk of Preeclampsia. The American Journal of Pathology, 183(6), 1853. https://doi.org/10.1016/J.AJPATH.2013.08.023 | spa |
dc.relation.references | Wang, F., Zhu, H., Li, B., Liu, M., Liu, D., Deng, M., Wang, Y., Xia, X., Jiang, Q., & Chen, D. (2017). Effects of human chorionic gonadotropin, estradiol, and progesterone on interleukin-18 expression in human decidual tissues. Http://Dx.Doi.Org/10.1080/09513590.2016.1212829, 33(4), 265–269. https://doi.org/10.1080/09513590.2016.1212829 | spa |
dc.relation.references | Wegmann, T. G., Lin, H., Guilbert, L., & Mosmann, T. R. (1993). Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology Today, 14(7), 353–356. https://doi.org/10.1016/0167-5699(93)90235-D | spa |
dc.relation.references | You, Y., Stelzl, P., Joseph, D. N., Aldo, P. B., Maxwell, A. J., Dekel, N., Liao, A., Whirledge, S., & Mor, G. (2021). TNF-α Regulated Endometrial Stroma Secretome Promotes Trophoblast Invasion. Frontiers in Immunology, 12, 737401. https://doi.org/10.3389/FIMMU.2021.737401/BIBTEX | spa |
dc.relation.references | Zhou, W. H., Du, M. R., Dong, L., Yu, J., & Li, D. J. (2008). Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Human Reproduction, 23(12), 2669–2679. https://doi.org/10.1093/humrep/den308 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 570 - Biología::572 - Bioquímica | spa |
dc.subject.decs | Células Asesinas Naturales | spa |
dc.subject.decs | Killer Cells, Natural | eng |
dc.subject.decs | Receptor IGF Tipo 2 | spa |
dc.subject.decs | Receptor, IGF Type 2 | eng |
dc.subject.proposal | Natural killer | spa |
dc.subject.proposal | Decidua | spa |
dc.subject.proposal | Embarazo | spa |
dc.subject.proposal | Comunicación materno-fetal | spa |
dc.subject.proposal | Natural killer | eng |
dc.subject.proposal | Decidua | eng |
dc.subject.proposal | Pregnancy | eng |
dc.subject.proposal | Maternal-fetal communication | eng |
dc.subject.wikidata | trofoblasto | spa |
dc.subject.wikidata | trophoblast cell | eng |
dc.title | Determinación del impacto de IGF2 en la comunicación entre trofoblasto y las células dNK | spa |
dc.title.translated | IGF2 impact in the communication between trophoblast and dNK cells | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.fundername | Universidad Nacional de Colombia | spa |
oaire.fundername | Minciencias | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis MSc Valentina Guevara Prieto versión final repositorio.pdf
- Tamaño:
- 974.07 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Bioquímica
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: