El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín
dc.contributor.advisor | Pastrán Ramírez, Ricardo Ariel | |
dc.contributor.author | Correa Castañeda, Diego Fernando | |
dc.date.accessioned | 2023-08-08T15:10:38Z | |
dc.date.available | 2023-08-08T15:10:38Z | |
dc.date.issued | 2023-02-01 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | En el contexto de la electrodinámica de fluidos, se dedujo la siguiente ecuación: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, donde $\sigma$ es la llamada "transformada de Hilbert". En este trabajo se estudió el problema de Cauchy asociado a esta ecuación, obteniendo resultados de bien planteado local en los siguientes casos: primero, tomando un dato inicial real arbitrario en el espacio periódico de Sobolev $H^s (T)$, cuando $s>3/2$, y segundo, cuando el dato inicial pertenece a $L^2 (R)$. (Texto tomado de la fuente) | spa |
dc.description.abstract | In the context of the Fluid electrodynamics, the next equation was deduced: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, where $\sigma$ is the so called "Hilbert transform". In this work, the Cauchy problem associated to this equation was studied, obtaining results of local well - posedness in the next cases: first, taking an arbitrary real initial data in the periodic Sobolev space $H^s (T)$, when $s>3/2$, and second, when the initial data belongs to $L^2 (R)$. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.researcharea | Ecuaciones diferenciales parciales de tipo dispersivo | spa |
dc.description.technicalinfo | Para obtener el primer resultado se usó la llamada "Regularización parabólica", y para el segundo, se usaron los llamados "Espacios de Bourgain". | |
dc.format.extent | 94 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/84480 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | Iorio, Jr R. J. y Valéria de Magalhães Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, 2001. | spa |
dc.relation.references | Kenig, Ponce y Vega, A bilinear estimate with applications to the KdV equation, Journal of the american mathematical society, Volume 9, Number 2, April 1996. | spa |
dc.relation.references | Stein Elias y Shakarchi Rami, Fourier Analysis: An Introduction, Princeton University Press, (2003). | spa |
dc.relation.references | Linares, F. y Ponce, G., Introduction to Nonlinear Dispersive Equations, Springer, 2009. | spa |
dc.relation.references | Gleeson H. , Hammerton P., Papageorgiou D. T. , Vanden-Broeck J.-M. , A new application of the Korteweg–de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, American Institute of Physics, 2007. | spa |
dc.relation.references | Linares Felipe, $L^2$ Global Well-Posedness of the Initial Value Problem Associated to the Benjamin Equation, IMPA, 1998. | spa |
dc.relation.references | Kenig, Ponce y Vega, The Cauchy problem for the Korteweg de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1 - 21. MR 94g:35196. | spa |
dc.relation.references | Bourgain, Fourier Transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, Volume 3, Number 3, 1993. | spa |
dc.relation.references | Chen, Guo y Xiao, Sharp well-posedness for the Benjamin equation, Journal of the american mathematical society, Nonlinear Analysis 74 (2011) 6209–6230. | spa |
dc.relation.references | Junfeng Li, Xia Li, Well-posedness for the fifth order KP-II initial data problem in $H^{s,0}(\R \times \mathbb{T})$, J. Differential Equations 262 (2017) 2196–2230. | spa |
dc.relation.references | Korteweg D.J. y de Vries F., On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical Magazine, 39, 422—443, 1895. | spa |
dc.relation.references | Kato T., On the Cauchy Problem for the (generalized) Korteweg - de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M.G. Crandall, ed., Academic Press (1983) 93-128 | spa |
dc.relation.references | Kruzkhov S., Faminskii A., Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. USSR Sbornik 48 (1984) 391-421. | spa |
dc.relation.references | Lax P.D., A Hamiltonian approach to KdV and other equations in Nonlinear Evolution Equations, Math. M.G. Crandall, ed., Academic Press (1985) 207-224. | spa |
dc.relation.references | Newell A. C., Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985). | spa |
dc.relation.references | Novikov S. , Manakov S.V., Pitaeviskii L.P. y Zakharov V.E., Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984). | spa |
dc.relation.references | Whitham G.B., Linear and Nonlinear Waves, Wiley (1974). | spa |
dc.relation.references | Benjamin, T.B., Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559-592. | spa |
dc.relation.references | Dix D., Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Differ. Equations 90 (2) (1991) 238-287. | spa |
dc.relation.references | Dan Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Berlin Heidelberg New York 1981. | spa |
dc.relation.references | Iorio, Jr. R. J., KdV, BO and friends in weighted Sobolev spaces, in Function Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105-121. | spa |
dc.relation.references | H. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091. | spa |
dc.relation.references | Iorio Jr. R. J. , On The Cauchy Problem For The Benjamin-Ono Equation, Communications in partial differential equations. v. 11, n. 10, p. 1031-1081, 1986. | spa |
dc.relation.references | Ponce G., On the global well-posedness of the Benjamin-Ono equation, Differ. Integral Equ. 4 (3) (1991) 527-542. | spa |
dc.relation.references | Tao T., Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb{R})$, Volume 1, J. Hyperbolic Differ. Equ. (2003). | spa |
dc.relation.references | T. B. Benjamin, A new kind of solitary waves, J. Fluid Mech. 245 (1992), 401-411. | spa |
dc.relation.references | Ben-Artzi M. y Devinatz A. , The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (Marzo 1987) no. 364. | spa |
dc.relation.references | Brandt S. y Dahmen H.D. , The picture Book of Quantum Mechanics, 2nd ed., Springer (1995). | spa |
dc.relation.references | Cycon H.L. , Froese R.G., Kirsh W. y Simon B., Schödinger Operators, Springer (1987). | spa |
dc.relation.references | Drezinski J. y Gérard C., Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997). | spa |
dc.relation.references | Gottfried K., Quantum Mechanics vol 1: Fundamentals, W.A. Benjamin (1996). | spa |
dc.relation.references | Jensen A. , Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math.Sci.) 104 (1994) 599-651. | spa |
dc.relation.references | Merzbacher E., Quantum Mechanics, 2nd ed., Wiley (1970). | spa |
dc.relation.references | Schecter M., Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981). | spa |
dc.relation.references | Iorio , Jr R. J. , Tópicos na teoria da equação de Schrödinger, IMPA. | spa |
dc.relation.references | Fonseca G., Pastrán R., Rodríguez G., The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces, Journal of Mathematical Analysis and Applications (2019). | spa |
dc.relation.references | Pastrán R., Riaño 0., On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, Revista Colombiana de Matematicas (2006). | spa |
dc.relation.references | Pastrán R., Riaño 0., Sharp Well-posedness for the Chen-Lee equation, Communications on Pure and Applied Analysis (2016). | spa |
dc.relation.references | Tao T. , Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123(5) (2001) 839–908. | spa |
dc.relation.references | Molinet, L., Saut, J. C., and Tzvetkov, N., Ill-posedness issues fo the Benjamin- Ono and related equations. SIAM J. Math. Anal. 33, 4 (2001), 982–988. | spa |
dc.relation.references | Coddington y Levinson, Theory of Ordinary Differential Equations. McGraw-Hill (1963). | spa |
dc.relation.references | Yosida K., Functional Analysis, 2nd ed. Springer (1968). | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.lemb | ECUACIONES DIFERENCIALES PARCIALES | spa |
dc.subject.lemb | Differential equations, partial | eng |
dc.subject.lemb | PROBLEMA DE CAUCHY | spa |
dc.subject.lemb | Cauchy problem-8a. ed. | eng |
dc.subject.proposal | Buen planteamiento | spa |
dc.subject.proposal | Ecuaciones dispersivas | spa |
dc.subject.proposal | Regularización parabólica | spa |
dc.subject.proposal | Espacios de Bourgain | spa |
dc.subject.proposal | Well posedness | eng |
dc.subject.proposal | Dispersive equations | eng |
dc.subject.proposal | Parabolic regularization | eng |
dc.subject.proposal | Bourgain spaces | eng |
dc.title | El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín | spa |
dc.title.translated | The Cauchy problem associated to a fifth order perturbation of the Benjamin equation | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1010234652.2023.pdf
- Tamaño:
- 831.34 KB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Matemáticas
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: