Determinación del impacto de IGF2 en la comunicación entre trofoblasto y las células dNK

dc.contributor.advisorUmaña Pérez, Yadi Adrianaspa
dc.contributor.authorGuevara Prieto, Valentinaspa
dc.contributor.cvlacGuevara Prieto, Valentina [0000118585]spa
dc.contributor.orcidGuevara Prieto, Valentina 0000-0003-1535-615Xspa
dc.contributor.researchgroupGrupo de Investigación en Hormonasspa
dc.date.accessioned2024-10-31T19:43:57Z
dc.date.available2024-10-31T19:43:57Z
dc.date.issued2024-01-30
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el proceso de implantación blastocística debe existir una comunicación continua entre las células de trofoblasto, las células dNK y otras poblaciones inmunes. Esta comunicación se centra en ejercer control inmunológico para mantener la receptividad materna. El aumento en la concentración de factores como el IGF2 se ha asociado a un incremento en la invasividad de las células trofoblásticas, siendo relevante estudiar los mecanismos que modulan la comunicación entre las células de trofoblasto y las células dNK en presencia de IGF2. Para esto se planteó un modelo in vitro, en el que se diferenciaron células pNK hacia un fenotipo tolerogénico similar a las células dNK (i-dNK) para co-cultivarlas con células HTR-8/SVneo. Se recogieron los medios condicionados de i-dNK (MidNK) para evaluar su efecto en la proliferación, invasión y migración de las células de trofoblasto estimuladas con IGF2 y los de células de HTR-8/SVneo estimuladas con IGF2 (MHIGF) para determinar los cambios en la expresión de marcadores de diferenciación en las células i-dNK. El análisis de los medios MHIGF muestra un incremento en la expresión de citoquinas relacionadas con la tolerogenia. Este efecto es suprimido en los medios de los co-cultivos, sugiriendo que la comunicación intercelular puede estar activando el papel regulador de las células dNK. Este resultado concuerda con los cambios en expresión génica y en cambios fenotípicos, que muestran la capacidad de las células i-dNK de ejercer regulación sobre las células de trofoblasto en respuesta al estímulo con IGF2. (Texto tomado de la fuente).spa
dc.description.abstractIn the process of blastocyst implantation there must be continuous communication between trophoblast cells, dNK cells and other immune populations at the maternal interphase. This communication focuses on exerting immunological control to maintain maternal receptivity. The increase in the concentration of factors such as IGF2 has been associated with an increase in the invasiveness of trophoblast cells. As a result, it is important to study the mechanisms that modulate the communication between trophoblast cells and dNK cells in the presence of IGF2. For this, an in vitro model was proposed, in which pNK cells were differentiated towards a tolerogenic phenotype similar to dNK cells (i-dNK) to co-culture them with HTR-8/SVneo cells. Conditioned media from i-dNK (MidNK) were collected to evaluate its effect on the proliferation, invasion and migration of trophoblast cells stimulated with IGF2 and those of HTR-8/SVneo cells stimulated with IGF2 (MHIGF2) to determine changes in the expression of differentiation markers in i-dNK cells. Analysis of MHIGF media shows an increase in the expression of cytokines related to tolerance. This effect is suppressed in the co-culture media, suggesting that intercellular communication may be activating the regulatory role of dNK cells. This result is consistent with the changes in gene expression and phenotypic changes, which show the ability of i-dNK cells to exert regulation on trophoblast cells in response to IGF2 stimulation.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Bioquímicaspa
dc.description.researchareaTrofoblasto como modelo predictivo de progresión tumoralspa
dc.format.extentxvi, 51 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87134
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Bioquímicaspa
dc.relation.indexedBiremespa
dc.relation.referencesAhluwalia, A., & S. Tarnawski, A. (2012). Critical role of hypoxia sensor--HIF-1α in VEGF gene activation. Implications for angiogenesis and tissue injury healing. Current Medicinal Chemistry, 19(1), 90–97. https://doi.org/10.2174/092986712803413944spa
dc.relation.referencesAllan, D. S. J., Rybalov, B., Awong, G., Zúñiga-Pflücker, J. C., Kopcow, H. D., Carlyle, J. R., & Strominger, J. L. (2010). TGF-β affects development and differentiation of human natural killer cell subsets. European Journal of Immunology, 40(8), 2289–2295. https://doi.org/10.1002/EJI.200939910spa
dc.relation.referencesAnder, S. E., Diamond, M. S., & Coyne, C. B. (2019). Immune responses at the maternal-fetal interface. Science Immunology, 4(31). https://doi.org/10.1126/SCIIMMUNOL.AAT6114spa
dc.relation.referencesBach, L. A. (2018). What Happened to the IGF Binding Proteins? Endocrinology, 159(2), 570–578. https://doi.org/10.1210/EN.2017-00908spa
dc.relation.referencesBraud, V. M., Allan, D. S. J., O’Callaghan, C. A., Soderstrom, K., D’Andrea, A., Ogg, G. S., Lazetic, S., Young, N. T., Bell, J. I., Phillips, J. H., Lanler, L. L., & McMichael, A. J. (1998). HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature, 391(6669), 795–799. https://doi.org/10.1038/35869spa
dc.relation.referencesCastro-Badilla, J.-J. (2021). CARACTERIZACIÓN DE LA VÍA DE SEÑALIZACIÓN INTRACELULAR MEDIADA POR IGF2R EN TROFOBLASTO HUMANO. Universidad Nacional de Colombia.spa
dc.relation.referencesCerdeira, A. S., Rajakumar, A., Royle, C. M., Lo, A., Husain, Z., Thadhani, R. I., Sukhatme, V. P., Karumanchi, S. A., & Kopcow, H. D. (2013). Conversion of peripheral blood NK cells to a decidual NK-like phenotype by a cocktail of defined factors. Journal of Immunology (Baltimore, Md. : 1950), 190(8), 3939. https://doi.org/10.4049/JIMMUNOL.1202582spa
dc.relation.referencesChakraborty, C., Gleeson, L. M., McKinnon, T., Lala, P. K., Chakraborty, C., Gleeson, L., McKinnon, T., & Lala, P. (2002). Regulation of human trophoblast migration and invasiveness 1. J. Physiol. Pharmacol, 80, 116–124. https://doi.org/10.1139/Y02-016spa
dc.relation.referencesChen, C.-P., Piao, L., Chen, X., Yu, J., Masch, R., Schatz, F., Lockwood, C. J., & Huang, S. J. (2015). Expression of Interferon g by Decidual Cells and Natural Killer Cells at the Human Implantation Site: Implications for Preeclampsia, Spontaneous Abortion, and Intrauterine Growth Restriction. Reproductive Sciences. https://doi.org/10.1177/1933719115585148spa
dc.relation.referencesCheng, S.-B., & Sharma, S. (2014). Interleukin-10: A Pleiotropic Regulator in Pregnancy. Am J Reprod Immunol. https://doi.org/10.1111/aji.12329spa
dc.relation.referencesChowdhury, R., Hardy, A., & Schofield, C. J. (2008). The human oxygen sensing machinery and its manipulation. Chemical Society Reviews, 37(7). https://doi.org/10.1039/b701676jspa
dc.relation.referencesClemmons, D. R. (2018). 40 YEARS OF IGF1: Role of IGF-binding proteins in regulating IGF responses to changes in metabolism. Journal of Molecular Endocrinology, 61(1), T139–T169. https://doi.org/10.1530/JME-18-0016spa
dc.relation.referencesDattani, M. T., & Gevers, E. F. (2016). Endocrinology of Fetal Development. Williams Textbook of Endocrinology, 849–892. https://doi.org/10.1016/B978-0-323-29738-7.00022-8spa
dc.relation.referencesDu, X., Zhu, H., Jiao, D., Nian, Z., Zhang, J., Zhou, Y., Zheng, X., Tong, X., Wei, H., & Fu, B. (2022). Human-Induced CD49a+ NK Cells Promote Fetal Growth. Frontiers in Immunology, 13, 821542. https://doi.org/10.3389/FIMMU.2022.821542/BIBTEXspa
dc.relation.referencesForbes, K., Westwood, M., Baker, P. N., & Aplin, J. D. (2008). Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. American Journal of Physiology. Cell Physiology, 294(6). https://doi.org/10.1152/AJPCELL.00035.2008spa
dc.relation.referencesFraser, R., Whitley, G. S., Johnstone, A. P., Host, A. J., Sebire, N. J., Thilaganathan, B., & Cartwright, J. E. (2012). Impaired decidual natural killer cell regulation of vascular remodelling in early human pregnancies with high uterine artery resistance. The Journal of Pathology, 228(3), 322–332. https://doi.org/10.1002/PATH.4057spa
dc.relation.referencesHabets, D. H. J., Schlütter, A., van Kuijk, S. M. J., Spaanderman, M. E. A., Al-Nasiry, S., & Wieten, L. (2022). Natural killer cell profiles in recurrent pregnancy loss: Increased expression and positive associations with TACTILE and LILRB1. American Journal of Reproductive Immunology, 88(5). https://doi.org/10.1111/AJI.13612spa
dc.relation.referencesHanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T. I., Manaster, I., Gazit, R., Yutkin, V., Benharroch, D., Porgador, A., Keshet, E., Yagel, S., & Mandelboim, O. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nature Medicine 2006 12:9, 12(9), 1065–1074. https://doi.org/10.1038/nm1452spa
dc.relation.referencesImai, T., Baba, M., Nishimura, M., Kakizaki, M., Takagi, S., & Yoshie, O. (1997). The T Cell-directed CC Chemokine TARC Is a Highly Specific Biological Ligand for CC Chemokine Receptor 4. Journal of Biological Chemistry, 272(23), 15036–15042. https://doi.org/10.1074/JBC.272.23.15036spa
dc.relation.referencesJabrane-Ferrat, N. (2019). Features of Human Decidual NK Cells in Healthy Pregnancy and During Viral Infection. Frontiers in Immunology, 10. https://doi.org/10.3389/fimmu.2019.01397spa
dc.relation.referencesJames, J. L., Stone, P. R., & Chamley, L. W. (2005). Cytotrophoblast differentiation in the first trimester of pregnancy: evidence for separate progenitors of extravillous trophoblasts and syncytiotrophoblast. Reproduction (Cambridge, England), 130(1), 95–103. https://doi.org/10.1530/REP.1.00723spa
dc.relation.referencesJarmund, A. H., Giskeødegård, G. F., Ryssdal, M., Steinkjer, B., Stokkeland, L. M. T., Madssen, T. S., Stafne, S. N., Stridsklev, S., Moholdt, T., Heimstad, R., Vanky, E., & Iversen, A. C. (2021). Cytokine Patterns in Maternal Serum From First Trimester to Term and Beyond. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.752660spa
dc.relation.referencesJiang, L., Fei, H., Jin, X., Liu, X., Yang, C., Li, C., Chen, J., Yang, A., Zhu, J., Wang, H., Fei, X., & Zhang, S. (2021). Extracellular Vesicle-Mediated Secretion of HLA-E by Trophoblasts Maintains Pregnancy by Regulating the Metabolism of Decidual NK Cells. International Journal of Biological Sciences, 17(15), 4377. https://doi.org/10.7150/IJBS.63390spa
dc.relation.referencesJuelke, K., Killig, M., Luetke-Eversloh, M., Parente, E., Gruen, J., Morandi, B., Ferlazzo, G., Thiel, A., Schmitt-Knosalla, I., & Romagnani, C. (2010). CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood, 116(8), 1299–1307. https://doi.org/10.1182/BLOOD-2009-11-253286spa
dc.relation.referencesKeskin, D. B., Allan, D. S. J., Rybalov, B., Andzelm, M. M., Stern, J. N. H., Kopcow, H. D., Koopman, L. A., & Strominger, J. L. (2007). TGFβ promotes conversion of CD16+ peripheral blood NK cells into CD16− NK cells with similarities to decidual NK cells. Proceedings of the National Academy of Sciences, 104(9), 3378–3383. https://doi.org/10.1073/PNAS.0611098104spa
dc.relation.referencesKing, A., Hiby, S. E., Verma, S., Burrows, T., Gardner, L., & Loke, Y. W. (1997). Uterine NK Cells and Trophoblast HLA Class I Molecules. American Journal of Reproductive Immunology, 37, 459462. https://doi.org/10.1111/j.1600-0897.1997.tb00260.xspa
dc.relation.referencesKoopman, L. A., Kopcow, H. D., Rybalov, B., Boyson, J. E., Orange, J. S., Schatz, F., Masch, R., Lockwood, C. J., Schachter, A. D., Park, P. J., & Strominger, J. L. (2003). Human Decidual Natural Killer Cells Are a Unique NK Cell Subset with Immunomodulatory Potential. Journal of Experimental Medicine, 198(8), 1201–1212. https://doi.org/10.1084/JEM.20030305spa
dc.relation.referencesKu, C. W., Zhang, X., Zhang, V. R. Y., Allen, J. C., Tan, N. S., Østbye, T., & Tan, T. C. (2021). Gestational age-specific normative values and determinants of serum progesterone through the first trimester of pregnancy. Scientific Reports 2021 11:1, 11(1), 1–8. https://doi.org/10.1038/s41598-021-83805-wspa
dc.relation.referencesLash, G. E., Otun, H. A., Innes, B. A., Percival, K., Searle, R. F., Robson, S. C., & Bulmer, J. N. (2010). Regulation of extravillous trophoblast invasion by uterine natural killer cells is dependent on gestational age. Human Reproduction (Oxford, England), 25(5), 1137–1145. https://doi.org/10.1093/humrep/deq050spa
dc.relation.referencesLissauer, D., Eldershaw, S. A., Inman, C. F., Coomarasamy, A., Moss, P. A. H., & Kilby, M. D. (2015). Progesterone promotes maternal–fetal tolerance by reducing human maternal T‐cell polyfunctionality and inducing a specific cytokine profile. European Journal of Immunology, 45(10), 2858. https://doi.org/10.1002/EJI.201445404spa
dc.relation.referencesLiu, S., Diao, L., Huang, C., Li, Y., Zeng, Y., & Kwak-Kim, J. Y. H. (2017). The role of decidual immune cells on human pregnancy. Journal of Reproductive Immunology, 124, 44–53. https://doi.org/10.1016/J.JRI.2017.10.045spa
dc.relation.referencesLivak, K. J., & Schmittgen, T. D. (2001). Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2−ΔΔCT Method. Methods, 25(4), 402–408. https://doi.org/10.1006/METH.2001.1262spa
dc.relation.referencesLivingstone, C. (2013). IGF2 and cancer. Endocrine-Related Cancer, 20(6). https://doi.org/10.1530/ERC-13-0231spa
dc.relation.referencesLopez-Gonzalez, D.-A. (2021). Efecto de IGF2 sobre el panorama de metilación del ADN y la expresión de ARNm asociada en la línea celular HTR-8/SVneo. Universidad Nacional de Colombia.spa
dc.relation.referencesLu, J., Zhou, W. H., Ren, L., & Zhang, Y. Z. (2016). CXCR4, CXCR7, and CXCL12 are associated with trophoblastic cells apoptosis and linked to pathophysiology of severe preeclampsia. Experimental and Molecular Pathology, 100(1), 184–191. https://doi.org/10.1016/j.yexmp.2015.12.013spa
dc.relation.referencesLunghi, L., Ferretti, M. E., Medici, S., Biondi, C., & Vesce, F. (2007). Control of human trophoblast function. Reproductive Biology and Endocrinology 2007 5:1, 5(1), 1–14. https://doi.org/10.1186/1477-7827-5-6spa
dc.relation.referencesManaster, I., Mizrahi, S., Goldman-Wohl, D., Sela, H. Y., Stern-Ginossar, N., Lankry, D., Gruda, R., Hurwitz, A., Bdolah, Y., Haimov-Kochman, R., Yagel, S., & Mandelboim, O. (2008). Endometrial NK cells are special immature cells that await pregnancy. Journal of Immunology (Baltimore, Md. : 1950), 181(3), 1869–1876. https://doi.org/10.4049/jimmunol.181.3.1869spa
dc.relation.referencesOberlies, J., Watzl, C., Giese, T., Luckner, C., Kropf, P., Müller, I., Ho, A. D., & Munder, M. (2009). Regulation of NK Cell Function by Human Granulocyte Arginase. The Journal of Immunology, 182(9), 5259–5267. https://doi.org/10.4049/JIMMUNOL.0803523spa
dc.relation.referencesPijnenborg, R., Vercruysse, L., & Hanssens, M. (2006). The Uterine Spiral Arteries In Human Pregnancy: Facts and Controversies. Placenta, 27(9–10), 939–958. https://doi.org/10.1016/J.PLACENTA.2005.12.006spa
dc.relation.referencesPoli, A., Michel, T., Thérésine, M., Andrès, E., Hentges, F., & Zimmer, J. (2009). CD56bright natural killer (NK) cells: an important NK cell subset. Immunology, 126(4), 458. https://doi.org/10.1111/J.1365-2567.2008.03027.Xspa
dc.relation.referencesPollheimer, J., Vondra, S., Baltayeva, J., Beristain, A. G., & Knöfler, M. (2018). Regulation of placental extravillous trophoblasts by the maternal uterine environment. Frontiers in Immunology, 9(NOV), 2597. https://doi.org/10.3389/FIMMU.2018.02597/BIBTEXspa
dc.relation.referencesPrutsch, N., Fock, V., Haslinger, P., Haider, S., Fiala, C., Pollheimer, J., & Knöfler, M. (2012). The role of interleukin-1β in human trophoblast motility. Placenta, 33(9), 696–703. https://doi.org/10.1016/J.PLACENTA.2012.05.008spa
dc.relation.referencesRanke, M. B., & Wit, J. M. (2018). Growth hormone — past, present and future. Nature Reviews Endocrinology 2018 14:5, 14(5), 285–300. https://doi.org/10.1038/nrendo.2018.22spa
dc.relation.referencesResnik, R. (2002). Intrauterine growth restriction. Obstetrics and Gynecology, 99(3), 490–496. https://doi.org/10.1016/S0029-7844(01)01780-Xspa
dc.relation.referencesRiley, J. K., & Yokoyama, W. M. (2008). NK cell tolerance and the maternal-fetal interface. American Journal of Reproductive Immunology (New York, N.Y. : 1989), 59(5), 371–387. https://doi.org/10.1111/j.1600-0897.2008.00593.xspa
dc.relation.referencesRodriguez, L. G., Wu, X., & Guan, J. L. (2005). Wound-healing assay. Methods in Molecular Biology (Clifton, N.J.), 294, 23–29. https://doi.org/10.1385/1-59259-860-9:023/COVERspa
dc.relation.referencesSharp, A. N., Heazell, A. E. P., Crocker, I. P., & Mor, G. (2010). Placental Apoptosis in Health and Disease. Am J Reprod Immunol. https://doi.org/10.1111/j.1600-0897.2010.00837.xspa
dc.relation.referencesSiwetz, M., Blaschitz, A., El-Heliebi, A., Hiden, U., Desoye, G., Huppertz, B., & Gauster, M. (2016). TNF-α alters the inflammatory secretion profile of human first trimester placenta. Laboratory Investigation, 96(4), 428–438. https://doi.org/10.1038/LABINVEST.2015.159spa
dc.relation.referencesStaun-Ram, E., & Shalev, E. (2005). Human trophoblast function during the implantation process. Reproductive Biology and Endocrinology, 3(1), 1–12. https://doi.org/10.1186/1477-7827-3-56/METRICSspa
dc.relation.referencesStraszewski-Chavez, S. L., Abrahams, V. M., & Mor, G. (2005). The role of apoptosis in the regulation of trophoblast survival and differentiation during pregnancy. Endocrine Reviews, 26(7), 877–897. https://doi.org/10.1210/ER.2005-0003spa
dc.relation.referencesSuarez-Arnedo, A., Figueroa, F. T., Clavijo, C., Arbeláez, P., Cruz, J. C., & Muñoz-Camargo, C. (2020). An image J plugin for the high throughput image analysis of in vitro scratch wound healing assays. PLoS ONE, 15(7). https://doi.org/10.1371/JOURNAL.PONE.0232565spa
dc.relation.referencesTalia, C., Connolly, L., & Fowler, P. A. (2021). The insulin-like growth factor system: A target for endocrine disruptors? Environment International, 147, 106311. https://doi.org/10.1016/J.ENVINT.2020.106311spa
dc.relation.referencesTang, J., Yang, L., Guan, F., Miller, H., Camara, N. O. S., James, L. K., Benlagha, K., Kubo, M., Heegaard, S., Lee, P., Lei, J., Zeng, H., He, C., Zhai, Z., & Liu, C. (2023). The role of Raptor in lymphocytes differentiation and function. In Frontiers in Immunology (Vol. 14). https://doi.org/10.3389/fimmu.2023.1146628spa
dc.relation.referencesVacca, P., Moretta, L., Moretta, A., & Mingari, M. C. (2011). Origin, phenotype and function of human natural killer cells in pregnancy. Trends in Immunology, 32(11), 517–523. https://doi.org/10.1016/J.IT.2011.06.013spa
dc.relation.referencesVelicky, P., Meinhardt, G., Plessl, K., Vondra, S., Weiss, T., Haslinger, P., Lendl, T., Aumayr, K., Mairhofer, M., Zhu, X., Schütz, B., Hannibal, R. L., Lindau, R., Weil, B., Ernerudh, J., Neesen, J., Egger, G., Mikula, M., Röhrl, C., … Pollheimer, J. (2018). Genome amplification and cellular senescence are hallmarks of human placenta development. PLOS Genetics, 14(10), e1007698. https://doi.org/10.1371/JOURNAL.PGEN.1007698spa
dc.relation.referencesVilotić, A., Nacka-Aleksić, M., Pirković, A., Bojić-Trbojević, Ž., Dekanski, D., & Jovanović Krivokuća, M. (2022). IL-6 and IL-8: An Overview of Their Roles in Healthy and Pathological Pregnancies. In International Journal of Molecular Sciences (Vol. 23, Issue 23). MDPI. https://doi.org/10.3390/ijms232314574spa
dc.relation.referencesWallace, A. E., Fraser, R., & Cartwright, J. E. (2012). Extravillous trophoblast and decidual natural killer cells: a remodelling partnership Human Reproduction Update Advance Access Downloaded from. Human Reproduction Update, 0(0), 1–14. https://doi.org/10.1093/humupd/dms015spa
dc.relation.referencesWallace, A. E., Host, A. J., Whitley, G. S., & Cartwright, J. E. (2013). Decidual Natural Killer Cell Interactions with Trophoblasts Are Impaired in Pregnancies at Increased Risk of Preeclampsia. The American Journal of Pathology, 183(6), 1853. https://doi.org/10.1016/J.AJPATH.2013.08.023spa
dc.relation.referencesWang, F., Zhu, H., Li, B., Liu, M., Liu, D., Deng, M., Wang, Y., Xia, X., Jiang, Q., & Chen, D. (2017). Effects of human chorionic gonadotropin, estradiol, and progesterone on interleukin-18 expression in human decidual tissues. Http://Dx.Doi.Org/10.1080/09513590.2016.1212829, 33(4), 265–269. https://doi.org/10.1080/09513590.2016.1212829spa
dc.relation.referencesWegmann, T. G., Lin, H., Guilbert, L., & Mosmann, T. R. (1993). Bidirectional cytokine interactions in the maternal-fetal relationship: is successful pregnancy a TH2 phenomenon? Immunology Today, 14(7), 353–356. https://doi.org/10.1016/0167-5699(93)90235-Dspa
dc.relation.referencesYou, Y., Stelzl, P., Joseph, D. N., Aldo, P. B., Maxwell, A. J., Dekel, N., Liao, A., Whirledge, S., & Mor, G. (2021). TNF-α Regulated Endometrial Stroma Secretome Promotes Trophoblast Invasion. Frontiers in Immunology, 12, 737401. https://doi.org/10.3389/FIMMU.2021.737401/BIBTEXspa
dc.relation.referencesZhou, W. H., Du, M. R., Dong, L., Yu, J., & Li, D. J. (2008). Chemokine CXCL12 promotes the cross-talk between trophoblasts and decidual stromal cells in human first-trimester pregnancy. Human Reproduction, 23(12), 2669–2679. https://doi.org/10.1093/humrep/den308spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsCélulas Asesinas Naturalesspa
dc.subject.decsKiller Cells, Naturaleng
dc.subject.decsReceptor IGF Tipo 2spa
dc.subject.decsReceptor, IGF Type 2eng
dc.subject.proposalNatural killerspa
dc.subject.proposalDeciduaspa
dc.subject.proposalEmbarazospa
dc.subject.proposalComunicación materno-fetalspa
dc.subject.proposalNatural killereng
dc.subject.proposalDeciduaeng
dc.subject.proposalPregnancyeng
dc.subject.proposalMaternal-fetal communicationeng
dc.subject.wikidatatrofoblastospa
dc.subject.wikidatatrophoblast celleng
dc.titleDeterminación del impacto de IGF2 en la comunicación entre trofoblasto y las células dNKspa
dc.title.translatedIGF2 impact in the communication between trophoblast and dNK cellseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernameMincienciasspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis MSc Valentina Guevara Prieto versión final repositorio.pdf
Tamaño:
974.07 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Bioquímica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: