Desarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedancia

dc.contributor.advisorTibaduiza Burgos, Diego Alexander
dc.contributor.advisorAnaya Vejar, Maribel
dc.contributor.authorSarmiento Abello, Juan Daniel
dc.contributor.googlescholarSarmiento Abello, Juan Daniel [mHOhLy8AAAAJ&hl]spa
dc.contributor.orcidSarmiento Abello, Juan Daniel [0009000562043123]spa
dc.contributor.researchgroupGrupo de investigación en ingeniería electrónica (GMUN)spa
dc.contributor.researchgroupGrupo de Investigación en Electrónica de Alta Frecuencia y Telecomunicaciones (Cmun)spa
dc.date.accessioned2024-05-14T14:56:39Z
dc.date.available2024-05-14T14:56:39Z
dc.date.issued2024-05-10
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLos microplásticos son partículas contaminantes de origen artificial que podrían presentar un riesgo para la salud humana si ingresan a la cadena trófica. Por tal motivo, identificarlos y clarificarlos en diferentes entornos es crucial al momento de ejecutar acciones para prevenir o mitigar su impacto. En consecuencia, en el presente trabajo se desarrolló una metodología que permite evaluar en qué entornos es más probable detectar y clasificar por tamaños partículas de 500µm, 1000µm y 1400µm - dos tipos de microplástico como lo son: el tereftalato de polietileno (PET) y el poliestireno expandido (EPS) en distintos entornos de agua. Debido a la complejidad (alta selectividad) que estos entornos pueden manifestar se escogió una lengua electrónica - en conjunto con una red de sensores -, pues este instrumento es idóneo para detectar elementos en soluciones de alta selectividad. Así las cosas, se evaluaron de forma independiente tres algoritmos de aprendizaje automático, máquinas de soporte vectorial, árboles de decisión y k vecinos más cercanos en ambientes compuestos por: agua potable y tres soluciones conformadas por agua potable y materia orgánica inerte, agua potable, materia orgánica inerte y materia inorgánica y agua potable con materia inorgánica, materia orgánica inerte y materia orgánica viva. Es importante mencionar que los dos tipos de microplástico se midieron de forma independiente en cada uno de los entornos y se obtuvieron rendimientos superiores al 80 % en la detección y clasificación por tamaño. (Texto tomado de la fuente)spa
dc.description.abstractMicroplastics are contaminating particles of artificial origin that could present a risk to human health if they enter the food chain, for this reason identifying and classifying them in different environments is crucial when carrying out actions to prevent or mitigate their impact. For this reason in this work, a methodology was developed that allows for evaluating in which environments it is more likely to detect and classify by size, particles of 500µm, 1000µm and 1400µm, two types of microplastics such as Polyethylene Terephthalate (PET) and Expanded Polystyrene (EPS) in different water environments. Due to the complexity (high selectivity) that these environments can manifest, an electronic language was chosen in conjunction with a network of sensors because this instrument is ideal for detecting elements in highly selectivity solutions. Three machine learning algorithms, support vector machines, decision trees and k driest neighbors were evaluated independently in environments com- posed of: drinking water and three solutions consisting of drinking water and inert organic matter. Drinking water, inert organic matter and inorganic matter and drinking water inorganic matter, inert organic matter and living organic matter. The two types of microplastic were measured independently in each of the environments and performances greater than 80 % were obtained in detection and classification by size.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Electrónicaspa
dc.description.researchareaInteligencia artificial y procesamiento de señalesspa
dc.format.extentxiv, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86071
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Ingenieríaspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ingeniería - Maestría en Ingeniería - Ingeniería Electrónicaspa
dc.relation.references[1] PalmSens, “Sensor cable with banana connectors for use with mux8-r2 - palmsens.”spa
dc.relation.references[2] PalmSens, “Mux8-r2 multiplexer - palmsens.”spa
dc.relation.references[3] L. Stratmann, “Open circuit potential measurements with a mux8-r2 optimal usage of the mux8-r2’s input buffers open circuit potential measurements with a mux8-r2,” 2019.spa
dc.relation.references[4] MathWorks, “Conceptos clave de support vector machine (svm) - matlab simulink.”spa
dc.relation.references[5] J. López-Vázquez, R. Rodil, M. J. Trujillo-Rodrı́guez, J. B. Quintana, R. Cela, and M. Miró, “Mimicking human ingestion of microplastics: Oral bioaccessibility tests of bisphenol a and phthalate esters under fed and fasted states,” Science of The Total Environment, vol. 826, p. 154027, 6 2022.spa
dc.relation.references[6] C. J. Silva, A. L. Silva, C. Gravato, and J. L. Pestana, “Ingestion of small-sized and irre- gularly shaped polyethylene microplastics affect chironomus riparius life-history traits,” Science of The Total Environment, vol. 672, pp. 862–868, 7 2019.spa
dc.relation.references[7] M. Kosuth, S. A. Mason, and E. V. Wattenberg, “Anthropogenic contamination of tap water, beer, and sea salt,” PLOS ONE, vol. 13, p. e0194970, 4 2018.spa
dc.relation.references[8] D. Yang, H. Shi, L. Li, J. Li, K. Jabeen, and P. Kolandhasamy, “Microplastic pollution in table salts from china,” Environmental science technology, vol. 49, pp. 13622–13627, 10 2015.spa
dc.relation.references[9] R. C. Thompson, Y. Olson, R. P. Mitchell, A. Davis, S. J. Rowland, A. W. John, D. McGonigle, and A. E. Russell, “Lost at sea: Where is all the plastic?,” Science, vol. 304, p. 838, 5 2004.spa
dc.relation.references[10] S. M. Praveena, S. N. M. Shaifuddin, and S. Akizuki, “Exploration of microplastics from personal care and cosmetic products and its estimated emissions to marine environment: An evidence from malaysia,” Marine Pollution Bulletin, vol. 136, pp. 135–140, 11 2018.spa
dc.relation.references[11] I. E. Napper and R. C. Thompson, “Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions,” Marine Pollution Bulletin, vol. 112, pp. 39–45, 11 2016.spa
dc.relation.references[12] B. C. Colson and A. P. Michel, “Flow-through quantification of microplastics using impedance spectroscopy,” ACS Sensors, vol. 6, pp. 238–244, 1 2021.spa
dc.relation.references13] A. M. S. A. Manel del Valle, “Sensores electroquı́micos: introducción a los quimiosen- sores y biosensores ... - salvador alegret, manel del valle, arben merkoçi - google libros.”spa
dc.relation.references[14] B. Mostafiz, S. A. Bigdeli, K. Banan, H. Afsharara, D. Hatamabadi, P. Mousavi, C. M. Hussain, R. Keçili, and F. Ghorbani-Bidkorbeh, “Molecularly imprinted polymer-carbon paste electrode (mip-cpe)-based sensors for the sensitive detection of organic and inorga- nic environmental pollutants: A review,” Trends in Environmental Analytical Chemistry, vol. 32, p. e00144, 12 2021.spa
dc.relation.references[15] X. V. Chen and P. Bühlmann, “Ion-selective potentiometric sensors with silicone sensing membranes: A review,” Current Opinion in Electrochemistry, vol. 32, p. 100896, 4 2022.spa
dc.relation.references[16] A. T. Lawal, “Recent developments in electrochemical sensors based on graphene for bioanalytical applications,” Sensing and Bio-Sensing Research, vol. 41, p. 100571, 8 2023.spa
dc.relation.references[17] A. Bole, A. Wall, and A. Norris, “Basic radar principles,” Radar and ARPA Manual, pp. 1–28, 1 2014.spa
dc.relation.references[18] D. A. Tibaduiza, L. E. Mujica, M. Anaya, and J. Rodellar, Combined and I Indices Based on Principal Component Analysis for Damage Detection and Localization. 2011.spa
dc.relation.references[19] R. P. Areny, “Sensores y acondicionadores de señal,” p. 480, 2004.spa
dc.relation.references[20] M. Scampicchio, D. Ballabio, A. Arecchi, S. M. Cosio, and S. Mannino, “Amperometric electronic tongue for food analysis,” 9 2008.spa
dc.relation.references[21] N. Jaffrezic-Renault and S. V. Dzyadevych, “Conductometric microbiosensors for envi- ronmental monitoring,” Sensors 2008, Vol. 8, Pages 2569-2588, vol. 8, pp. 2569–2588, 4 2008.spa
dc.relation.references[22] L. Escuder-Gilabert and M. Peris, “Review: Highlights in recent applications of electro- nic tongues in food analysis,” Analytica Chimica Acta, vol. 665, pp. 15–25, 4 2010.spa
dc.relation.references[23] G. Orlandi, R. Calvini, G. Foca, L. Pigani, G. V. Simone, and A. Ulrici, “Data fusion of electronic eye and electronic tongue signals to monitor grape ripening,” Talanta, vol. 195, pp. 181–189, 4 2019.spa
dc.relation.references[24] C. D. Natale, R. Paolesse, A. Macagnano, A. Mantini, A. D’Amico, A. Legin, L. Lvova, A. Rudnitskaya, and Y. Vlasov, “Electronic nose and electronic tongue integration for improved classification of clinical and food samples,” Sensors and Actuators B: Chemi- cal, vol. 64, pp. 15–21, 6 2000.spa
dc.relation.references[25] Y. Tahara and K. Toko, “Electronic tongues-a review,” IEEE SENSORS JOURNAL, vol. 13, p. 3001, 2013.spa
dc.relation.references[26] P. Ivarsson, Y. Kikkawa, F. Winquist, C. Krantz-Rülcker, N.-E. Höjer, K. Hayashi, K. Toko, and I. Lundström, “Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor,” 2001.spa
dc.relation.references[27] F. Winquist, P. Wide, and I. Lundström, “An electronic tongue based on voltammetry,” Analytica Chimica Acta, vol. 357, pp. 21–31, 12 1997.spa
dc.relation.references[28] C. Söderström, F. Winquist, and C. Krantz-Rülcker, “Recognition of six microbial spe- cies with an electronic tongue,” Sensors and Actuators B: Chemical, vol. 89, pp. 248–255, 4 2003.spa
dc.relation.references[29] M. Palit, B. Tudu, N. Bhattacharyya, A. Dutta, P. K. Dutta, A. Jana, R. Bandyopadh- yay, and A. Chatterjee, “Comparison of multivariate preprocessing techniques as applied to electronic tongue based pattern classification for black tea,” Analytica Chimica Acta, vol. 675, pp. 8–15, 8 2010.spa
dc.relation.references[30] J. Wang, L. Zhu, W. Zhang, and Z. Wei, “Application of the voltammetric electronic tongue based on nanocomposite modified electrodes for identifying rice wines of different geographical origins,” Analytica Chimica Acta, vol. 1050, pp. 60–70, 3 2019.spa
dc.relation.references[31] X. Cetó, S. Pérez, and B. Prieto-Simón, “Fundamentals and application of voltamme- tric electronic tongues in quantitative analysis,” TrAC Trends in Analytical Chemistry, vol. 157, p. 116765, 12 2022.spa
dc.relation.references[32] L. Nuñez, X. Cetó, M. I. Pividori, M. V. Zanoni, and M. del Valle, “Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters,” Microchemical Journal, vol. 110, pp. 273–279, 9 2013.spa
dc.relation.references[33] L. G. Dias, A. Fernandes, A. C. Veloso, A. A. Machado, J. A. Pereira, and A. M. Peres, “Single-cultivar extra virgin olive oil classification using a potentiometric electronic tongue,” Food Chemistry, vol. 160, pp. 321–329, 10 2014.spa
dc.relation.references[34] X. Ceto, M. Gutierrez-Capitan, D. Calvo, and M. D. Valle, “Beer classification by means of a potentiometric electronic tongue,” Food Chemistry, vol. 141, pp. 2533–2540, 12 2013.spa
dc.relation.references[35] A. Mimendia, A. Legin, A. Merkoçi, and M. del Valle, “Use of sequential injection analysis to construct a potentiometric electronic tongue: Application to the multideter- mination of heavy metals,” Sensors and Actuators B: Chemical, vol. 146, pp. 420–426, 4 2010.spa
dc.relation.references[36] N. Major, K. Marković, M. Krpan, G. Šarić, M. Hruškar, and N. Vahčić, “Rapid honey characterization and botanical classification by an electronic tongue,” Talanta, vol. 85, pp. 569–574, 7 2011.spa
dc.relation.references[37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023.spa
dc.relation.references[37] A. C. Lazanas and M. I. Prodromidis, “Electrochemical impedance spectroscopya tuto- rial,” Cite This: ACS Meas. Sci. Au, vol. 2023, pp. 162–193, 2023.spa
dc.relation.references[39] Y. Elamine, P. M. Inácio, B. Lyoussi, O. Anjos, L. M. Estevinho, M. da Graça Miguel, and H. L. Gomes, “Insight into the sensing mechanism of an impedance based electronic tongue for honey botanic origin discrimination,” Sensors and Actuators B: Chemical, vol. 285, pp. 24–33, 4 2019.spa
dc.relation.references[40] A. Riul, A. M. Soto, S. V. Mello, S. Bone, D. M. Taylor, and L. H. Mattoso, “An electronic tongue using polypyrrole and polyaniline,” Synthetic Metals, vol. 132, pp. 109– 116, 1 2003.spa
dc.relation.references[41] Ángela González López, “Desarrollo de una lengua electrÓnica,” 2021.spa
dc.relation.references[42] A. Kutyla-Olesiuk, M. Nowacka, M. Wesoly, and P. Ciosek, “Evaluation of organolep- tic and texture properties of dried apples by hybrid electronic tongue,” Sensors and Actuators B: Chemical, vol. 187, pp. 234–240, 10 2013.spa
dc.relation.references[43] M. Zabadaj, I. Ufnalska, K. Chreptowicz, J. Mierzejewska, W. Wróblewski, and P. Ciosek-Skibińska, “Performance of hybrid electronic tongue and hplc coupled with chemometric analysis for the monitoring of yeast biotransformation,” Chemometrics and Intelligent Laboratory Systems, vol. 167, pp. 69–77, 8 2017.spa
dc.relation.references[44] A. Kutyla-Olesiuk, M. Zaborowski, P. Prokaryn, and P. Ciosek, “Monitoring of beer fermentation based on hybrid electronic tongue,” Bioelectrochemistry, vol. 87, pp. 104– 113, 10 2012.spa
dc.relation.references[45] M. Gutiérrez, C. Domingo, J. Vila-Planas, A. Ipatov, F. Capdevila, S. Demming, S. Büttgenbach, A. Llobera, and C. Jiménez-Jorquera, “Hybrid electronic tongue for the characterization and quantification of grape variety in red wines,” Sensors and Ac- tuators B: Chemical, vol. 156, pp. 695–702, 8 2011.spa
dc.relation.references[46] P. Ivarsson, C. Krantz-Rülcker, F. Winquist, and I. Lundström, “A voltammetric elec- tronic tongue,” Chemical Senses, vol. 30, pp. i258–i259, 1 2005.spa
dc.relation.references[47] Z. Zhang and Y. Takane, “Multidimensional scaling,” International Encyclopedia of Education, Third Edition, pp. 304–311, 1 2010.spa
dc.relation.references[48] A. Antoniadis, J. Bigot, and S. Lambert-Lacroix, “Peaks detection and alignment for mass spectrometry data,” Journal de la société française de statistique, vol. 151, pp. 17– 37, 2010.spa
dc.relation.references[49] M. Navarro-Reig, J. Jaumot, T. A. van Beek, G. Vivó-Truyols, and R. Tauler, “Chemo- metric analysis of comprehensive lc×lc-ms data: Resolution of triacylglycerol structural isomers in corn oil,” Talanta, vol. 160, pp. 624–635, 11 2016.spa
dc.relation.references[50] X. Cetó, F. Céspedes, and M. del Valle, “Comparison of methods for the processing of voltammetric electronic tongues data,” Microchimica Acta, vol. 180, pp. 319–330, 4 2013.spa
dc.relation.references[51] M. Sun, C. C. Liu, J. Yang, Z. Jin, and J. Yang, “A two-step framework for highly nonlinear data unfolding,” Neurocomputing, vol. 73, pp. 1801–1807, 6 2010.spa
dc.relation.references[52] J. A. Arancibia, A. C. Olivieri, D. B. Gil, A. E. Mansilla, I. Durán-Merás, and A. M. D. L. Peña, “Trilinear least-squares and unfolded-pls coupled to residual trilinearization: New chemometric tools for the analysis of four-way instrumental data,” Chemometrics and Intelligent Laboratory Systems, vol. 80, pp. 77–86, 1 2006.spa
dc.relation.references[53] M. del Valle, “Sensor arrays and electronic tongue systems,” International Journal of Electrochemistry, vol. 2012, pp. 1–11, 2012.spa
dc.relation.references[54] G. Liang, Z. He, J. Zhen, H. Tian, L. Ai, L. Pan, and W. Gong, “Development of the screen-printed electrodes: A mini review on the application for pesticide detection,” Environmental Technology Innovation, vol. 28, p. 102922, 11 2022.spa
dc.relation.references[55] BVT, “Ac1 electrochemical sensor.”spa
dc.relation.references[55] BVT, “Ac1 electrochemical sensor.” [56] V. Meiler, J. Pfeiffer, L. Bifano, C. Kandlbinder-Paret, and G. Fischerauer, “Approaches to detect microplastics in water using electrical impedance measurements and support vector machines,” IEEE Sensors Journal, vol. 23, pp. 4863–4872, 3 2023.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc530 - Física::537 - Electricidad y electrónicaspa
dc.subject.lembPLASTICOSspa
dc.subject.lembPlasticseng
dc.subject.lembPARTICULAS-DETERMINACION DEL TAMAÑOspa
dc.subject.lembParticle size determinationeng
dc.subject.proposalMicroplásticospa
dc.subject.proposalMetodologíaspa
dc.subject.proposalAprendizaje automáticospa
dc.subject.proposalLengua electrónicaspa
dc.subject.proposalSelectividadspa
dc.subject.proposalContaminantesspa
dc.subject.proposalInteligencia artificialspa
dc.subject.proposalMicroplasticeng
dc.subject.proposalMethodologyeng
dc.subject.proposalMachine learningeng
dc.subject.proposalElectronic languageeng
dc.subject.proposalSelectivityeng
dc.subject.proposalContaminantseng
dc.subject.proposalArtificial intelligenceeng
dc.titleDesarrollo de un sistema para la detección e identificación de microplásticos en cuerpos de agua utilizando espectroscopia de impedanciaspa
dc.title.translatedDevelopment of a system for the detection and identification of microplastics in bodies of water using impedance spectroscopyeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentModelspa
dc.type.contentSoftwarespa
dc.type.contentWorkflowspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1000331954.2024.pdf
Tamaño:
15.71 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en ingeniería electrónica

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: