Estudio de asociación de genoma completo en aislamientos clínicos de Mycobacterium tuberculosis pan-susceptibles, multi-fármacorresistentes (MDR) y extremadamente resistente (XDR)
dc.contributor.advisor | Hurtado Páez, Uriel Alonso | |
dc.contributor.advisor | Moreno Herrera, Claudia Ximena | |
dc.contributor.author | Mosquera Rendón, Jeanneth | |
dc.date.accessioned | 2025-09-11T21:38:22Z | |
dc.date.available | 2025-09-11T21:38:22Z | |
dc.date.issued | 2024 | |
dc.description | Ilustraciones, gráficos | spa |
dc.description.abstract | El aumento en los casos de tuberculosis farmacorresistente (TB-DR) en los últimos años, junto con la aparición de aislamientos de Mycobacterium tuberculosis resistentes a nuevos medicamentos como la bedaquilina, y a reutilizados, como la clofazimina, D-cicloserina y linezolid, que representan las últimas alternativas terapéuticas para la TB-DR, resalta la necesidad de comprender los mecanismos que estas bacterias desarrollan para evadir su acción. Este estudio tiene como objetivo principal la implementación de enfoques de estudio de asociación de todo el genoma (GWAS) para identificar variantes genéticas asociadas a diferentes concentraciones inhibitorias mínimas (CIM) a estos medicamentos. Para ello, analizamos 2,056 cepas de M. tuberculosis de diversos países, incluidos 59 de Colombia, integrando datos de secuenciación del genoma completo (WGS) y datos fenotípicos cuantitativos (valores CIM). Los análisis GWAS basados en SNP-INDELS identificaron mutaciones en los genes rplC (Cys154Arg) y Rv0678 (Glu49fs) asociadas con la resistencia a linezolid, bedaquilina y clofazimina. Adicionalmente, los análisis GWAS basados en k-mers revelaron unitigs en los genes aspC, murE, qor, y mmpL5 potencialmente asociadas a diferentes CIM de medicamentos antituberculosos como D-cicloserina y clofazimina. Estos hallazgos demuestran el potencial de los análisis genotipo-fenotipo, combinado con la cuantificación del fenotipo de resistencia a través de las CIM, para detectar variantes genéticas significativas y profundizar nuestra comprensión de los mecanismos de resistencia a los agentes antituberculosos. (Tomado de la fuente) | spa |
dc.description.abstract | The rise in drug-resistant tuberculosis (DR-TB) cases in recent years, together with the emergence of Mycobacterium tuberculosis isolates resistant to new drugs such as bedaquiline and to repurposed drugs such as clofazimine, D-cycloserine, and linezolid, which represent the latest therapeutic alternatives for DR-TB, highlights the need to understand the mechanisms that these bacteria develop to evade their action. The main aim of this study is to implement genome-wide association study (GWAS) approaches to identify genetic variants associated with different minimum inhibitory concentrations (MICs) to these drugs. To achieve this, we analyzed 2,056 M. tuberculosis strains from various countries, including 59 from Colombia, integrating whole-genome sequencing (WGS) data with quantitative phenotypic measurements (MIC values). SNP-INDELS-based GWAS analyses identified mutations in the rplC (Cys154Arg) and Rv0678 (Glu49fs) genes, which are associated with resistance to linezolid, bedaquiline, and clofazimine. Additionally, Kmers-based GWAS analyses revealed unitigs in the aspC, murE, qor, and mmpL5 genes potentially associated with different MICs of anti-TB drugs such as D-cycloserine and clofazimine. These findings demonstrate the potential of genotype-phenotype analyses, combined with the measurement of resistance phenotypes through MICs, to detect significant genetic variants and deepen our understanding of resistance mechanisms to anti-TB agents. | eng |
dc.description.curriculararea | Biotecnología.Sede Medellín | |
dc.description.degreelevel | Doctorado | |
dc.description.degreename | Doctor en Biotecnología | |
dc.format.extent | 175 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88729 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Medellín, Colombia | |
dc.publisher.program | Medellín - Ciencias - Doctorado en Biotecnología | |
dc.relation.indexed | LaReferencia | |
dc.relation.references | Alam, M. T., Petit 3rd, R. A., Crispell, E. K., Thornton, T. A., Conneely, K. N., Jiang, Y., Satola, S. W., & Read, T. D. (2014). Dissecting vancomycin-intermediate resistance in Staphylococcus aureus using genome-wide association. Genome Biology and Evolution, 6(5), 1174–1185. https://doi.org/10.1093/gbe/evu092 | |
dc.relation.references | Allué-Guardia, A., García, J. I., & Torrelles, J. B. (2021). Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Frontiers in Microbiology, 12(February), 1–21. https://doi.org/10.3389/fmicb.2021.612675 | |
dc.relation.references | Almeida, D., Ioerger, T., Tyagi, S., Li, S. Y., Mdluli, K., Andries, K., Grosset, J., Sacchettini, J., & Nuermberger, E. (2016). Mutations in pepQ confer low-level resistance to bedaquiline and clofazimine in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 60(8), 4590–4599. https://doi.org/10.1128/AAC.00753-16 | |
dc.relation.references | Andrews, S. (2010). FastQC: A quality control tool for high throughput sequence data. Http://Www.Bioinformatics.Babraham.Ac.Uk/Projects/Fastqc/. https://doi.org/citeulike-article- id:11583827 | |
dc.relation.references | Andries, K., Villellas, C., Coeck, N., Thys, K., Gevers, T., Vranckx, L., Lounis, N., De Jong, B. C., & Koul, A. (2014). Acquired resistance of Mycobacterium tuberculosis to bedaquiline. PLoS ONE, 9(7), 1–11. https://doi.org/10.1371/journal.pone.0102135 | |
dc.relation.references | Bainomugisa, A., Gilpin, C., Coulter, C., & Marais, B. J. (2020). New xpert MTB/XDR: Added value and future in the field. European Respiratory Journal, 56(5). https://doi.org/10.1183/13993003.03616-2020 | |
dc.relation.references | Bankevich, A., Nurk, S., Antipov, D., Gurevich, A. A., Dvorkin, M., Kulikov, A. S., Lesin, V. M., Nikolenko, S. I., Pham, S., Prjibelski, A. D., Pyshkin, A. V, Sirotkin, A. V, Vyahhi, N., Tesler, G., Alekseyev, M. A., & Pevzner, P. A. (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. Journal of Computational Biology : A Journal of Computational Molecular Cell Biology, 19(5), 455–477. https://doi.org/10.1089/cmb.2012.0021 | |
dc.relation.references | Battaglia, S., Spitaleri, A., Cabibbe, A. M., Meehan, C. J., Utpatel, C., Ismail, N., Tahseen, S., Skrahina, A., Alikhanova, N., Mostofa Kamal, S. M., Barbova, A., Niemann, S., Groenheit, R., Dean, A. S., Zignol, M., Rigouts, L., & Cirillo, D. M. (2020). Characterization of genomic variants associated with resistance to bedaquiline and delamanid in naive Mycobacterium tuberculosis clinical strains. Journal of Clinical Microbiology, 58(11), 1–16. https://doi.org/10.1128/JCM.01304-20 | |
dc.relation.references | Beckert, P., Sanchez-Padilla, E., Merker, M., Dreyer, V., Kohl, T. A., Utpatel, C., Köser, C. U., Barilar, I., Ismail, N., Omar, S. V., Klopper, M., Warren, R. M., Hoffmann, H., Maphalala, G., Ardizzoni, E., de Jong, B. C., Kerschberger, B., Schramm, B., Andres, S., … Niemann, S. (2020). MDR M. tuberculosis outbreak clone in Eswatini missed by Xpert has elevated bedaquiline resistance dated to the pre-treatment era. Genome Medicine, 12(1), 104. https://doi.org/10.1186/s13073-020-00793-8 | |
dc.relation.references | Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120. https://doi.org/doi:10.1093/bioinformatics/btu170 | |
dc.relation.references | Brynildsrud, O., Bohlin, J., Scheffer, L., & Eldholm, V. (2016). Rapid scoring of genes in microbial pan-genome-wide association studies with Scoary. Genome Biology, 17(1), 1–9. https://doi.org/10.1186/s13059-016-1108-8 | |
dc.relation.references | Bush, W. S., & Moore, J. H. (2012). Chapter 11: Genome-Wide Association Studies. PLoS Computational Biology, 8(12). https://doi.org/10.1371/journal.pcbi.1002822 | |
dc.relation.references | Cebrián-Sastre, E., Chiner-Oms, A., Torres-Pérez, R., Comas, I., Oliveros, J. C., Blázquez, J., & Castañeda-García, A. (2023). Selective Pressure by Rifampicin Modulates Mutation Rates and Evolutionary Trajectories of Mycobacterial Genomes. Microbiology Spectrum, 11(4), e0101723. https://doi.org/10.1128/spectrum.01017-23 | |
dc.relation.references | Chen, J., Zhang, S., Cui, P., Shi, W., Zhang, W., & Zhang, Y. (2017). Identification of novel mutations associated with cycloserine resistance in Mycobacterium tuberculosis. Journal of Antimicrobial Chemotherapy, 72(12), 3272–3276. https://doi.org/10.1093/jac/dkx316 | |
dc.relation.references | Chen, P. E., & Shapiro, B. J. (2015). The advent of genome-wide association studies for bacteria. Current Opinion in Microbiology, 25, 17–24. https://doi.org/10.1016/j.mib.2015.03.002 | |
dc.relation.references | Cingolani, P., Platts, A., Wang, L. L., Coon, M., Nguyen, T., Wang, L., Land, S. J., Lu, X., & Ruden, D. M. (2012). A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly, 6(2), 80–92. https://doi.org/10.4161/fly.19695 | |
dc.relation.references | Cohen, K. A., Manson, A. L., Abeel, T., Desjardins, C. A., Chapman, S. B., Hoffner, S., Birren, B. W., & Earl, A. M. (2019). Extensive global movement of multidrug-resistant M. tuberculosis strains revealed by whole-genome analysis. Thorax, 882–889. https://doi.org/10.1136/thoraxjnl-2018-211616 | |
dc.relation.references | Cohen, K. A., Manson, A. L., Desjardins, C. A., Abeel, T., & Earl, A. M. (2019). Deciphering drug resistance in Mycobacterium tuberculosis using whole-genome sequencing: Progress, promise, and challenges. Genome Medicine, 11(1), 1–18. https://doi.org/10.1186/s13073-019- 0660-8 | |
dc.relation.references | Cole, S. T., Brosch, R., Parkhill, J., Garnier, T., Churcher, C., Harris, D., Gordon, S. V, Eiglmeier, K., Gas, S., Barry, C. E., Tekaia, F., Badcock, K., Basham, D., Brown, D., Chillingworth, T., Connor, R., Davies, R., Devlin, K., Feltwell, T., … Barrell, B. G. (1998). Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393(6685), 537– 544. https://doi.org/10.1038/31159 | |
dc.relation.references | Coll, F., Gouliouris, T., Bruchmann, S., Phelan, J., Raven, K. E., Clark, T. G., Parkhill, J., & Peacock, S. J. (2022). PowerBacGWAS: a computational pipeline to perform power calculations for bacterial genome-wide association studies. Communications Biology, 5(1), 1–12. https://doi.org/10.1038/s42003-022-03194-2 | |
dc.relation.references | Collins, C., & Didelot, X. (2018). A phylogenetic method to perform genome-wide association studies in microbes that accounts for population structure and recombination. PLoS Computational Biology, 14(2), 1–21. https://doi.org/10.1371/journal.pcbi.1005958 | |
dc.relation.references | Ministerio de Salud y Protección Social. (2020). Resolución 227 de 2020 (febrero 20): Por medio de la cual se adoptan los lineamientos técnicos y operativos del Programa Nacional de Prevención y Control de la Tuberculosis - PNPCT y se dictan otras disposiciones. https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 227 de 2020.pdf | |
dc.relation.references | Conkle-Gutierrez, D., Kim, C., Ramirez-Busby, S. M., Modlin, S. J., Mansjö, M., Werngren, J., Rigouts, L., Hoffner, S. E., & Valafar, F. (2022). Distribution of Common and Rare Genetic Markers of Second- Line-Injectable-Drug Resistance in Mycobacterium tuberculosis Revealed by a Genome-Wide Association Study. Antimicrobial Agents and Chemotherapy, 66(6), 1–12. https://doi.org/10.1128/aac.02075-21 | |
dc.relation.references | Coscolla, M., Gagneux, S., Menardo, F., Loiseau, C., Ruiz-Rodriguez, P., Borrell, S., Otchere, I. D., Asante-Poku, A., Asare, P., Sánchez-Busó, L., Gehre, F., Sanoussi, C. N., Antonio, M., Affolabi, D., Fyfe, J., Beckert, P., Niemann, S., Alabi, A. S., Grobusch, M. P., … Brites, D. (2021). Phylogenomics of Mycobacterium africanum reveals a new lineage and a complex evolutionary history. Microbial Genomics, 7(2). https://doi.org/10.1099/mgen.0.000477 | |
dc.relation.references | Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., McVean, G., & Durbin, R. (2011). The variant call format and VCFtools. Bioinformatics (Oxford, England), 27(15), 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 | |
dc.relation.references | De Almeida, I. N., Da Silva Carvalho, W., Rossetti, M. L., Costa, E. R. D., & De Miranda, S. S. (2013). Evaluation of six different DNA extraction methods for detection of Mycobacterium tuberculosis by means of PCR-IS6110: Preliminary study. BMC Research Notes, 6(1), 2–7. https://doi.org/10.1186/1756-0500-6-561 | |
dc.relation.references | de Chiara, C., Prosser, G. A., Ogrodowicz, R., & de Carvalho, L. P. S. (2023). Structure of the d- Cycloserine-Resistant Variant D322N of Alanine Racemase from Mycobacterium tuberculosis. ACS Bio and Med Chem Au, 3(3), 233–239. https://doi.org/10.1021/acsbiomedchemau.2c00074 | |
dc.relation.references | Deelder, W., Christakoudi, S., Phelan, J., Benavente, E. D., Campino, S., McNerney, R., Palla, L., & Clark, T. G. (2019). Machine Learning Predicts Accurately Mycobacterium tuberculosis Drug Resistance From Whole Genome Sequencing Data. Frontiers in Genetics, 10(September), 1– 9. https://doi.org/10.3389/fgene.2019.00922 | |
dc.relation.references | Degiacomi, G., Sammartino, J. C., Sinigiani, V., Marra, P., Urbani, A., & Pasca, M. R. (2020). In vitro Study of Bedaquiline Resistance in Mycobacterium tuberculosis Multi-Drug Resistant Clinical Isolates. Frontiers in Microbiology, 11(September), 1–8. https://doi.org/10.3389/fmicb.2020.559469 | |
dc.relation.references | Desjardins, C. A., Cohen, K. A., Munsamy, V., Abeel, T., Maharaj, K., Walker, B. J., Shea, T. P., Almeida, D. V., Manson, A. L., Salazar, A., Padayatchi, N., O’Donnell, M. R., Mlisana, K. P., Wortman, J., Birren, B. W., Grosset, J., Earl, A. M., & Pym, A. S. (2016). Genomic and functional analyses of Mycobacterium tuberculosis strains implicate ald in D-cycloserine resistance. Nature Genetics, 48(5), 544–551. https://doi.org/10.1038/ng.3548 | |
dc.relation.references | Dheda, K., Mirzayev, F., Cirillo, D. M., Udwadia, Z., Dooley, K. E., Chang, K.-C., Omar, S. V., Reuter, A., Perumal, T., Horsburgh, C. R., Murray, M., & Lange, C. (2024). Multidrug-resistant tuberculosis. Nature Reviews Disease Primers, 10(1), 22. https://doi.org/10.1038/s41572-024- 00504-2 | |
dc.relation.references | Domenech, P., Mouhoub, E., & Reed, M. B. (2022). Experimental Confirmation that an Uncommon rrs Gene Mutation (g878a) of Mycobacterium tuberculosis Confers Resistance to Streptomycin. Antimicrobial Agents and Chemotherapy, 66(3), e0191521. https://doi.org/10.1128/AAC.01915-21 | |
dc.relation.references | Dookie, N., Khan, A., Padayatchi, N., & Naidoo, K. (2022). Application of Next Generation Sequencing for Diagnosis and Clinical Management of Drug-Resistant Tuberculosis: Updates on Recent Developments in the Field. Frontiers in Microbiology, 13(March). https://doi.org/10.3389/fmicb.2022.775030 | |
dc.relation.references | Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S., & Naidoo, K. (2018). Evolution of drug resistance in Mycobacterium tuberculosis: A review on the molecular determinants of resistance and implications for personalized care. Journal of Antimicrobial Chemotherapy, 73(5), 1138–1151. https://doi.org/10.1093/jac/dkx506 | |
dc.relation.references | D’Souza, C., Kishore, U., & Tsolaki, A. G. (2023). The PE-PPE Family of Mycobacterium tuberculosis: Proteins in Disguise. Immunobiology, 228(2), 152321. https://doi.org/10.1016/j.imbio.2022.152321 | |
dc.relation.references | Earle, S. G. (2016). Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nat. Microbiol., 1. https://doi.org/10.1038/nmicrobiol.2016.41 | |
dc.relation.references | Earle, S. G., Wu, C. H., Charlesworth, J., Stoesser, N., Gordon, N. C., Walker, T. M., Spencer, C. C. A., Iqbal, Z., Clifton, D. A., Hopkins, K. L., Woodford, N., Smith, E. G., Ismail, N., Llewelyn, M. J., Peto, T. E., Crook, D. W., McVean, G., Walker, A. S., & Wilson, D. J. (2016). Identifying lineage effects when controlling for population structure improves power in bacterial association studies. Nature Microbiology, 1(5), 1–8. https://doi.org/10.1038/nmicrobiol.2016.41 | |
dc.relation.references | Evangelopoulos, D., Prosser, G. A., Rodgers, A., Dagg, B. M., Khatri, B., Ho, M. M., Gutierrez, M. G., Cortes, T., & de Carvalho, L. P. S. (2019). Comparative fitness analysis of D-cycloserine resistant mutants reveals both fitness-neutral and high-fitness cost genotypes. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12074-z | |
dc.relation.references | Falush, D. (2016). Bacterial genomics: Microbial GWAS coming of age. Nature Microbiology, 1(5). https://doi.org/10.1038/nmicrobiol.2016.59 | |
dc.relation.references | Farhat, M. R., Freschi, L., Calderon, R., Ioerger, T., Snyder, M., Meehan, C. J., de Jong, B., Rigouts, L., Sloutsky, A., Kaur, D., Sunyaev, S., van Soolingen, D., Shendure, J., Sacchettini, J., & Murray, M. (2019). GWAS for quantitative resistance phenotypes in Mycobacterium tuberculosis reveals resistance genes and regulatory regions. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-10110-6 | |
dc.relation.references | Farhat, M. R., Shapiro, B. J., Kieser, K. J., Sultana, R., Jacobson, K. R., Victor, T. C., Warren, R. M., Streicher, E. M., Calver, A., Sloutsky, A., Kaur, D., Posey, J. E., Plikaytis, B., Oggioni, M. R., Gardy, J. L., Johnston, J. C., Rodrigues, M., Tang, P. K. C., Kato-Maeda, M., … Murray, M. (2013). Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature Genetics, 45(10), 1183–1189. https://doi.org/10.1038/ng.2747 | |
dc.relation.references | Fonseca, J. D., Knight, G. M., & McHugh, T. D. (2015). The complex evolution of antibiotic resistance in Mycobacterium tuberculosis. International Journal of Infectious Diseases, 32, 94–100. https://doi.org/10.1016/j.ijid.2015.01.014 | |
dc.relation.references | Ford, C. B., Lin, P. L., Chase, M. R., Shah, R. R., Iartchouk, O., Galagan, J., Mohaideen, N., Ioerger, T. R., Sacchettini, J. C., Lipsitch, M., Flynn, J. L., & Fortune, S. M. (2011). Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genetics, 43(5), 482–486. https://doi.org/10.1038/ng.811 | |
dc.relation.references | Gagneux, S. (2018). Ecology and evolution of Mycobacterium tuberculosis. Nature Reviews Microbiology, 16(4), 202–213. https://doi.org/10.1038/nrmicro.2018.8 | |
dc.relation.references | Gan, W. C., Ng, H. F., & Ngeow, Y. F. (2023). Mechanisms of Linezolid Resistance in Mycobacteria. Pharmaceuticals, 16(6). https://doi.org/10.3390/ph16060784 | |
dc.relation.references | Gikalo, M. B., Nosova, E. Y., Krylova, L. Y., & Moroz, A. M. (2012). The role of eis mutations in the development of kanamycin resistance in Mycobacterium tuberculosis isolates from the Moscow region. The Journal of Antimicrobial Chemotherapy, 67(9), 2107–2109. https://doi.org/10.1093/jac/dks178 | |
dc.relation.references | Gomes, L. C., Campino, S., Marinho, C. R. F., Clark, T. G., & Phelan, J. E. (2021). Whole genome sequencing reveals large deletions and other loss of function mutations in Mycobacterium tuberculosis drug resistance genes. Microbial Genomics, 7(12). https://doi.org/10.1099/mgen.0.000724 | |
dc.relation.references | Grosset, J., & Chaisson, R. E. (2017). Handbook of tuberculosis. Springer International Publishing. https://doi.org/10.1016/s1473-3099(09)70317-2 | |
dc.relation.references | Guo, Q., Bi, J., Lin, Q., Ye, T., Wang, Z., Wang, Z., Liu, L., & Zhang, G. (2022). Whole Genome Sequencing Identifies Novel Mutations Associated With Bedaquiline Resistance in Mycobacterium tuberculosis. Frontiers in Cellular and Infection Microbiology, 12, 807095. https://doi.org/10.3389/fcimb.2022.807095 | |
dc.relation.references | Gupta, S., Cohen, K. A., Winglee, K., Maiga, M., Diarra, B., & Bishai, W. R. (2014). Efflux inhibition with verapamil potentiates bedaquiline in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(1), 574–576. https://doi.org/10.1128/AAC.01462-13 | |
dc.relation.references | Gurevich, A., Saveliev, V., Vyahhi, N., & Tesler, G. (2013). QUAST: Quality assessment tool for genome assemblies. Bioinformatics, 29(8), 1072–1075. https://doi.org/10.1093/bioinformatics/btt086 | |
dc.relation.references | Gygli, S. M., Borrell, S., Trauner, A., & Gagneux, S. (2017). Antimicrobial resistance in Mycobacterium tuberculosis: Mechanistic and evolutionary perspectives. FEMS Microbiology Reviews, 41(3), 354–373. https://doi.org/10.1093/femsre/fux011 | |
dc.relation.references | Halouska, S., Fenton, R. J., Zinniel, D. K., Marshall, D. D., Barletta, R. G., & Powers, R. (2014). Metabolomics analysis identifies d-Alanine-d-Alanine ligase as the primary lethal target of d- Cycloserine in mycobacteria. Journal of Proteome Research, 13(2), 1065–1076. https://doi.org/10.1021/pr4010579 | |
dc.relation.references | Hang, N. T. Le, Hijikata, M., Maeda, S., Thuong, P. H., Ohashi, J., Van Huan, H., Hoang, N. P., Miyabayashi, A., Cuong, V. C., Seto, S., Van Hung, N., & Keicho, N. (2019). Whole genome sequencing, analyses of drug resistance-conferring mutations, and correlation with transmission of Mycobacterium tuberculosis carrying katG-S315T in Hanoi, Vietnam. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-51812-7 | |
dc.relation.references | Hartkoorn, R. C., Uplekar, S., & Cole, S. T. (2014). Cross-resistance between clofazimine and bedaquiline through upregulation of MmpL5 in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 58(5), 2979–2981. https://doi.org/10.1128/AAC.00037-14 | |
dc.relation.references | Hicks, N. D., Carey, A. F., Yang, J., Zhao, Y., & Fortunea, S. M. (2019). Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. MBio, 10(2). https://doi.org/10.1128/mBio.00616- 19 | |
dc.relation.references | Hicks, N. D., Giffen, S. R., Culviner, P. H., Chao, M. C., Dulberger, C. L., Liu, Q., Stanley, S., Brown, J., Sixsmith, J., Wolf, I. D., & Fortune, S. M. (2020). Mutations in dnaA and a cryptic interaction site increase drug resistance in Mycobacterium tuberculosis. PLoS Pathogens, 16(11), 1–28. https://doi.org/10.1371/journal.ppat.1009063 | |
dc.relation.references | Islam, M. M., Alam, M. S., Liu, Z., Khatun, M. S., Yusuf, B., Hameed, H. M. A., Tian, X., Chhotaray, C., Basnet, R., Abraha, H., Zhang, X., Khan, S. A., Fang, C., Li, C., Hasan, S., Tan, S., Zhong, N., Hu, J., & Zhang, T. (2023). Molecular mechanisms of resistance and treatment efficacy of clofazimine and bedaquiline against Mycobacterium tuberculosis. Frontiers in Medicine, 10(January). https://doi.org/10.3389/fmed.2023.1304857 | |
dc.relation.references | Ismail, N., Dippenaar, A., Warren, R. M., Peters, R. P. H., & Omar, S. V. (2023). Emergence of Canonical and Noncanonical Genomic Variants following In Vitro Exposure of Clinical Mycobacterium tuberculosis Strains to Bedaquiline or Clofazimine. Antimicrobial Agents and Chemotherapy, 67(4), 1–10. https://doi.org/10.1128/aac.01368-22 | |
dc.relation.references | Ismail, N., Peters, R. P. H., Ismail, N. A., & Omar, S. V. (2019). Clofazimine Exposure In Vitro Selects Efflux Pump Mutants and Bedaquiline Resistance. https://doi.org/10.1128/AAC | |
dc.relation.references | Ismail, N., Rivière, E., Limberis, J., Huo, S., Metcalfe, J. Z., Warren, R. M., & Van Rie, A. (2021). Genetic variants and their association with phenotypic resistance to bedaquiline in Mycobacterium tuberculosis: a systematic review and individual isolate data analysis. The Lancet. Microbe, 2(11), e604–e616. https://doi.org/10.1016/s2666-5247(21)00175-0 | |
dc.relation.references | Jabbar, A., Phelan, J. E., de Sessions, P. F., Khan, T. A., Rahman, H., Khan, S. N., Cantillon, D. M., Wildner, L. M., Ali, S., Campino, S., Waddell, S. J., & Clark, T. G. (2019). Whole genome sequencing of drug resistant Mycobacterium tuberculosis isolates from a high burden tuberculosis region of North West Pakistan. Scientific Reports, 9(1), 14996. https://doi.org/10.1038/s41598-019-51562-6 | |
dc.relation.references | Jaillard, M., Lima, L., Tournoud, M., Mahé, P., van Belkum, A., Lacroix, V., & Jacob, L. (2018). A fast and agnostic method for bacterial genome-wide association studies: Bridging the gap between k-mers and genetic events. PLoS Genetics, 14(11), 1–28. https://doi.org/10.1371/journal.pgen.1007758 | |
dc.relation.references | Jang, J. G., & Chung, J. H. (2020). Diagnosis and treatment of multidrug-resistant tuberculosis. Yeungnam University Journal of Medicine, 37(4), 277–285. https://doi.org/https://doi.org/10.12701/yujm.2020.00626 | |
dc.relation.references | Johnsen, C. H., Clausen, P. T. L. C., Aarestrup, F. M., & Lund, O. (2019). Improved Resistance Prediction in Mycobacterium tuberculosis by Better Handling of Insertions and Deletions, Premature Stop Codons, and Filtering of Non-informative Sites. Frontiers in Microbiology, 10, 2464. https://doi.org/10.3389/fmicb.2019.02464 | |
dc.relation.references | Kabahita, J. M., Kabugo, J., Kakooza, F., Adam, I., Guido, O., Byabajungu, H., Namutebi, J., Namaganda, M. M., Lutaaya, P., Otim, J., Kakembo, F. E., Kanyerezi, S., Nabisubi, P., Sserwadda, I., Kasule, G. W., Nakato, H., Musisi, K., Oola, D., Joloba, M. L., & Mboowa, G. (2022). First report of whole-genome analysis of an extensively drug-resistant Mycobacterium tuberculosis clinical isolate with bedaquiline, linezolid and clofazimine resistance from Uganda. Antimicrobial Resistance and Infection Control, 11(1), 1–8. https://doi.org/10.1186/s13756- 022-01101-2 | |
dc.relation.references | Kadura, S., King, N., Nakhoul, M., Zhu, H., Theron, G., Köser, C. U., & Farhat, M. (2020). Systematic review of mutations associated with resistance to the new and repurposed Mycobacterium tuberculosis drugs bedaquiline, clofazimine, linezolid, delamanid and pretomanid. Journal of Antimicrobial Chemotherapy. https://doi.org/10.1093/jac/dkaa136 | |
dc.relation.references | Katale, B. Z., Rofael, S., Elton, L., Mbugi, E. V., Mpagama, S. G., Mtunga, D., Mafie, M. G., Mbelele, P. M., Williams, C., Mvungi, H. C., Williams, R., Saku, G. A., Ruta, J. A., McHugh, T. D., & Matee, M. I. (2024). Clinical application of whole-genome sequencing in the management of extensively drug-resistant tuberculosis: a case report. Annals of Clinical Microbiology and Antimicrobials, 23(1). https://doi.org/10.1186/s12941-024-00737-9 | |
dc.relation.references | Khawbung, J. L., Nath, D., & Chakraborty, S. (2021). Drug resistant Tuberculosis: A review. Comparative Immunology, Microbiology and Infectious Diseases, 74, 101574. https://doi.org/10.1016/j.cimid.2020.101574 | |
dc.relation.references | Laabei, M., Recker, M., Rudkin, J. K., Aldeljawi, M., Gulay, Z., Sloan, T. J., Williams, P., Endres, J. L., Bayles, K. W., Fey, P. D., Yajjala, V. K., Widhelm, T., Hawkins, E., Lewis, K., Parfett, S., Scowen, L., Peacock, S. J., Holden, M., Wilson, D., … Massey, R. C. (2014). Predicting the virulence of MRSA from its genome sequence. Genome Research, 24(5), 839–849. https://doi.org/10.1101/gr.165415.113 | |
dc.relation.references | Lagutkin, D., Panova, A., Vinokurov, A., Gracheva, A., Samoilova, A., & Vasilyeva, I. (2022). Genome-Wide Study of Drug Resistant Mycobacterium tuberculosis and Its Intra-Host Evolution during Treatment. Microorganisms, 10(7). https://doi.org/10.3390/microorganisms10071440 | |
dc.relation.references | Lai, Y. P., & Ioerger, T. R. (2020). Exploiting Homoplasy in Genome-Wide Association Studies to Enhance Identification of Antibiotic-Resistance Mutations in Bacterial Genomes. Evolutionary Bioinformatics, 16, 13–15. https://doi.org/10.1177/1176934320944932 | |
dc.relation.references | Lees, J. A., Galardini, M., Bentley, S. D., Weiser, J. N., & Corander, J. (2018). pyseer: A comprehensive tool for microbial pangenome-wide association studies. Bioinformatics, 34(24), 4310–4312. https://doi.org/10.1093/bioinformatics/bty539 | |
dc.relation.references | Li, G., Zhang, J., Jiang, Y., Zhao, L. li, Liu, H., Li, M., Zhao, X., & Wan, K. (2020). Cross-resistance of isoniazid, para-aminosalicylic acid and pasiniazid against isoniazid-resistant Mycobacterium tuberculosis isolates in China. Journal of Global Antimicrobial Resistance, 20, 275–281. https://doi.org/10.1016/j.jgar.2019.08.005 | |
dc.relation.references | Li, H. (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics, 25. https://doi.org/10.1093/bioinformatics/btp352 | |
dc.relation.references | Li, H., & Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics, 25(14), 1754–1760. https://doi.org/10.1093/bioinformatics/btp324 | |
dc.relation.references | Li, S., Poulton, N. C., Chang, J. S., Azadian, Z. A., DeJesus, M. A., Ruecker, N., Zimmerman, M. D., Eckartt, K., Bosch, B., Engelhart, C., Sullivan, D., Gengenbacher, M., Dartois, V. A., Schnappinger, D., & Rock, J. M. (2021). A chemical-genetic map of the pathways controlling drug potency in Mycobacterium tuberculosis; BioRxiv, 2021.11.27.469863. https://doi.org/10.1101/2021.11.27.469863 | |
dc.relation.references | Li, Y., Wang, F., Wu, L., Zhu, M., He, G., Chen, X., Sun, F., Liu, Q., Wang, X., & Zhang, W. (2019). Cycloserine for treatment of multidrug-resistant tuberculosis: A retrospective cohort study in China. Infection and Drug Resistance, 12, 721–731. https://doi.org/10.2147/IDR.S195555 | |
dc.relation.references | Mabhula, A., & Singh, V. (2019). Drug-resistance in: Mycobacterium tuberculosis: Where we stand. MedChemComm, 10(8), 1342–1360. https://doi.org/10.1039/c9md00057g | |
dc.relation.references | Mahmood, N., Bhatti, S., Abbas, S. N., Shahid, S., & Nasir, S. B. (2022). The pncA gene mutations of Mycobacterium tuberculosis in multidrug-resistant tuberculosis. Biotechnology and Applied Biochemistry, 69(5), 2195–2204. https://doi.org/10.1002/bab.2278 | |
dc.relation.references | Makafe, G. G., Cao, Y., Tan, Y., Julius, M., Liu, Z., Wang, C., Njire, M. M., Cai, X., Liu, T., Wang, B., Pang, W., Tan, S., Zhang, B., Yew, W. W., Lamichhane, G., Guo, J., & Zhang, T. (2016). Role of the Cys154Arg Substitution in Ribosomal Protein L3 in Oxazolidinone Resistance in Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 60(5), 3202–3206. https://doi.org/10.1128/AAC.00152-16 | |
dc.relation.references | Malinga, L., Brand, J., Olorunju, S., Stoltz, A., & van der Walt, M. (2016). Molecular analysis of genetic mutations among cross-resistant second-line injectable drugs reveals a new resistant mutation in Mycobacterium tuberculosis. Diagnostic Microbiology and Infectious Disease, 85(4), 433–437. https://doi.org/https://doi.org/10.1016/j.diagmicrobio.2016.05.010 | |
dc.relation.references | Manson, A. L. (2017). Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nat. Genet., 49. https://doi.org/10.1038/ng.3767 | |
dc.relation.references | Matrat, S., Veziris, N., Mayer, C., Jarlier, V., Truffot-Pernot, C., Camuset, J., Bouvet, E., Cambau, E., & Aubry, A. (2006). Functional analysis of DNA gyrase mutant enzymes carrying mutations at position 88 in the A subunit found in clinical strains of Mycobacterium tuberculosis resistant to fluoroquinolones. Antimicrobial Agents and Chemotherapy, 50(12), 4170–4173. https://doi.org/10.1128/AAC.00944-06 | |
dc.relation.references | Mbelele, P. M., Utpatel, C., Sauli, E., Mpolya, E. A., Mutayoba, B. K., Barilar, I., Dreyer, V., Merker, M., Sariko, M. L., Swema, B. M., Mmbaga, B. T., Gratz, J., Addo, K. K., Pletschette, M., Niemann, S., Houpt, E. R., Mpagama, S. G., & Heysell, S. K. (2022). Whole genome sequencing-based drug resistance predictions of multidrug-resistant Mycobacterium tuberculosis isolates from Tanzania. JAC-Antimicrobial Resistance, 4(2). https://doi.org/10.1093/jacamr/dlac042 | |
dc.relation.references | McGrath, M., Gey van Pittius, N. C., Sirgel, F. A., Van Helden, P. D., & Warren, R. M. (2014). Moxifloxacin retains antimycobacterial activity in the presence of gyrA mutations. Antimicrobial Agents and Chemotherapy, 58(5), 2912–2915. https://doi.org/10.1128/AAC.02583-13 | |
dc.relation.references | McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Research, 20(9), 1297–1303. https://doi.org/10.1101/gr.107524.110 | |
dc.relation.references | McNeil, M. B., Dennison, D. D., Shelton, C. D., & Parish, T. (2017). In Vitro Isolation and Characterization of Oxazolidinone-Resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.01296-17 | |
dc.relation.references | Mehta, K., Khambete, M., Abhyankar, A., & Omri, A. (2023). Anti-Tuberculosis Mur Inhibitors: Structural Insights and the Way Ahead for Development of Novel Agents. In Pharmaceuticals (Vol. 16, Issue 3). https://doi.org/10.3390/ph16030377 | |
dc.relation.references | Merker, M. (2013). Whole genome sequencing reveals complex evolution patterns of multidrug- resistant Mycobacterium tuberculosis Beijing strains in patients. PLoS One, 8. https://doi.org/10.1371/journal.pone.0082551 | |
dc.relation.references | Merker, M., Barbier, M., Cox, H., Rasigade, J. P., Feuerriegel, S., Kohl, T. A., Diel, R., Borrell, S., Gagneux, S., Nikolayevskyy, V., Andres, S., Nübel, U., Supply, P., Wirth, T., & Niemann, S. (2018). Compensatory evolution drives multidrug-resistant tuberculosis in central Asia. ELife, 7, 1–31. https://doi.org/10.7554/eLife.38200 | |
dc.relation.references | Milano, A., Pasca, M. R., Provvedi, R., Lucarelli, A. P., Manina, G., Luisa de Jesus Lopes Ribeiro, A., Manganelli, R., & Riccardi, G. (2009). Azole resistance in Mycobacterium tuberculosis is mediated by the MmpS5-MmpL5 efflux system. Tuberculosis, 89(1), 84–90. https://doi.org/10.1016/j.tube.2008.08.003 | |
dc.relation.references | Miotto, P., Zhang, Y., Cirillo, D. M., & Yam, W. C. (2018). Drug resistance mechanisms and drug susceptibility testing for tuberculosis. Respirology, 23(12), 1098–1113. https://doi.org/10.1111/resp.13393 | |
dc.relation.references | Nasiri, M. J., Haeili, M., Ghazi, M., Goudarzi, H., Pormohammad, A., Fooladi, A. A. I., & Feizabadi, M. M. (2017). New insights in to the intrinsic and acquired drug resistance mechanisms in mycobacteria. Frontiers in Microbiology, 8(APR). https://doi.org/10.3389/fmicb.2017.00681 | |
dc.relation.references | Naz, S., Paritosh, K., Sanyal, P., Khan, S., Singh, Y., Varshney, U., & Nandicoori, V. K. (2022). GWAS and functional studies implicate a role for altered DNA repair in the evolution of drug resistance in Mycobacterium tuberculosis. bioRxiv. https://doi.org/10.1101/2022.01.04.474954 | |
dc.relation.references | Nguyen, L.-T., Schmidt, H. A., von Haeseler, A., & Minh, B. Q. (2015). IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. Molecular Biology and Evolution, 32(1), 268–274. https://doi.org/10.1093/molbev/msu300 | |
dc.relation.references | Nguyen, Q. H., Contamin, L., Nguyen, T. V. A., & Bañuls, A. L. (2018). Insights into the processes that drive the evolution of drug resistance in Mycobacterium tuberculosis. Evolutionary Applications, 11(9), 1498–1511. https://doi.org/10.1111/eva.12654 | |
dc.relation.references | Nimmo, C., Bionghi, N., Cummings, M. J., Perumal, R., Hopson, M., Al Jubaer, S., Naidoo, K., Wolf, A., Mathema, B., Larsen, M. H., & O’Donnell, M. (2024). Opportunities and limitations of genomics for diagnosing bedaquiline-resistant tuberculosis: a systematic review and individual isolate meta-analysis. The Lancet. Microbe, 5(2), e164–e172. https://doi.org/10.1016/S2666- 5247(23)00317-8 | |
dc.relation.references | Nimmo, C., Millard, J., Brien, K., Moodley, S., Van Dorp, L., Lutchminarain, K., Wolf, A., Grant, A. D., Balloux, F., Pym, A. S., Padayatchi, N., & O’Donnell, M. (2020). Bedaquiline resistance in drug-resistant tuberculosis HIV co-infected patients. European Respiratory Journal, 55(6). https://doi.org/10.1183/13993003.02383-2019 | |
dc.relation.references | Nimmo, C., Millard, J., van Dorp, L., Brien, K., Moodley, S., Wolf, A., Grant, A. D., Padayatchi, N., Pym, A. S., Balloux, F., & O’Donnell, M. (2020). Population-level emergence of bedaquiline and clofazimine resistance-associated variants among patients with drug-resistant tuberculosis in southern Africa: a phenotypic and phylogenetic analysis. The Lancet Microbe, 1(4), e165– e174. https://doi.org/10.1016/S2666-5247(20)30031-8 | |
dc.relation.references | Oppong, Y. E. A., Phelan, J., Perdigão, J., Machado, D., Miranda, A., Portugal, I., Viveiros, M., Clark, T. G., & Hibberd, M. L. (2019). Genome-wide analysis of Mycobacterium tuberculosis polymorphisms reveals lineage-specific associations with drug resistance. BMC Genomics, 20(1), 252. https://doi.org/10.1186/s12864-019-5615-3 | |
dc.relation.references | Pang, Y., Zong, Z., Huo, F., Jing, W., Ma, Y., Dong, L., Li, Y., Zhao, L., Fu, Y., & Huang, H. (2017). In Vitro Drug Susceptibility of Bedaquiline, Delamanid, Linezolid, Clofazimine, Moxifloxacin, and Gatifloxacin against Extensively Drug-Resistant Tuberculosis in Beijing, China. Antimicrobial Agents and Chemotherapy, 61(10). https://doi.org/10.1128/AAC.00900-17 | |
dc.relation.references | Park, S., Jung, J., Kim, J., Han, S. B., & Ryoo, S. (2022). Investigation of Clofazimine Resistance and Genetic Mutations in Drug-Resistant Mycobacterium tuberculosis Isolates. Journal of Clinical Medicine, 11(7). https://doi.org/10.3390/jcm11071927 | |
dc.relation.references | Phelan, J., Coll, F., McNerney, R., Ascher, D. B., Pires, D. E. V., Furnham, N., Coeck, N., Hill- Cawthorne, G. A., Nair, M. B., Mallard, K., Ramsay, A., Campino, S., Hibberd, M. L., Pain, A., Rigouts, L., & Clark, T. G. (2016). Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance. BMC Medicine, 14(1), 1–13. https://doi.org/10.1186/s12916-016-0575-9 | |
dc.relation.references | Phelan, J. E., O’Sullivan, D. M., Machado, D., Ramos, J., Oppong, Y. E. A., Campino, S., O’Grady, J., McNerney, R., Hibberd, M. L., Viveiros, M., Huggett, J. F., & Clark, T. G. (2019). Integrating informatics tools and portable sequencing technology for rapid detection of resistance to anti- tuberculous drugs. Genome Medicine, 11(1), 41. https://doi.org/10.1186/s13073-019-0650-x | |
dc.relation.references | Portelli, S., Phelan, J. E., Ascher, D. B., Clark, T. G., & Furnham, N. (2018). Understanding molecular consequences of putative drug resistant mutations in Mycobacterium tuberculosis. Scientific Reports, 8(1), 1–12. https://doi.org/10.1038/s41598-018-33370-6 | |
dc.relation.references | Power, R. A., Parkhill, J., & De Oliveira, T. (2016). Microbial genome-wide association studies: lessons from human GWAS. Nature Reviews Genetics, 18(1), 41–50. https://doi.org/10.1038/nrg.2016.132 | |
dc.relation.references | Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A. R., Bender, D., Maller, J., Sklar, P., De Bakker, P. I. W., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81(3), 559–575. https://doi.org/10.1086/519795 | |
dc.relation.references | Rabaan, A. A., Mutair, A. Al, Albayat, H., Alotaibi, J., Sulaiman, T., Aljeldah, M., Shammari, B. R. A., Alfaraj, A. H., Al Fares, M. A., Alwarthan, S., Binjomah, A. Z., Alzahrani, M. S., Alhani, H. M., Almogbel, M. S., Abuzaid, A. A., Alqurainees, G., Al Ibrahim, F., Alhaddad, A. H., Alfaresi, M., … Alhumaid, S. (2022). Tools to Alleviate the Drug Resistance in Mycobacterium tuberculosis. Molecules, 27(20), 1–26. https://doi.org/10.3390/molecules27206985 | |
dc.relation.references | Ramirez, L. M. N., Vargas, K. Q., & Diaz, G. (2020). Whole genome sequencing for the analysis of drug resistant strains of Mycobacterium tuberculosis: A systematic review for bedaquiline and delamanid. Antibiotics, 9(3). https://doi.org/10.3390/antibiotics9030133 | |
dc.relation.references | Read, T. D., & Massey, R. C. (2014). Characterizing the genetic basis of bacterial phenotypes using genome-wide association studies: A new direction for bacteriology. Genome Medicine, 6(11), 1–11. https://doi.org/10.1186/s13073-014-0109-z | |
dc.relation.references | Richter, E., Rüsch-Gerdes, S., & Hillemann, D. (2007). First linezolid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 51(4), 1534–1536. https://doi.org/10.1128/AAC.01113-06 | |
dc.relation.references | Roberts, L. W., Malone, K. M., Hunt, M., Joseph, L., Wintringer, P., Knaggs, J., Crook, D., Farhat, M. R., Iqbal, Z., & Omar, S. V. (2024). MmpR5 protein truncation and bedaquiline resistance in Mycobacterium tuberculosis isolates from South Africa: a genomic analysis. The Lancet Microbe, 5(8), 100847. https://doi.org/https://doi.org/10.1016/S2666-5247(24)00053-3 | |
dc.relation.references | Roetzer, A., Diel, R., Kohl, T. A., Rückert, C., Nübel, U., Blom, J., Wirth, T., Jaenicke, S., Schuback, S., Rüsch-Gerdes, S., Supply, P., Kalinowski, J., & Niemann, S. (2013). Whole Genome Sequencing versus Traditional Genotyping for Investigation of a Mycobacterium tuberculosis Outbreak: A Longitudinal Molecular Epidemiological Study. PLoS Medicine, 10(2). https://doi.org/10.1371/journal.pmed.1001387 | |
dc.relation.references | Saber, M. M., & Jesse Shapiro, B. (2020). Benchmarking bacterial genome-wide association study methods using simulated genomes and phenotypes. Microbial Genomics, 6(3). https://doi.org/10.1099/mgen.0.000337 | |
dc.relation.references | Sachan, R. S. K., Mistry, V., Dholaria, M., Rana, A., Devgon, I., Ali, I., Iqbal, J., Eldin, S. M., Mohammad Said Al-Tawaha, A. R., Bawazeer, S., Dutta, J., & Karnwal, A. (2023). Overcoming Mycobacterium tuberculosis Drug Resistance: Novel Medications and Repositioning Strategies. ACS Omega, 8(36), 32244–32257. https://doi.org/10.1021/acsomega.3c02563 | |
dc.relation.references | Saderi, L., Cabibbe, A. M., Puci, M., Di Lorenzo, B., Centis, R., Pontali, E., van den Boom, M., Chakaya, J. M., D Ambrosio, L., Denholm, J. T., Ferrara, G., Silva, D. R., Solovic, I., Spanevello, A., Visca, D., Sotgiu, G., & Migliori, G. B. (2023). A systematic review of the costs of diagnosis for multidrug-resistant/extensively drug-resistant TB in different settings. The International Journal of Tuberculosis and Lung Disease : The Official Journal of the International Union against Tuberculosis and Lung Disease, 27(5), 348–356. https://doi.org/10.5588/ijtld.22.0657 | |
dc.relation.references | San, J. E., Baichoo, S., Kanzi, A., Moosa, Y., Lessells, R., Fonseca, V., Mogaka, J., Power, R., & de Oliveira, T. (2020). Current Affairs of Microbial Genome-Wide Association Studies: Approaches, Bottlenecks and Analytical Pitfalls. Frontiers in Microbiology, 10(January). https://doi.org/10.3389/fmicb.2019.03119 | |
dc.relation.references | Sanoussi, C. N., Coscolla, M., Ofori-Anyinam, B., Otchere, I. D., Antonio, M., Niemann, S., Parkhill, J., Harris, S., Yeboah-Manu, D., Gagneux, S., Rigouts, L., Affolabi, D., de Jong, B. C., & Meehan, C. J. (2020). Mycobacterium tuberculosis complex lineage 5 exhibits high levels of within-lineage genomic diversity and differing gene content compared to the type strain H37Rv. BioRxiv, 2020.06.22.164186. https://doi.org/10.1101/2020.06.22.164186 | |
dc.relation.references | Saund, K., & Snitkin, E. S. (2020). Hogwash: Three methods for genome-wide association studies in bacteria. Microbial Genomics, 6(11), 1–10. https://doi.org/10.1099/mgen.0.000469 | |
dc.relation.references | Schami, A., Islam, M. N., Belisle, J. T., & Torrelles, J. B. (2023). Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Frontiers in Cellular and Infection Microbiology, 13(October), 1–14. https://doi.org/10.3389/fcimb.2023.1274175 | |
dc.relation.references | Sharma, M. K., Stobart, M., Akochy, P.-M., Adam, H., Janella, D., Rabb, M., Alawa, M., Sekirov, I., Tyrrell, G. J., & Soualhine, H. (2024). Evaluation of Whole Genome Sequencing-Based Predictions of Antimicrobial Resistance to TB First Line Agents: A Lesson from 5 Years of Data. International Journal of Molecular Sciences, 25(11). https://doi.org/10.3390/ijms25116245 | |
dc.relation.references | Sheppard, S. K., Didelot, X., Meric, G., Torralbo, A., Jolley, K. A., Kelly, D. J., Bentley, S. D., Maiden, M. C. J., Parkhill, J., & Falush, D. (2013). Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter. Proceedings of the National Academy of Sciences of the United States of America, 110(29), 11923–11927. https://doi.org/10.1073/pnas.1305559110 | |
dc.relation.references | Shrestha, D., Maharjan, B., Thapa, J., Akapelwa, M. L., Bwalya, P., Chizimu, J. Y., Nakajima, C., & Suzuki, Y. (2022). Detection of Mutations in pncA in Mycobacterium tuberculosis Clinical Isolates from Nepal in Association with Pyrazinamide Resistance. In Current Issues in Molecular Biology (Vol. 44, Issue 9, pp. 4132–4141). https://doi.org/10.3390/cimb44090283 | |
dc.relation.references | Singh, R., Dwivedi, S. P., Gaharwar, U. S., Meena, R., Rajamani, P., & Prasad, T. (2020). Recent updates on drug resistance in Mycobacterium tuberculosis. Journal of Applied Microbiology, 128(6), 1547–1567. https://doi.org/10.1111/jam.14478 | |
dc.relation.references | Snobre, J., Villellas, M. C., Coeck, N., Mulders, W., Tzfadia, O., de Jong, B. C., Andries, K., & Rigouts, L. (2023). Bedaquiline- and clofazimine- selected Mycobacterium tuberculosis mutants: further insights on resistance driven largely by Rv0678. Scientific Reports, 13(1), 1– 11. https://doi.org/10.1038/s41598-023-36955-y | |
dc.relation.references | Somoskovi, A., Bruderer, V., Hömke, R., Bloemberg, G. V., & Böttger, E. C. (2015). A mutation associated with clofazimine and bedaquiline cross-resistance in MDR-TB following bedaquiline treatment. The European respiratory journal, 45(2), 554–557. https://doi.org/10.1183/09031936.00142914 | |
dc.relation.references | Sonnenkalb, L., Carter, J. J., Spitaleri, A., Iqbal, Z., Hunt, M., Malone, K. M., Utpatel, C., Cirillo, D. M., Rodrigues, C., Nilgiriwala, K. S., Fowler, P. W., Merker, M., Niemann, S., Barilar, I., Battaglia, S., Borroni, E., Brandao, A. P., Brankin, A., Cabibbe, A. M., … Zhu, B. (2023). Bedaquiline and clofazimine resistance in Mycobacterium tuberculosis: an in-vitro and in-silico data analysis. The Lancet Microbe, 4(5), e358–e368. https://doi.org/10.1016/S2666- 5247(23)00002-2 | |
dc.relation.references | Srivastava, S., Magombedze, G., Koeuth, T., Sherman, C., Pasipanodya, J. G., Raj, P., Wakeland, E., Deshpande, D., & Gumbo, T. (2017). Linezolid Dose That Maximizes Sterilizing Effect While Minimizing Toxicity and Resistance Emergence for Tuberculosis. Antimicrobial Agents and Chemotherapy, 61(8). https://doi.org/10.1128/AAC.00751-17 | |
dc.relation.references | Stadler, J. A. M., Maartens, G., Meintjes, G., & Wasserman, S. (2023). Clofazimine for the treatment of tuberculosis. Frontiers in Pharmacology, 14(February), 1–18. https://doi.org/10.3389/fphar.2023.1100488 | |
dc.relation.references | Swain, S. S., Sharma, D., Hussain, T., & Pati, S. (2020). Molecular mechanisms of underlying genetic factors and associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes and Infections, 9(1), 1651–1663. https://doi.org/10.1080/22221751.2020.1785334 | |
dc.relation.references | Teng, C., Li, L., Su, D., Li, H., Zhao, B., Xia, H., Teng, H., Song, Y., Zheng, Y., Cao, X., Zheng, H., Zhao, Y., & Ou, X. (2024). Evaluation of genetic correlation with fluoroquinolones resistance in rifampicin-resistant Mycobacterium tuberculosis isolates. Heliyon, 10(11), e31959. https://doi.org/https://doi.org/10.1016/j.heliyon.2024.e31959 | |
dc.relation.references | The CRyPTIC Consortium. (2022). Genome-wide association studies of global Mycobacterium tuberculosis resistance to 13 antimicrobials in 10,228 genomes identify new resistance mechanisms. PLoS Biology, 20(8), e3001755. https://doi.org/10.1371/journal.pbio.3001755 | |
dc.relation.references | Thornton, T., & McPeek, M. S. (2010). ROADTRIPS: case-control association testing with partially or completely unknown population and pedigree structure. American Journal of Human Genetics, 86(2), 172–184. https://doi.org/10.1016/j.ajhg.2010.01.001 | |
dc.relation.references | Timm, J., Bateson, A., Solanki, P., Paleckyte, A., Witney, A. A., Rofael, S. A. D., Fabiane, S., Olugbosi, M., McHugh, T. D., & Sun, E. (2023). Baseline and acquired resistance to bedaquiline, linezolid and pretomanid, and impact on treatment outcomes in four tuberculosis clinical trials containing pretomanid. PLOS Global Public Health, 3(10), e0002283. https://doi.org/10.1371/journal.pgph.0002283 | |
dc.relation.references | Tong, E., Zhou, Y., Liu, Z., Zhu, Y., Zhang, M., Wu, K., Pan, J., & Jiang, J. (2023). Bedaquiline Resistance and Molecular Characterization of Rifampicin-Resistant Mycobacterium Tuberculosis Isolates in Zhejiang, China. Infection and Drug Resistance, 16, 6951–6963. https://doi.org/10.2147/IDR.S429003 | |
dc.relation.references | Tornheim, J. A., Intini, E., Gupta, A., & Udwadia, Z. F. (2020). Clinical features associated with linezolid resistance among multidrug resistant tuberculosis patients at a tertiary care hospital in Mumbai, India. Journal of Clinical Tuberculosis and Other Mycobacterial Diseases, 20, 100175. https://doi.org/10.1016/j.jctube.2020.100175 | |
dc.relation.references | Umar, F. F., Husain, D. R., Hatta, M. M., Natzir, R. R., Sjahril, R. S., Dwiyanti, R. R., Junita, A. R., & Primaguna, M. R. (2020). Molecular characterisation of mutations associated with resistance to first- and second-line drugs among Indonesian patients with tuberculosis. Journal of Taibah University Medical Sciences, 15(1), 54–58. https://doi.org/10.1016/j.jtumed.2019.12.003 | |
dc.relation.references | Urrego-Díaz, J. A., Trujillo-Trujillo, J., Meza-Cardenas, M., & Cruz, Ã. A. (2021). Caracterización de la tuberculosis multidrogorresistente y resistente a rifampicina en Colombia. Revista de Salud Pública, 23, 1-. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0124- 00642021000600011&nrm=iso | |
dc.relation.references | Ushtanit, A., Mikhailova, Y., Lyubimova, A., Makarova, M., Safonova, S., Filippov, A., Borisov, S., & Zimenkov, D. (2021). Genetic Profile of Linezolid-Resistant M. tuberculosis Clinical Strains from Moscow. Antibiotics (Basel, Switzerland), 10(10). https://doi.org/10.3390/antibiotics10101243 | |
dc.relation.references | Van Rossum, Guido and Drake, F. L. (2009). Python 3 Reference Manual (3). CreateSpace. | |
dc.relation.references | Vanino, E., Granozzi, B., Akkerman, O. W., Munoz-Torrico, M., Palmieri, F., Seaworth, B., Tiberi, S., & Tadolini, M. (2023). Update of drug-resistant tuberculosis treatment guidelines: A turning point. International Journal of Infectious Diseases, 130, S12–S15. https://doi.org/10.1016/j.ijid.2023.03.013 | |
dc.relation.references | Vaziri, F., Kohl, T. A., Ghajavand, H., Kargarpour Kamakoli, M., Merker, M., Hadifar, S., Khanipour, S., Fateh, A., Masoumi, M., Siadat, S. D., & Niemann, S. (2019). Genetic Diversity of Multi- and Extensively Drug-Resistant Mycobacterium tuberculosis Isolates in the Capital of Iran, Revealed by Whole-Genome Sequencing. Journal of Clinical Microbiology, 57(1). https://doi.org/10.1128/JCM.01477-18 | |
dc.relation.references | Villellas, C., Coeck, N., Meehan, C. J., Lounis, N., de Jong, B., Rigouts, L., & Andries, K. (2017). Unexpected high prevalence of resistance-associated Rv0678 variants in MDR-TB patients without documented prior use of clofazimine or bedaquiline. The Journal of Antimicrobial Chemotherapy, 72(3), 684–690. https://doi.org/10.1093/jac/dkw502 | |
dc.relation.references | Walker, B. J., Abeel, T., Shea, T., Priest, M., Abouelliel, A., Sakthikumar, S., Cuomo, C. A., Zeng, Q., Wortman, J., Young, S. K., & Earl, A. M. (2014). Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PloS One, 9(11), e112963. https://doi.org/10.1371/journal.pone.0112963 | |
dc.relation.references | Walker, T. M., Ip, C. L. C., Harrell, R. H., Evans, J. T., Kapatai, G., Dedicoat, M. J., Eyre, D. W., Wilson, D. J., Hawkey, P. M., Crook, D. W., Parkhill, J., Harris, D., Walker, A. S., Bowden, R., Monk, P., Smith, E. G., & Peto, T. E. A. (2013). Whole-genome sequencing to delineate Mycobacterium tuberculosis outbreaks: a retrospective observational study. The Lancet. Infectious Diseases, 13(2), 137–146. https://doi.org/10.1016/S1473-3099(12)70277-3 | |
dc.relation.references | Walker, T. M., Kohl, T. A., Omar, S. V., Hedge, J., Del Ojo Elias, C., Bradley, P., Iqbal, Z., Feuerriegel, S., Niehaus, K. E., Wilson, D. J., Clifton, D. A., Kapatai, G., Ip, C. L. C., Bowden, R., Drobniewski, F. A., Allix-Béguec, C., Gaudin, C., Parkhill, J., Diel, R., … Munang, M. (2015). Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: A retrospective cohort study. The Lancet Infectious Diseases, 15(10), 1193– 1202. https://doi.org/10.1016/S1473-3099(15)00062-6 | |
dc.relation.references | Wasserman, S., Denti, P., Brust, J. C. M., Abdelwahab, M., Hlungulu, S., Wiesner, L., Norman, J., Sirgel, F. A., Warren, R. M., Esmail, A., Dheda, K., Gandhi, N. R., Meintjes, G., & Maartens, G. (2019). Linezolid Pharmacokinetics in South African Patients with Drug-Resistant Tuberculosis and a High Prevalence of HIV Coinfection. Antimicrobial Agents and Chemotherapy, 63(3). https://doi.org/10.1128/AAC.02164-18 | |
dc.relation.references | World Health Organization. (2022a). Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance (World Health Organization, Ed.; Second edi). https://www.who.int/publications/i/item/9789240028173 | |
dc.relation.references | World Health Organization, (WHO). (2020a). WHO Operational handbook on tuberculosis. Module 3: Diagnosis Rapid diagnotics for tuberculosis diagnosis detection. | |
dc.relation.references | World Health Organization, (WHO). (2020b). WHO operational handbook on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment. | |
dc.relation.references | World Health Organization, (WHO). (2021a). Global Tuberculosis Report. | |
dc.relation.references | World Health Organization, (WHO). (2021b). Meeting report of the WHO expert consultation on drug- resistant tuberculosis treatment outcome definitions,17-19 November 2020. In Methods (Issue November). | |
dc.relation.references | World Health Organization, (WHO). (2022a). Catalogue of mutations in Mycobacterium tuberculosis complex and their association with drug resistance. | |
dc.relation.references | World Health Organization, (WHO). (2022b). WHO consolidated guidelines on tuberculosis. Module 4: treatment - drug-resistant tuberculosis treatment, 2022 update. In World Health Organization. | |
dc.relation.references | World Health Organization, (WHO). (2023). Global tuberculosis report 2023. In World Health Organization, (WHO). | |
dc.relation.references | World Health Organization, (WHO). (2024). WHO operational handbook on tuberculosis. Module 3: diagnosis – rapid diagnostics for tuberculosis detection, third edition. | |
dc.relation.references | Wu, X., Shang, Y., Ren, W., Wang, W., Wang, Y., Xue, Z., Li, S., & Pang, Y. (2022). Minimum inhibitory concentration of cycloserine against Mycobacterium tuberculosis using the MGIT 960 system and a proposed critical concentration. International Journal of Infectious Diseases, 121, 148–151. https://doi.org/10.1016/j.ijid.2022.05.030 | |
dc.relation.references | Xiong, X. S., Zhang, X. Di, Yan, J. W., Huang, T. T., Li, Z. K., Wang, L., Li, F., & Liu, Z. Z. (2024). Identification of Mycobacterium tuberculosis Resistance to Common Antibiotics: An Overview of Current Methods and Techniques. Infection and Drug Resistance, 17(March), 1491–1506. https://doi.org/10.2147/IDR.S457308 | |
dc.relation.references | Xu, J., Wang, B., Hu, M., Huo, F., Guo, S., Jing, W., Nuermberger, E., & Lu, Y. (2017). Primary Clofazimine and Bedaquiline Resistance among Isolates from Patients with Multidrug- Resistant Tuberculosis. Antimicrobial Agents and Chemotherapy, 61(6). https://doi.org/10.1128/AAC.00239-17 | |
dc.relation.references | Yang, C., Yang, R.-F., & Cui, Y. (2018). Bacterial genome-wide association study: methodologies and applications. Yi Chuan = Hereditas, 40(1), 57–65. https://doi.org/10.16288/j.yczz.17-303 | |
dc.relation.references | Zaunbrecher, M. A., Sikes, R. D., Metchock, B., Shinnick, T. M., & Posey, J. E. (2009). Overexpression of the chromosomally encoded aminoglycoside acetyltransferase eis confers kanamycin resistance in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA, 106. https://doi.org/10.1073/pnas.0907925106 | |
dc.relation.references | Zeng, X., Kwok, J. S. L., Yang, K. Y., Leung, K. S. S., Shi, M., Yang, Z., Yam, W. C., & Tsui, S. K. W. (2018). Whole genome sequencing data of 1110 Mycobacterium tuberculosis isolates identifies insertions and deletions associated with drug resistance. BMC Genomics, 19(1), 1– 10. https://doi.org/10.1186/s12864-018-4734-6 | |
dc.relation.references | Zhang, H., Li, D., Zhao, L., Fleming, J., Lin, N., Wang, T., Liu, Z., Li, C., Galwey, N., Deng, J., Zhou, Y., Zhu, Y., Gao, Y., Wang, T., Wang, S., Huang, Y., Wang, M., Zhong, Q., Zhou, L., … Bi, L. (2013). Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nature Genetics, 45(10), 1255– 1260. https://doi.org/10.1038/ng.2735 | |
dc.relation.references | Zhang, L., Zhang, Y., Li, Y., Huo, F., Chen, X., Zhu, H., Guo, S., Fu, L., Wang, B., & Lu, Y. (2023). Rv1453 is associated with clofazimine resistance in Mycobacterium tuberculosis. Microbiology Spectrum, 11(5), e0000223. https://doi.org/10.1128/spectrum.00002-23 | |
dc.relation.references | Zhang, X. (2015). Genetic determinants involved in p-aminosalicylic acid resistance in clinical isolates from tuberculosis patients in northern China from 2006 to 2012. Antimicrob. Agents Chemother., 59. https://doi.org/10.1128/AAC.03695-14 | |
dc.relation.references | Zhou, X., & Stephens, M. (2012). Genome-wide efficient mixed-model analysis for association studies. Nature Genetics, 44(7), 821–824. https://doi.org/10.1038/ng.2310 | |
dc.relation.references | Zumla, A. I., Gillespie, S. H., Hoelscher, M., Philips, P. P. J., Cole, S. T., Abubakar, I., McHugh, T. D., Schito, M., Maeurer, M., & Nunn, A. J. (2014). New antituberculosis drugs, regimens, and adjunct therapies: needs, advances, and future prospects. The Lancet Infectious Diseases, 14(4), 327–340. https://doi.org/10.1016/S1473-3099(13)70328-1 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
dc.subject.ddc | 610 - Medicina y salud::616 - Enfermedades | |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
dc.subject.lemb | Tuberculosis - Tratamiento | |
dc.subject.lemb | Mycobacterium tuberculosis | |
dc.subject.lemb | Resistencia a las drogas | |
dc.subject.proposal | Mycobacterium tuberculosis | spa |
dc.subject.proposal | resistencia antimicrobiana | spa |
dc.subject.proposal | GWAS | spa |
dc.subject.proposal | bedaquilina | spa |
dc.subject.proposal | linezolid | spa |
dc.subject.proposal | clofazimina | spa |
dc.subject.proposal | D-cicloserina | spa |
dc.subject.proposal | Mycobacterium tuberculosis | eng |
dc.subject.proposal | Antimicrobial resistance | eng |
dc.subject.proposal | GWAS | eng |
dc.subject.proposal | Bedaquiline | eng |
dc.subject.proposal | Linezolid | eng |
dc.subject.proposal | Clofazimine | eng |
dc.subject.proposal | D-cycloserine | eng |
dc.title | Estudio de asociación de genoma completo en aislamientos clínicos de Mycobacterium tuberculosis pan-susceptibles, multi-fármacorresistentes (MDR) y extremadamente resistente (XDR) | spa |
dc.title.translated | Genome-wide association study in clinical isolates of pan-susceptible, multidrug-resistant (MDR), and extensively drug-resistant (XDR) Mycobacterium tuberculosis | eng |
dc.type | Trabajo de grado - Doctorado | |
dc.type.coar | http://purl.org/coar/resource_type/c_db06 | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/doctoralThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TD | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- Tesis de Doctorado en Biotecnología
- Tamaño:
- 7.7 MB
- Formato:
- Adobe Portable Document Format