Determinantes de la adopción de tecnologías para el manejo eficiente del agua por los cultivadores de palma de aceite en la zona Norte Colombiana

dc.contributor.advisorArias Arias, Nolver Atanacio
dc.contributor.advisorBarrios, Dursun
dc.contributor.authorMartínez Arteaga, Diana
dc.contributor.researchgroupBiogénesisspa
dc.date.accessioned2022-08-22T13:37:08Z
dc.date.available2022-08-22T13:37:08Z
dc.date.issued2022
dc.descriptionilustraciones, graficasspa
dc.description.abstractLa palma de aceite es uno de los sectores con más desarrollo en la agricultura colombiana. Los palmicultores, invierten cada año recursos muy importantes (cerca de USD 10 millones) en investigación y desarrollo de tecnologías para afrontar retos como la eficiencia productiva, competitiva y sostenible. Sin embargo, la adopción de tecnologías de riegos presurizados, nutrición balanceada y manejo fitosanitario ha sido tradicionalmente muy baja. No obstante, el cultivo de palma de aceite ha venido creciendo en los últimos años en diferentes zonas geográficas del país, observándose siembras en condiciones edafoclimáticas de baja aptitud para la producción agrícola, como es el caso de la zona Norte, que presenta limitaciones en la disponibilidad de agua y desbalance de bases en el suelo, y los agricultores de la región comúnmente utilizan sistemas de riego por superficie, los cuales presentan eficiencias que difícilmente llegan al 50%. Así, con este trabajo de investigación se busca determinar los factores que pueden influir en la adopción de tecnologías para el manejo eficiente del agua por los palmicultores ubicados alrededor de la cuenca del rio Sevilla en el departamento del Magdalena. Para lograr el objetivo planteado, se tipificaron los productores de palma de aceite en función de las características demográficas y socioeconómicas, se identificaron las características influyentes en la adopción de riegos presurizados por parte de los productores y se implementó una versión extendida del modelo de aceptación de tecnología para predecir la intención de usar riegos presurizados por parte de los agricultores de palma de aceite. Los resultados revelaron que menos del 15% de los productores adoptan riegos presurizados. Además, los productores de palma de aceite de la muestra eran heterogéneos con respecto a las características socioeconómicas y demográficas. Los factores que más influyen en la adopción de tecnologías son la edad, el tamaño de la plantación y el acceso a extensión. En cuanto, a la aceptación de riegos presurizados puede predecirse adecuadamente a partir de las intenciones de los agricultores. Finalmente, si bien, en esta investigación se quiso integrar los diferentes aspectos que influyen en la adopción de tecnologías, es importante en futuros trabajos considerar la racionalidad económica como impulsor en la adopción de tecnologías. (Texto tomado de la fuente)spa
dc.description.abstractOil palm is one of the most developed agricultural sectors in Colombian agriculture. Palm growers invest significant resources each year (close to USD 10 million) in the research and development of technologies to meet agribusiness challenges such as productive, competitive and sustainable efficiency. However, the adoption of pressurized irrigation technologies, balanced nutrition and phytosanitary management has traditionally been very low. However, the adoption of these technologies has traditionally been very low. In recent years, palm oil plantations have expanded to diverse geographic areas across the country. As a result, many new plantings have been done under edaphoclimatic conditions less suitable for agricultural production. The Northern region of Colombia is a great example, with limited water availability and less fertile soils. Farmers in the region commonly use surface irrigation systems, which present efficiencies that hardly reach 50%. Thus, this project seeks the factors the influence the adoption of technologies for efficient water management by palm growers in the Cuenca Rio Sevilla in the department of Magdalena. To achieve the stated objective, oil palm producers were classified according to demographic and socioeconomic characteristics, several factors on the adoption of pressurized irrigation were identified, and an extended version of the technology acceptance model was implemented. The results revealed that less than 15% of the farmers studied adopt pressurized irrigation. In addition, oil palm producers in the sample were heterogeneous with respect to socioeconomic and demographic characteristics. The factors with the most influence are age, size of the plantation, and access to the extension. As for the acceptance of pressurized irrigation, it can be adequately predicted from the intentions of the farmers. Finally, although in this research we have wanted to integrate the different aspects that influence the adoption of technologies, it is important in future works to consider economic rationality as a driving force in the adoption of technologies.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Medio Ambiente y Desarrollospa
dc.description.researchareaDesarrollo Empresarial Agropecuariospa
dc.description.sponsorshipFondo de Fomento Palmerospa
dc.format.extent83 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/81983
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentEscuela de posgradosspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Maestría en Gestión y Desarrollo Ruralspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdulai, A., Owusu, V., and Bakang, J. . E. A. (2011). Adoption of safer irrigation technologies and cropping patterns: Evidence from Southern Ghana. Ecological Economics, 70.spa
dc.relation.referencesAbdullah, F. and Ward, R. (2016). Developing a general extended technology acceptance model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers in Human Behavior, 56:238–256.spa
dc.relation.referencesAdnan, N., Nordin, S. M., and bin Abu Bakar, Z. (2017). Understanding and facilitating sustainable agricultural practice: A comprehensive analysis of adoption behaviour among Malaysian paddy farmers. Land Use Policy, 68(May):372–382.spa
dc.relation.referencesAguilar, G. N., Mu˜noz, R. M., Santoyo, C. V. H., and Aguilar, ´A. J. (2013). Influencia del perfil de los productores en la adopci´on de innovaciones en tres cultivos tropicales. Teuken Bidikay, 4:207–228.spa
dc.relation.referencesAguilar-Gallegos, N., Muñoz-Rodríguez, M., Santoyo-Cortés, H., Aguilar-Ávila, J., & Klerkx, L. (2015). Information networks that generate economic value: A study on clusters of adopters of new or improved technologies and practices among oil palm growers in Mexico. Agricultural Systems, 135, 122–132. https://doi.org/10.1016/j.agsy.2015.01.003spa
dc.relation.referencesAitken, D., Rivera, D., Godoy-Faúndez, A., Holzapfel, E., 2016. Water scarcity and the impact of the mining and agricultural sectors in Chile. Sustain. 8, 128. https://doi.org/10.3390/su8020128spa
dc.relation.referencesAjzen. (1991). The Theory of Planned Behavior Organizational Behavior and Human Decision Processes. Organizational Behavior and Human Decision Processes, 50(2), 179–211.spa
dc.relation.referencesAlam, K., 2015. Farmers' adaptation to water scarcity in drought-prone environments: A case study of Rajshahi District, Bangladesh. Agric. Water Manag. 148, 196–206. https://doi.org/10.1016/j.agwat.2014.10.011spa
dc.relation.referencesAlambaigi, A., & Ahangari, I. (2016). Technology Acceptance Model (TAM) As a predictor model for explaining agricultural experts behavior in acceptance of ICT. International Journal of Agricultural Management and Development, 6(2), 235–247.spa
dc.relation.referencesAlberti, G. (2013). An R script to facilitate Correspondence Analysis: a guide to the use and the interpretation of results from an archaeological perspective. Archeologia e Calcolatori, 25–53. http://eprints.bice.rm.cnr.it/9311/1/02_Alberti.pdfspa
dc.relation.referencesÁlvarez, O., Ruiz, E., Mosquera, M., & Humberto, J. (2018). Evaluación económica de sistemas de riego para plantaciones de palma aceitera en la Zona Norte de Colombia. Revistas Palmas, 39(1), 69–85. https://publicaciones.fedepalma.org/index.php/palmas/article/view/12401spa
dc.relation.referencesAraujo, D.F., Costa, R.N., Mateos, L., 2019. Pros and cons of furrow irrigation on smallholdings in northeast Brazil. Agric. Water Manag. 221, 25–33. https://doi.org/10.1016/j.agwat.2019.04.029spa
dc.relation.referencesAyompe, L. M., Schaafsma, M., & Egoh, B. N. (2021). Towards sustainable palm oil production: The positive and negative impacts on ecosystem services and human wellbeing. Journal of Cleaner Production, 278, 123914. https://doi.org/10.1016/j.jclepro.2020.123914spa
dc.relation.referencesAzhar, B., Saadun, N., Prideaux, M., & Lindenmayer, D. B. (2017). The global palm oil sector must change to save biodiversity and improve food security in the tropics. Journal of Environmental Management, 203, 457–466. https://doi.org/10.1016/j.jenvman.2017.08.021spa
dc.relation.referencesBarcelos, E., De Almeida Rios, S., Cunha, R.N.V., Lopes, R., Motoike, S.Y., Babiychuk, E., Skirycz, A., Kushnir, S., 2015. Oil palm natural diversity and the potential for yield improvement. Front. Plant Sci. 6, 1–16. https://doi.org/10.3389/fpls.2015.00190spa
dc.relation.referencesBergeron, F., Rivard, S., & De Serre, L. (1990). Investigating the support role of the information center. MIS Quarterly: Management Information Systems, 14(3), 247–260. https://doi.org/10.2307/248887spa
dc.relation.referencesBernal-Hernández, P., Ramirez, M., & Mosquera-Montoya, M. (2021). of environmental and economic performance of combined.pdf. Journal of Rural Studies, 83(March 2020), 215–225. https://doi.org/10.1016/j.jrurstud.2020.11.006spa
dc.relation.referencesBjornlund, H., Nicol, L., Klein, K.K., 2009. The adoption of improved irrigation technology and management practices-A study of two irrigation districts in Alberta, Canada. Agric. Water Manag. 96, 121–131. https://doi.org/10.1016/j.agwat.2008.07.009spa
dc.relation.referencesBjornlund, V., Bjornlund, H., 2019. Understanding agricultural water management in a historical context using a socioeconomic and biophysical framework. Agric. Water Manag. 213, 454–467. https://doi.org/10.1016/j.agwat.2018.10.037spa
dc.relation.referencesBoretti, A., Rosa, L., 2019. Reassessing the projections of the World Water Development Report. NPJ Clean Water. 2, 1–6. https://doi.org/10.1038/s41545-019-0039-9spa
dc.relation.referencesBouma, J., Bulte, E., Van Soest, D., 2008. Trust and cooperation: Social capital and community resource management. J. Environ. Econ. Manag. 56, 155–166. https://doi.org/10.1016/j.jeem.2008.03.004spa
dc.relation.referencesCascallar, E., Musso, M., Kyndt, E., Dochy, F., 2015. Modelling for understanding AND for prediction/classification - the power of neural networks in research. Front. Learn. Res. 2, 67–81. https://doi.org/10.14786/flr.v2i5.135spa
dc.relation.referencesCastillo, G.M.L., Engler, A., Wollni, M., 2021. Planned behavior and social capital: Understanding farmers' behavior toward pressurized irrigation technologies. Agric. Water Manag. 243, 106524. https://doi.org/10.1016/j.agwat.2020.106524spa
dc.relation.referencesCenipalma. (2020). Lineamientos para la Asistencia Técnica del gremio palmero Con apoyo del Fondo de Fomento Palmero. 1–21. https://www.cenipalma.org/wp-content/uploads/2020/04/Lineamientos-para-la-consolidacio%CC%81n-de-la-asistencia-te%CC%81cnica-palmera-2020-Vrs-Final-1.pdfspa
dc.relation.referencesChen, H., Wang, J., Huang, J., 2014. Policy support, social capital, and farmers' adaptation to drought in China. Glob. Environ. Chang. 24, 193–202. https://doi.org/10.1016/j.gloenvcha.2013.11.010spa
dc.relation.referencesChin, W. W. (1998). Commentary issues and opinion on Structural Equation Modeling Clear reporting. Modern Methods for Business Research Methodology for Business and Management, 22(1), vii–xvi.spa
dc.relation.referencesCorley, R.H.V., 2009. How much palm oil do we need? Environ. Sci. Policy 12, 134–139. https://doi.org/10.1016/j.envsci.2008.10.011spa
dc.relation.referencesCragg, P. B., & King, M. (1993). Small-Firm Computing: Motivators and inhibitors. MIS Quarterly, 17(1), 47. https://doi.org/10.2307/249509spa
dc.relation.referencesCremades, R., Wang, J., Morris, J., 2015. Policies, economic incentives and the adoption of modern irrigation technology in China. Earth Syst. Dyn. 6, 399–410. https://doi.org/10.5194/esd-6-399-2015spa
dc.relation.referencesDANE. (2018). National Council for Economic and Social Policy. Glosario, 61, 4. https://www.dane.gov.co/index.php/estadisticas-por-tema/demografia-y-poblacion/censo-nacional-de-poblacion-y-vivenda-2018spa
dc.relation.referencesDaryanto, S., Wang, L., & Jacinthe, P. A. (2017). Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review. Agricultural Water Management, 179, 18–33. https://doi.org/10.1016/j.agwat.2016.04.022spa
dc.relation.referencesDavis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly: Management Information Systems, 13(3), 319–339. https://doi.org/10.2307/249008spa
dc.relation.referencesDavis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science, 35(8), 982–1003. https://doi.org/10.1287/mnsc.35.8.982spa
dc.relation.referencesDavis, F. D., & Venkatesh, V. (2004). Toward preprototype user acceptance testing of new information systems: Implications for software project management. IEEE Transactions on Engineering Management, 51(1), 31–46. https://doi.org/10.1109/TEM.2003.822468spa
dc.relation.referencesEngler, A., Jara-Rojas, R., Bopp, C., 2016. Efficient use of water resources in vineyards: A recursive joint estimation for the adoption of irrigation technology and scheduling. Water Resour. Manag. 30, 5369–5383. https://doi.org/10.1007/s11269-016-1493-5spa
dc.relation.referencesFader, M., Shi, S., Von Bloh, W., Bondeau, A., Cramer, W., 2016. Mediterranean irrigation under climate change: More efficient irrigation needed to compensate for increases in irrigation water requirements. Hydrol. Earth Syst. Sci. 20, 953–973. https://doi.org/10.5194/hess-20-953-2016spa
dc.relation.referencesFedepalma. (2020). Informe de Gestión. https://fedepalma.info/wp-content/uploads/2021/06/Informe-Gestion-Fedepalma-2020-DIGITAL-B.pdfspa
dc.relation.referencesFishbein. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Journal of Business Venturing, 5(3), 177–189. https://doi.org/10.1016/0883-9026(90)90031-Nspa
dc.relation.referencesFlett, R., Alpass, F., Humphries, S., Massey, C., Morriss, S., & Long, N. (2004). The technology acceptance model and use of technology in New Zealand dairy farming. Agricultural Systems, 80(2), 199–211. https://doi.org/10.1016/j.agsy.2003.08.002spa
dc.relation.referencesGaitan, S. B., & Ríos, M. D. (2020). Socio-economic and technological typology of avocado cv. Hass farms from Antioquia (Colombia). Ciencia Rural, 50(7), 1–17. https://doi.org/10.1590/0103-8478cr20190188spa
dc.relation.referencesGalioto, F., Chatzinikolaou, P., Raggi, M., Viaggi, D., 2020. The value of information for the management of water resources in agriculture: Assessing the economic viability of new methods to schedule irrigation. Agric. Water Manag. 227, 105848. https://doi.org/10.1016/j.agwat.2019.105848spa
dc.relation.referencesGilg, A., & Barr, S. (2006). Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecological Economics, 57(3), 400–414. https://doi.org/10.1016/j.ecolecon.2005.04.010spa
dc.relation.referencesGonzález, V., 2015. The use of the multilayer perceptron for the classification of patterns in addictive behaviors 55, original in spanish.spa
dc.relation.referencesHair, J. F. J., Hult, G. T. ., Ringle, C. ., & Sarstedt, M. (2017). A Primer on partial least Squares Structural Equation Modeling (PLS-SEM). Sage Publications. European Journal of Tourism Research, 6(2), 211–213.spa
dc.relation.referencesHenseler, J. (2010). On the convergence of the partial least squares path modeling algorithm. Computational Statistics, 25(1), 107–120. https://doi.org/10.1007/s00180-009-0164-xspa
dc.relation.referencesHenseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135. https://doi.org/10.1007/s11747-014-0403-8spa
dc.relation.referencesHunecke, C., Engler, A., Jara-Rojas, R., Poortvliet, P.M., 2017. Understanding the role of social capital in adoption decisions: An application to irrigation technology. Agric. Syst. 153, 221–231. https://doi.org/10.1016/j.agsy.2017.02.002spa
dc.relation.referencesIbragimov, A., Sidique, S.F., Tey, Y.S., 2019. Productivity for sustainable growth in Malaysian oil palm production: A system dynamics modeling approach. J. Clean. Prod. 213, 1051–1062. https://doi.org/10.1016/j.jclepro.2018.12.113spa
dc.relation.referencesIgbaria, M., Zinatelli, N., Cragg, P., & Cavaye, A. L. M. (1997). Personal computing acceptance factors in small firms: A structural equation model. MIS Quarterly: Management Information Systems, 21(3), 279–301. https://doi.org/10.2307/249498spa
dc.relation.referencesIskandar, M.J., Baharum, A., Anuar, F.H., Othaman, R., 2018. Palm oil industry in South East Asia and the effluent treatment technology—A review. Environ. Technol. Innov. 9, 169–185. https://doi.org/10.1016/j.eti.2017.11.003spa
dc.relation.referencesJara-Rojas, R., Bravo-Ureta, B.E., Engler, A., Díaz, J., 2013. An analysis of the joint adoption of water conservation and soil conservation in Central Chile. Land use policy 32. https://doi.org/10.1016/j.landusepol.2012.11.001spa
dc.relation.referencesJelsma, I., Woittiez, L.S., Ollivier, J., Dharmawan, A.H., 2019. Do wealthy farmers implement better agricultural practices? An assessment of implementation of Good Agricultural Practices among different types of independent oil palm smallholders in Riau, Indonesia. Agric. Syst. 170, 63–76. https://doi.org/10.1016/j.agsy.2018.11.004spa
dc.relation.referencesJordán, C., Speelman, S., 2020. On-farm adoption of irrigation technologies in two irrigated valleys in Central Chile: The effect of relative abundance of water resources. Agric. Water Manag. 236, 106147. https://doi.org/10.1016/j.agwat.2020.106147spa
dc.relation.referencesKaliba, A.R., Mushi, R.J., Gongwe, A.G., Mazvimavi, K., 2020. A typology of adopters and nonadopters of improved sorghum seeds in Tanzania: A deep learning neural network approach. World Dev. 127, 104839. https://doi.org/10.1016/j.worlddev.2019.104839spa
dc.relation.referencesKing, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information and Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003spa
dc.relation.referencesKoech, R., Langat, P., 2018. Improving irrigation water use efficiency: A review of advances, challenges and opportunities in the Australian context. Water (Switzerland) 10. https://doi.org/10.3390/w10121771spa
dc.relation.referencesLai, P. (2017). the Literature review of Technology Adoption Models and Theories for the Novelty Technology. Journal of Information Systems and Technology Management, 14(1), 21–38. https://doi.org/10.4301/s1807-17752017000100002spa
dc.relation.referencesLathief, M. F., Soesanti, I., & Permanasari, A. E. (2020). Combination of Fuzzy C-Means, Xie-Beni Index, and Backpropagation Neural Network for Better Forecasting Result. Iccetim 2019, 72–77. https://doi.org/10.5220/0009858200720077spa
dc.relation.referencesLegris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40(3), 191–204. https://doi.org/10.1016/S0378-7206(01)00143-4spa
dc.relation.referencesLi, M., Bi, X., Wang, L., & Han, X. (2021). A method of two-stage clustering learning based on improved DBSCAN and density peak algorithm. Computer Communications, 167(January), 75–84. https://doi.org/10.1016/j.comcom.2020.12.019spa
dc.relation.referencesLiang, H., Xue, Y., & Byrd, T. A. (2003). PDA usage in healthcare professionals: testing an extended technology acceptance model. International Journal of Mobile Communications, 1(4), 372–389. https://doi.org/10.1504/IJMC.2003.003992spa
dc.relation.referencesLiu, Y., Ruiz-Menjivar, J., Zhang, L., Zhang, J., Swisher, M.E., 2019. Technical training and rice farmers' adoption of low-carbon management practices: The case of soil testing and formulated fertilization technologies in Hubei, China. J. Clean. Prod. 226, 454–462. https://doi.org/10.1016/j.jclepro.2019.04.026spa
dc.relation.referencesLoevinsohn, M., Sumberg, J., Diagne, A., Whitfield, S., 2013. Under what circumstances and conditions does adoption of technology result in increased agricultural productivity? A Systematic Review (Prepared for the Department for International Development).spa
dc.relation.referencesMaleksaeidi, H., & Keshavarz, M. (2019). What influences farmers’ intentions to conserve on-farm biodiversity? An application of the theory of planned behavior in fars province, Iran. Global Ecology and Conservation, 20, e00698. https://doi.org/10.1016/j.gecco.2019.e00698spa
dc.relation.referencesMartínez Ávila, M., & Fierro Moreno, E. (2018). Application of the PLS-SEM technique in Knowledge Management: a practical technical approach. In RIDE Revista Iberoamericana para la Investigación y el Desarrollo Educativo (Vol. 8, Issue 16). https://doi.org/10.23913/ride.v8i16.336spa
dc.relation.referencesMeijaard, E., Futures, B., Garcia-ulloa, J., Sheil, D., & Wich, S. (2018). A situation analysis by the IUCN Oil Palm Task Force (Issue June). https://portals.iucn.org/library/sites/library/files/documents/2018-027-En.pdfspa
dc.relation.referencesMinisterio de ambiente Colombia. (2017). Acuerdo De Voluntades Para La Deforestación Cero En La Cadena De Aceite De Palma En Colombia. 1–21. https://archivo.minambiente.gov.co/images/BosquesBiodiversidadyServiciosEcosistemicos/pdf/Acuerdo_cero_deforestacion/ACUERDO_DE_VOLUNTADES_PARA_LA_DEFORESTACION_CERO_EN_LA_CADENA_DE_ACEITE_DE_PALMA_EN_COLOMBIA_Texto_Final.pdfspa
dc.relation.referencesMoon, J. W., & Kim, Y. G. (2001). Extending the TAM for a World-Wide-Web context. Information and Management, 38(4), 217–230. https://doi.org/10.1016/S0378-7206(00)00061-6spa
dc.relation.referencesMoore, G. C., & Benbasat, I. (1991). Development of an Instrument to Measure the Perceptions of Adopting an Information Technology Innovation. In Information Systems Research (Vol. 2, pp. 192–222).spa
dc.relation.referencesMpanga, I.K., Idowu, O.J., 2021. A decade of irrigation water uses trends in Southwest USA: The role of irrigation technology, best management practices, and outreach education programs. Agric. Water Manag. 243, 106438. https://doi.org/10.1016/j.agwat.2020.106438spa
dc.relation.referencesNakano, Y., Tsusaka, T.W., Aida, T., Pede, V.O., 2018. Is farmer-to-farmer extension effective? The impact of training on technology adoption and rice farming productivity in Tanzania. World Dev. 105, 336–351. https://doi.org/10.1016/j.worlddev.2017.12.013spa
dc.relation.referencesNikouei, A., Zibaei, M., Ward, F.A., 2012. Incentives to adopt irrigation water saving measures for wetlands preservation: An integrated basin scale analysis. J. Hydrol. 464–465, 216–232. https://doi.org/10.1016/j.jhydrol.2012.07.013spa
dc.relation.referencesNonvide, G.M.A., 2018. Irrigation adoption: A potential avenue for reducing food insecurity among rice farmers in Benin. Water Resour. Econ. 24, 40–52. https://doi.org/10.1016/j.wre.2018.05.002spa
dc.relation.referencesOyetunde-Usman, Z., Olagunju, K.O., Ogunpaimo, O.R., 2021. Determinants of adoption of multiple sustainable agricultural practices among smallholder farmers in Nigeria. Int. Soil Water Conserv. Res. 9, 241–248. https://doi.org/10.1016/j.iswcr.2020.10.007spa
dc.relation.referencesPark, N., Rhoads, M., Hou, J., & Lee, K. M. (2014). Understanding the acceptance of teleconferencing systems among employees: An extension of the technology acceptance model. Computers in Human Behavior, 39, 118–127. https://doi.org/10.1016/j.chb.2014.05.048spa
dc.relation.referencesParra Olivares, J.E., 2011. Multiple correspondence analysis model. Rev. Ciencias Soc. 2. https://doi.org/10.31876/rcs.v2i2.24801, original in spanish.spa
dc.relation.referencesPérez, I., Janssen, M. A., & Anderies, J. M. (2016). Food security in the face of climate change: Adaptive capacity of small-scale social-ecological systems to environmental variability. Global Environmental Change, 40, 82–91. https://doi.org/10.1016/j.gloenvcha.2016.07.005spa
dc.relation.referencesPirker, J., Mosnier, A., Kraxner, F., Havlík, P., & Obersteiner, M. (2016). What are the limits to oil palm expansion? Global Environmental Change, 40, 73–81. https://doi.org/10.1016/j.gloenvcha.2016.06.007spa
dc.relation.referencesPiwowar, A., Dziku, Maciej, Dziku, Maria, 2021. Water management in Poland in terms of reducing the emissions from agricultural sources – current status and challenges 2. https://doi.org/10.1016/j.clet.2021.100082spa
dc.relation.referencesPorter, C. E., & Donthu, N. (2006). Using the technology acceptance model to explain how attitudes determine Internet usage: The role of perceived access barriers and demographics. Journal of Business Research, 59(9), 999–1007. https://doi.org/10.1016/j.jbusres.2006.06.003spa
dc.relation.referencesQaim, M., Sibhatu, K. T., Siregar, H., & Grass, I. (2020). Environmental, economic, and social consequences of the oil palm boom. Annual Review of Resource Economics, 12, 321–344. https://doi.org/10.1146/annurev-resource-110119-024922spa
dc.relation.referencesR Core Team, 2019. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. 2, 1–12.spa
dc.relation.referencesRamirez, A., 2013. The influence of social networks on agricultural technology Adoption. Procedia - Soc. Behav. Sci. 79, 101–116. https://doi.org/10.1016/j.sbspro.2013.05.059spa
dc.relation.referencesRezaei, R., Safa, L., & Ganjkhanloo, M. M. (2020). Understanding farmers’ ecological conservation behavior regarding the use of integrated pest management- an application of the technology acceptance model. Global Ecology and Conservation, 22, e00941. https://doi.org/10.1016/j.gecco.2020.e00941spa
dc.relation.referencesRodríguez-Hernández, C.F., Musso, M., Kyndt, E., Cascallar, E., 2021. Artificial neural networks in academic performance prediction: Systematic implementation and predictor evaluation. Comput. Educ. Artif. Intell. 2, 100018. https://doi.org/10.1016/j.caeai.2021.100018spa
dc.relation.referencesRogers Everett. (1962). Diffusion of Innovations. Third Ed. Free Press, New York, USA., 24(3), 355–368. https://doi.org/10.1007/s10460-007-9072-2spa
dc.relation.referencesRomero, H. M., Ayala, I., & Ruiz, R. (2007). Ecofisiología de la palma de aceite. PALMAS Especial, 28, 176–184.spa
dc.relation.referencesRossi, F.R., Filho, H.M. de S., Miranda, B.V., Carrer, M.J., 2020. The role of contracts in the adoption of irrigation by Brazilian orange growers. Agric. Water Manag. 233, 106078. https://doi.org/10.1016/j.agwat.2020.106078spa
dc.relation.referencesRspo (2022). Smallholders retrieved from:. https://www.rspo.org/smallholders/. Accessed: 2022-03-18.spa
dc.relation.referencesSantika, T., Wilson, K. A., Budiharta, S., Law, E. A., Poh, T. M., Ancrenaz, M., Struebig, M. J., and Meijaard, E. (2019). Does oil palm agriculture help alleviate poverty? A multidimensional counterfactual assessment of oil palm development in Indonesia. World Development, 120:105–117.spa
dc.relation.referencesSayer, J., Ghazoul, J., Nelson, P., and Klintuni Boedhihartono, A. (2012). Oil palm expansion transforms tropical landscapes and livelihoods. Global Food Security, 1(2):114– 119.spa
dc.relation.referencesSharifzadeh, M. S., Damalas, C. A., Abdollahzadeh, G., and Ahmadi- Gorgi, H. (2017). Predicting adoption of biological control among Iranian rice farmers: An application of the extended technology acceptance model (TAM2). Crop Protection, 96(December 2018):88–96.spa
dc.relation.referencesSiderska, J. (2017). Neural model for assessing the value of social capital. Procedia Engineering, 182:643–650.spa
dc.relation.referencesSun, H. and Zhang, P. (2006). The role of moderating factors in user technology acceptance. International Journal of Human Computer Studies, 64(2):53–78.spa
dc.relation.referencesTaherdoost, H. (2018). A review of technology acceptance and adoption models and theories. Procedia Manufacturing, 22:960–967.spa
dc.relation.referencesTan, Q., Cai, Y., Chen, B., 2017. An enhanced radial interval programming approach for supporting agricultural production decisions under dual uncertainties and differential aspirations. J. Clean. Prod. 168, 189–204. https://doi.org/10.1016/j.jclepro.2017.08.180spa
dc.relation.referencesTeoh, C. H. (2010). “Key Sustainability Issues in the Palm Oil Sector.”Discussion Paper , WBG Multi-Stakeholders Collaboration. World Bank Group. https://www.biofuelobservatory.org/Documentos/Otros/Palm-Oil-Discussion-Paper-FINAL.pdfspa
dc.relation.referencesThompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly: Management Information Systems, 15(1), 125–142. https://doi.org/10.2307/249443spa
dc.relation.referencesvan Dijk, W. F. A., Lokhorst, A. M., Berendse, F., & de Snoo, G. R. (2016). Factors underlying farmers’ intentions to perform unsubsidised agri-environmental measures. Land Use Policy, 59(December), 207–216. https://doi.org/10.1016/j.landusepol.2016.09.003spa
dc.relation.referencesVenkatesh, Morris, D. (2003). User acceptance of information technology: Toward a unified view. Choice Reviews Online, 45(12), 45-6743-45–6743. https://doi.org/10.5860/choice.45-6743spa
dc.relation.referencesVenkatesh, V. (2000). Determinants of perceived ease of use: integrating perceived behavioral control, computer anxiety and enjoyment into the technology acceptance model. Information Systems Research, 11(1), 3–11. vvenkate@rhsmith.umd.eduspa
dc.relation.referencesVenkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision Sciences, 39(2), 273–315. https://doi.org/10.1111/j.1540-5915.2008.00192.xspa
dc.relation.referencesVenkatesh, V., & Davis, F. D. (1996). A Model of the Antecedents of Perceived Ease of Use: Development and Test. Decision Sciences, 27(3), 451–481. https://doi.org/10.1111/j.1540-5915.1996.tb01822.xspa
dc.relation.referencesVenkatesh, V., & Davis, F. D. (2000). Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926spa
dc.relation.referencesVenkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. 27(3), 425–478.spa
dc.relation.referencesVerma, P., & Sinha, N. (2018). Integrating perceived economic wellbeing to technology acceptance model: The case of mobile based agricultural extension service. Technological Forecasting and Social Change, 126(September 2016), 207–216. https://doi.org/10.1016/j.techfore.2017.08.013spa
dc.relation.referencesWahbeh, H., Sagher, M. C. R. A., Back, W., Pundhir, M. A. P., & Travis, F. (2018). Review a S Ystematic R Eview of T Ranscendent S Tates. Explore: The Journal of Science and Healing, 14(1), 19–35. https://doi.org/10.1016/j.explore.2017.07.007spa
dc.relation.referencesWandel, J., Smithers, J., 2000. Factors affecting the adoption of conservation tillage on clay soils in southwestern Ontario, Canada. Am. J. Altern. Agric. 15, 181–188. https://doi.org/10.1017/s0889189300008754spa
dc.relation.referencesWang, J., Klein, K.K., Bjornlund, H., Zhang, L., Zhang, W., 2015. Adoption of improved irrigation scheduling methods in Alberta: An empirical analysis. Can. Water Resour. J. 40, 47–61. https://doi.org/10.1080/07011784.2014.975748spa
dc.relation.referencesWang, L. Y. K., Lew, S. L., Lau, S. H., & Leow, M. C. (2019). Usability factors predicting continuance of intention to use cloud e-learning application. Heliyon, 5(6), e01788. https://doi.org/10.1016/j.heliyon.2019.e01788spa
dc.relation.referencesWesley, A. S., & Faminow, M. (2014). BAckgrounD PAPer : reseArch AnD DeveloPment. https://deliverypdf.ssrn.com/delivery.php?ID=286116065002000089064013071106022097023057071055063005125104113022119097005087097014107106052111061028034095090106077017101025102070004033004121009014080086090028105056029010116091112086020103025006096127126066102018124096005092067085111096083023076091&EXT=pdf&INDEX=TRUEspa
dc.relation.referencesWoittiez, L.S., Wijk, M.T. Van, Slingerland, M., Noordwijk, M. Van, Giller, K.E., 2017. Yield gaps in oil palm: A quantitative review of contributing factors. Eur. J. Agron. 83, 57–77. https://doi.org/10.1016/j.eja.2016.11.002spa
dc.relation.referencesWu, J. H., Wang, S. C., & Lin, L. M. (2007). Mobile computing acceptance factors in the healthcare industry: A structural equation model. International Journal of Medical Informatics, 76(1), 66–77. https://doi.org/10.1016/j.ijmedinf.2006.06.006spa
dc.relation.referencesXie X L, Beni G. (1991). A validity measure for fuzzy clustering. In IEEE Transactions on Pattern Analysis and Machine Intelligence (Vol. 13, Issue 5, pp. 841–847). https://doi.org/10.1109/TPAMI.2011.60spa
dc.relation.referencesYang, C.-M., 2012. Technologies to improve water management for rice cultivation to cope with climate change editor's view. Crop. Environ. Bioinforma. 8, 193–207.spa
dc.relation.referencesYang, Q., Zhu, Y., Wang, J., 2020. Adoption of drip fertigation system and technical efficiency of cherry tomato farmers in Southern China. J. Clean. Prod. 275, 123980. https://doi.org/10.1016/j.jclepro.2020.123980spa
dc.relation.referencesYazdanpanah, M., Hayati, D., Hochrainer-Stigler, S., & Zamani, G. H. (2014). Understanding farmers’ intention and behavior regarding water conservation in the Middle-East and North Africa: A case study in Iran. Journal of Environmental Management, 135, 63–72. https://doi.org/10.1016/j.jenvman.2014.01.016spa
dc.relation.referencesYigezu, Y.A., Mugera, A., El-Shater, T., Aw-Hassan, A., Piggin, C., Haddad, A., Khalil, Y., Loss, S., 2018. Enhancing adoption of agricultural technologies requiring high initial investment among smallholders. Technol. Forecast. Soc. Change 134, 199–206. https://doi.org/10.1016/j.techfore.2018.06.006spa
dc.relation.referencesZhang, B., Fu, Z., Wang, J., Zhang, L., 2019. Farmers' adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China. Agric. Water Manag 212, 349–357. https://doi.org/10.1016/j.agwat.2018.09.021spa
dc.relation.referencesZhang, N., Guo, X., & Chen, G. (2008). IDT-TAM Integrated Model for IT Adoption. Tsinghua Science and Technology, 13(3), 306–311. https://doi.org/10.1016/S1007-0214(08)70049-Xspa
dc.relation.referencesZulkefli, F., & Syahlan, S. (2017). An Overview of Acceptance and Adoption of Agricultural Innovation and Technology for Sustainable Palm Oil Industry. International Journal of Academic Research in Business and Social Sciences, 7(11). https://doi.org/10.6007/ijarbss/v7-i11/3467spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocElaeis guineensis
dc.subject.agrovocAgua de riegospa
dc.subject.agrovocIrrigation watereng
dc.subject.ddc300 - Ciencias sociales::304 - Factores que afectan el comportamiento socialspa
dc.subject.proposalExtensión Agrícolaspa
dc.subject.proposalTecnologías de riegospa
dc.subject.proposalModelo de aceptación tecnológicaspa
dc.subject.proposalTipología de productoresspa
dc.subject.proposalAgricultural extensioneng
dc.subject.proposalIrrigation technologieseng
dc.subject.proposalTechnology acceptance modeleng
dc.subject.proposalFarm typologyeng
dc.titleDeterminantes de la adopción de tecnologías para el manejo eficiente del agua por los cultivadores de palma de aceite en la zona Norte Colombianaspa
dc.title.translatedDeterminants of the adoption of technologies for efficient water management by oil palm growers in the Colombian Northeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameCentro de Investigación de Palma de Aceite - Cenipalmaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1067859787.2022.pdf
Tamaño:
2.63 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Gestión y Desarrollo Rural

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.98 KB
Formato:
Item-specific license agreed upon to submission
Descripción: