El problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamín

dc.contributor.advisorPastrán Ramírez, Ricardo Ariel
dc.contributor.authorCorrea Castañeda, Diego Fernando
dc.date.accessioned2023-08-08T15:10:38Z
dc.date.available2023-08-08T15:10:38Z
dc.date.issued2023-02-01
dc.descriptionilustraciones, diagramasspa
dc.description.abstractEn el contexto de la electrodinámica de fluidos, se dedujo la siguiente ecuación: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, donde $\sigma$ es la llamada "transformada de Hilbert". En este trabajo se estudió el problema de Cauchy asociado a esta ecuación, obteniendo resultados de bien planteado local en los siguientes casos: primero, tomando un dato inicial real arbitrario en el espacio periódico de Sobolev $H^s (T)$, cuando $s>3/2$, y segundo, cuando el dato inicial pertenece a $L^2 (R)$. (Texto tomado de la fuente)spa
dc.description.abstractIn the context of the Fluid electrodynamics, the next equation was deduced: $u_t + u_{xxxxx} - u_{xxx} + \sigma\, u_{xx}+uu_x=0$, where $\sigma$ is the so called "Hilbert transform". In this work, the Cauchy problem associated to this equation was studied, obtaining results of local well - posedness in the next cases: first, taking an arbitrary real initial data in the periodic Sobolev space $H^s (T)$, when $s>3/2$, and second, when the initial data belongs to $L^2 (R)$.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaEcuaciones diferenciales parciales de tipo dispersivospa
dc.description.technicalinfoPara obtener el primer resultado se usó la llamada "Regularización parabólica", y para el segundo, se usaron los llamados "Espacios de Bourgain".
dc.format.extent94 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84480
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesIorio, Jr R. J. y Valéria de Magalhães Iorio, Fourier Analysis and Partial Differential Equations, Cambridge University Press, 2001.spa
dc.relation.referencesKenig, Ponce y Vega, A bilinear estimate with applications to the KdV equation, Journal of the american mathematical society, Volume 9, Number 2, April 1996.spa
dc.relation.referencesStein Elias y Shakarchi Rami, Fourier Analysis: An Introduction, Princeton University Press, (2003).spa
dc.relation.referencesLinares, F. y Ponce, G., Introduction to Nonlinear Dispersive Equations, Springer, 2009.spa
dc.relation.referencesGleeson H. , Hammerton P., Papageorgiou D. T. , Vanden-Broeck J.-M. , A new application of the Korteweg–de Vries Benjamin-Ono equation in interfacial electrohydrodynamics, American Institute of Physics, 2007.spa
dc.relation.referencesLinares Felipe, $L^2$ Global Well-Posedness of the Initial Value Problem Associated to the Benjamin Equation, IMPA, 1998.spa
dc.relation.referencesKenig, Ponce y Vega, The Cauchy problem for the Korteweg de Vries equation in Sobolev spaces of negative indices, Duke Math. J. 71 (1993), 1 - 21. MR 94g:35196.spa
dc.relation.referencesBourgain, Fourier Transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations, Geometric and Functional Analysis, Volume 3, Number 3, 1993.spa
dc.relation.referencesChen, Guo y Xiao, Sharp well-posedness for the Benjamin equation, Journal of the american mathematical society, Nonlinear Analysis 74 (2011) 6209–6230.spa
dc.relation.referencesJunfeng Li, Xia Li, Well-posedness for the fifth order KP-II initial data problem in $H^{s,0}(\R \times \mathbb{T})$, J. Differential Equations 262 (2017) 2196–2230.spa
dc.relation.referencesKorteweg D.J. y de Vries F., On the Change of Form of Long Waves Advancing in a Rectangular Canal, and on a New Type of Long Stationary Waves, Philosophical Magazine, 39, 422—443, 1895.spa
dc.relation.referencesKato T., On the Cauchy Problem for the (generalized) Korteweg - de Vries Equation, Advances in Mathematics Supplementary Studies, vol. 8, M.G. Crandall, ed., Academic Press (1983) 93-128spa
dc.relation.referencesKruzkhov S., Faminskii A., Generalized solutions of the Cauchy problem for the Korteweg-de Vries equation, Math. USSR Sbornik 48 (1984) 391-421.spa
dc.relation.referencesLax P.D., A Hamiltonian approach to KdV and other equations in Nonlinear Evolution Equations, Math. M.G. Crandall, ed., Academic Press (1985) 207-224.spa
dc.relation.referencesNewell A. C., Solitons in Mathematics and Physics, Regional Conference Series in Applied Mathematics, SIAM (1985).spa
dc.relation.referencesNovikov S. , Manakov S.V., Pitaeviskii L.P. y Zakharov V.E., Theory of Solitons - The Inverse Scattering Method, Contemporary Soviet Mathematics, Consultants Bureau, New York (1984).spa
dc.relation.referencesWhitham G.B., Linear and Nonlinear Waves, Wiley (1974).spa
dc.relation.referencesBenjamin, T.B., Internal Waves of Permanent Form in Fluids of Great Depth, J. Fluid Mech. 29, (1967), 559-592.spa
dc.relation.referencesDix D., Temporal asymptotic behavior of solutions of the Benjamin-Ono-Burgers equation, J. Differ. Equations 90 (2) (1991) 238-287.spa
dc.relation.referencesDan Henry, Geometric Theory of Semilinear Parabolic Equations, Springer-Verlag Berlin Heidelberg New York 1981.spa
dc.relation.referencesIorio, Jr. R. J., KdV, BO and friends in weighted Sobolev spaces, in Function Analytic Methods for Partial Differential Equations, Lecture Notes in Mathematics, vol. 1450, Springer (1990) 105-121.spa
dc.relation.referencesH. Ono, Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan 39 (1975) 1082-1091.spa
dc.relation.referencesIorio Jr. R. J. , On The Cauchy Problem For The Benjamin-Ono Equation, Communications in partial differential equations. v. 11, n. 10, p. 1031-1081, 1986.spa
dc.relation.referencesPonce G., On the global well-posedness of the Benjamin-Ono equation, Differ. Integral Equ. 4 (3) (1991) 527-542.spa
dc.relation.referencesTao T., Global well-posedness of the Benjamin-Ono equation in $H^1(\mathbb{R})$, Volume 1, J. Hyperbolic Differ. Equ. (2003).spa
dc.relation.referencesT. B. Benjamin, A new kind of solitary waves, J. Fluid Mech. 245 (1992), 401-411.spa
dc.relation.referencesBen-Artzi M. y Devinatz A. , The limiting absorption principle for partial differential operators, Mem. Amer. Math. Soc. 66 (Marzo 1987) no. 364.spa
dc.relation.referencesBrandt S. y Dahmen H.D. , The picture Book of Quantum Mechanics, 2nd ed., Springer (1995).spa
dc.relation.referencesCycon H.L. , Froese R.G., Kirsh W. y Simon B., Schödinger Operators, Springer (1987).spa
dc.relation.referencesDrezinski J. y Gérard C., Scattering Theory of Classical and Quantum N-Particle Systems, Springer (1997).spa
dc.relation.referencesGottfried K., Quantum Mechanics vol 1: Fundamentals, W.A. Benjamin (1996).spa
dc.relation.referencesJensen A. , Scattering theory for Stark Hamiltonians, Proc. Indian Acad. Sci. (Math.Sci.) 104 (1994) 599-651.spa
dc.relation.referencesMerzbacher E., Quantum Mechanics, 2nd ed., Wiley (1970).spa
dc.relation.referencesSchecter M., Operator Methods in Quantum Mechanics, Elsevier-North-Holland (1981).spa
dc.relation.referencesIorio , Jr R. J. , Tópicos na teoria da equação de Schrödinger, IMPA.spa
dc.relation.referencesFonseca G., Pastrán R., Rodríguez G., The IVP for a nonlocal perturbation of the Benjamin-Ono equation in classical and weighted Sobolev spaces, Journal of Mathematical Analysis and Applications (2019).spa
dc.relation.referencesPastrán R., Riaño 0., On the well-posedness for the Chen-Lee equation in periodic Sobolev spaces, Revista Colombiana de Matematicas (2006).spa
dc.relation.referencesPastrán R., Riaño 0., Sharp Well-posedness for the Chen-Lee equation, Communications on Pure and Applied Analysis (2016).spa
dc.relation.referencesTao T. , Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations, Amer. J. Math. 123(5) (2001) 839–908.spa
dc.relation.referencesMolinet, L., Saut, J. C., and Tzvetkov, N., Ill-posedness issues fo the Benjamin- Ono and related equations. SIAM J. Math. Anal. 33, 4 (2001), 982–988.spa
dc.relation.referencesCoddington y Levinson, Theory of Ordinary Differential Equations. McGraw-Hill (1963).spa
dc.relation.referencesYosida K., Functional Analysis, 2nd ed. Springer (1968).spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembECUACIONES DIFERENCIALES PARCIALESspa
dc.subject.lembDifferential equations, partialeng
dc.subject.lembPROBLEMA DE CAUCHYspa
dc.subject.lembCauchy problem-8a. ed.eng
dc.subject.proposalBuen planteamientospa
dc.subject.proposalEcuaciones dispersivasspa
dc.subject.proposalRegularización parabólicaspa
dc.subject.proposalEspacios de Bourgainspa
dc.subject.proposalWell posednesseng
dc.subject.proposalDispersive equationseng
dc.subject.proposalParabolic regularizationeng
dc.subject.proposalBourgain spaceseng
dc.titleEl problema de Cauchy asociado a una perturbación dispersiva de quinto orden de la ecuación de Benjamínspa
dc.title.translatedThe Cauchy problem associated to a fifth order perturbation of the Benjamin equationeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010234652.2023.pdf
Tamaño:
831.34 KB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: