Caracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)

dc.contributor.advisorDavid Ruales, Carlos Arturo
dc.contributor.advisorPardo Carrasco, Sandra Clemencia
dc.contributor.advisorGutiérrez Ramírez, Luz Adriana
dc.contributor.authorCano Gil, Juan David
dc.contributor.cvlacCano Gil, Juan David (0001821334)spa
dc.contributor.orcidCano Gil, Juan David (0000000245747509)spa
dc.contributor.researchgroupProducción, Desarrollo y Transformación Agropecuaria (GIPDTA).spa
dc.coverage.countryColombia
dc.date.accessioned2024-04-16T14:30:17Z
dc.date.available2024-04-16T14:30:17Z
dc.date.issued2024-04-10
dc.descriptionilustraciones, fotografías, gráficosspa
dc.description.abstractPanaque cochliodon, conocido en Colombia como cucha de ojos azules, es una especie endémica de las cuencas del Cauca y el Magdalena, y está clasificada como vulnerable (A2d) en el Libro Rojo de los Peces de Agua Dulce de Colombia. Este es el primer reporte para Colombia sobre esta especie en medio natural razón por la cual se escogió para este trabajo, además por tener hábitos xilívoros, es decir, que consume madera como principal fuente de alimento para su nutrición, siendo una especie de gran valor biológico para el ecosistema. Se tiene cierto conocimiento sobre su comportamiento básico, adaptación al cautiverio y otras características relacionadas con su alimentación y reproducción, sin embargo, se desconoce por completo su fisiología digestiva y las posibles relaciones simbióticas de los componentes de su microbiota intestinal. En este estudio se realizó la primera caracterización de la microbiota asociada al tracto gastrointestinal de Panaque cochliodon. Para ello, se capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal. (Tomado de la fuente)spa
dc.description.abstractPanaque cochliodon, known in Colombia as blue-eyed pleco,' is an endemic species in the Cauca and Magdalena river basins, classified as vulnerable (A2d) in the Red Book of Freshwater Fish of Colombia. This is the first report for Colombia on this species in its natural habitat, which is why it was chosen for this study. Additionally, due to its xylophagous habits—meaning it primarily consumes wood as a source of nutrition—it holds significant biological value for the ecosystem. While there is some knowledge about its basic behavior, adaptation to captivity, and other characteristics related to its feeding and reproduction, its digestive physiology and potential symbiotic relationships within its intestinal microbiota remain completely unknown. This study conducted the first characterization of the microbiota associated with the gastrointestinal tract of Panaque cochliodon. Three adult specimens from the Magdalena River were captured, transported, and sacrificed following animal welfare standards. Intestinal dissection was performed, obtaining samples for microbiological isolation and molecular identification of cultivable microorganisms to gather phylogenetic information. Through bioinformatic analysis, several genera of interest for agricultural and food production were identified, including Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis, and Lactococcus cremoris. Subsequently, a metagenomic analysis was conducted using DNA extraction from three intestinal sections: anterior, middle, and posterior. DNA was amplified via PCR and sequenced using the bacterial 16S rRNA gene. As a result, all bacterial communities forming part of the intestinal microbiota were identified, with a predominant presence of Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota, and Cyanobacteria. The metagenomic analysis revealed functional differences between communities and the relative abundance of the intestinal microbiotaeng
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellínspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.methodsSe capturaron y utilizaron tres ejemplares adultos provenientes del río Magdalena, los cuales fueron transportados y sacrificados siguiendo las normas de bienestar animal. Se realizó la disección del tracto intestinal, obteniendo muestras para el aislamiento microbiológico e identificación molecular de los microorganismos cultivables, con el objetivo de obtener información filogenética. Mediante análisis bioinformáticos, se identificaron varios géneros de interés para la producción agropecuaria y de alimentos, como: Bacillus paramycoides, Bacillus velezensis, Bacillus thuringiensis y Lactococcus cremoris. Posteriormente, se realizó un análisis metagenómico utilizando la extracción de ADN de tres secciones intestinales: anterior, media y posterior. El ADN se amplificó mediante PCR y, finalmente, se secuenció utilizando el gen ADNr 16S bacteriano. Como resultado, se identificaron todas las comunidades bacterianas que forman parte de la microbiota intestinal, con una presencia predominante de Proteobacteria, Actinobacteriota, Firmicutes, Bdellovibrionota, Planctomycetes, Verrucomicrobiota, Spirochaetota y Cyanobacteria. El análisis metagenómico reveló diferencias funcionales entre las comunidades y la abundancia relativa de la microbiota intestinal.spa
dc.description.researchareaBiotecnología y producción agropecuariaspa
dc.format.extent97 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85923
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdul Rahman, N., Parks, D., Willner, DL Engelbrektson, A., Goffredi, S., Warnecke, F., & Hugenholtz. (2015). Un estudio molecular de los géneros de termitas de Australia y América del Norte indica que la herencia vertical es la fuerza principal que da forma a los microbiomas intestinales de las termitas. Microbioma, 3(1), 1–16. https://microbiomejournal.biomedcentral.com/articles/10.1186/s40168-015-0067-8spa
dc.relation.referencesAbriouel, H., Franz, C. M. A. P., Omar, N. Ben, & Gálvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiology Reviews, 35(1), 201–232. https://doi.org/10.1111/j.1574-6976.2010.00244.xspa
dc.relation.referencesAskarian, F., Zhou, Z., Olsen, R. E., Sperstad, S., & Ringø, E. (2012). Culturable autochthonous gut bacteria in Atlantic salmon (Salmo salar L.) fed diets with or without chitin. Characterization by 16S rRNA gene sequencing, ability to produce enzymes and in vitro growth inhibition of four fish pathogens. Aquaculture, 326–329, 1–8. https://doi.org/https://doi.org/10.1016/j.aquaculture.2011.10.016spa
dc.relation.referencesAustin, B. (2006). The Bacterial Microflora of Fish, Revised. TheScientificWorldJOURNAL, 6, 325830. https://doi.org/10.1100/tsw.2006.181spa
dc.relation.referencesBird, A. R., Conlon, M. A., Christophersen, C. T., & Topping, D. L. (2010). Resistant starch, large bowel fermentation and a broader perspective of prebiotics and probiotics. Beneficial Microbes, 1(4), 423–431. https://doi.org/10.3920/BM2010.0041spa
dc.relation.referencesBledsoe, J. W., Peterson, B. C., Swanson, K. S., & Small, B. C. (2016). Ontogenetic characterization of the intestinal microbiota of channel catfish through 16S rRNA gene sequencing reveals insights on temporal shifts and the influence of environmental microbes. PLoS ONE, 11(11), 1–22. https://doi.org/10.1371/journal.pone.0166379spa
dc.relation.referencesBorges, N., Keller-Costa, T., Sanches-Fernandes, G. M. M., Louvado, A., Gomes, N. C. M., & Costa, R. (2021). Bacteriome Structure, Function, and Probiotics in Fish Larviculture: The Good, the Bad, and the Gaps. Annual Review of Animal Biosciences, 9, 423–452. https://doi.org/10.1146/annurev-animal-062920-113114spa
dc.relation.referencesCarnevali, O., Maradonna, F., & Gioacchini, G. (2017). Integrated control of fish metabolism, wellbeing and reproduction: The role of probiotic. Aquaculture, 472, 144–155. https://doi.org/https://doi.org/10.1016/j.aquaculture.2016.03.037spa
dc.relation.referencesCastañeda-Monsalve, V. A., Junca, H., García-Bonilla, E., Montoya-Campuzano, O. I., & Moreno-Herrera, C. X. (2019). Characterization of the gastrointestinal bacterial microbiome of farmed juvenile and adult white Cachama (Piaractus brachypomus). Aquaculture, 512, 734325. https://doi.org/https://doi.org/10.1016/j.aquaculture.2019.734325spa
dc.relation.referencesChu, T.-W., Chen, C.-N., & Pan, C.-Y. (2020). Antimicrobial status of tilapia (Oreochromis niloticus) fed Enterococcus avium originally isolated from goldfish intestine. Aquaculture Reports, 17, 100397. https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100397spa
dc.relation.referencesClements, K. D., Angert, E. R., Montgomery, W. L., & Choat, J. H. (2014). Intestinal microbiota in fishes: what’s known and what’s not. Molecular Ecology, 23(8), 1891–1898. https://doi.org/https://doi.org/10.1111/mec.12699spa
dc.relation.referencesDas, M. P., & Kumar, S. (2015). An approach to low-density polyethylene biodegradation by Bacillus amyloliquefaciens. Biotech, 5(1), 81–86. https://doi.org/https://doi.org/10.1007/s13205-014-0205-1spa
dc.relation.referencesDavid-Ruales, C. ., Betancur-Gonzales, E. ., & Cano-Gil, J. . (2021). Adaptación al cautiverio y estandarización de una tecnica no invasiva (ecografía) para la determinación del género y la evaluación de la madurez gonadal de la especie Panaque cochliodon (Cucha de ojos azules) del río Magdalena. Rev. Lasallista de Investigación, 267.spa
dc.relation.referencesDavid-Ruales, Guerra, M. O., Cano, J. D., & Betancur, E. M. (2022). Clove Oil (Eugenol®) as an Anesthetic in the Species Panaque Cochliodon-Steindachner, 1879 (Blue-Eyed Pleco. Revista Lasallista de Investigacion, 19(1), 182–194. https://doi.org/10.22507/rli.v19n1a11spa
dc.relation.referencesDavid, L. A., Maurice, C. F., Carmody, R. N., Gootenberg, D. B., Button, J. E., Wolfe, B. E., Ling, A. V, Devlin, A. S., Varma, Y., Fischbach, M. A., Biddinger, S. B., Dutton, R. J., & Turnbaugh, P. J. (2014). Diet rapidly and reproducibly alters the human gut microbiome. Nature, 505(7484), 559–563. https://doi.org/10.1038/nature12820spa
dc.relation.referencesDeng, Z., Jiang, Y., Chen, K., Gao, F., & Liu, X. (2020). Petroleum Depletion Property and Microbial Community Shift After Bioremediation Using Bacillus halotolerans T-04 and Bacillus cereus 1-1. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.00353spa
dc.relation.referencesDi Maiuta, N., Schwarzentruber, P., Schenker, M., & Schoelkopf, J. (2013). Microbial population dynamics in the faeces of wood‐eating loricariid catfishes. Letters in Applied Microbiology, 56(6), 401–407. https://doi.org/10.1111/lam.12061spa
dc.relation.referencesDomínguez-Arrizabalaga, M Villanueva, M., Escriche, B., Ancín-Azpilicueta, C., & Caballero, P. (2020). Insecticidal activity of bacillus thuringiensis proteins against coleopteran pests. Toxins, 12(7). https://doi.org/https://doi.org/10.3390/toxins12070430spa
dc.relation.referencesFishelson, L., Montgomery, W. L., & Myrberg, A. (1985). A unique symbiosis in the gut of tropical herbivorous surgeonfish (Acanthuridae: Teleostei) from the Red Sea. Science, 229, 49–51.spa
dc.relation.referencesGerking, S. D., Division, A., & Brace, H. (1994). Feeding Ecology of fish (A. S. UNIVERSITY (ed.)). Library of Congress Cataloging-in-Publication Data.spa
dc.relation.referencesGerman, D. (2009). Inside the guts of wood-eating catfishes: can they digest wood? Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1011–1023. https://api.semanticscholar.org/CorpusID:7512400spa
dc.relation.referencesGerman, D., & Bittong, R. (2009). Digestive enzymes and gastrointestinal fermentation in wood-eating catfishes. Journal of Comparative Physiology. B, Biochemical, Systemic, and Environmental Physiology, 179, 1025–1042. https://doi.org/10.1007/s00360-009-0383-zspa
dc.relation.referencesGivens, C., Ransom, B., Bano, N., & Hollibaugh, J. (2015). Comparison of the gut microbiomes of 12 bony fish and 3 shark species. Marine Ecology Progress Series, 518, 209–223. https://doi.org/10.3354/meps11034spa
dc.relation.referencesGómez, G. D., & Balcázar, J. L. (2008). A review on the interactions between gut microbiota and innate immunity of fish. FEMS Immunology & Medical Microbiology, 52(2), 145–154. https://doi.org/10.1111/j.1574-695X.2007.00343.xspa
dc.relation.referencesGreen, G. B. H., Williams, M. B., Chehade, S. B., Flowers, J. T., Morrow, C. D., Lawrence, A. L., Bej, A. K., & Watts, S. A. (2023). Body Metrics and the Gut Microbiome in Response to Macronutrient Limitation in the Zebrafish Danio rerio. Current Developments in Nutrition, 7(4), 100065. https://doi.org/https://doi.org/10.1016/j.cdnut.2023.100065spa
dc.relation.referencesGrosell, M., Farrell, A. P., & Brauner, C. J. (2010). The Multifunctional Gut of Fish. In Fish Physiology (1st ed., Vol. 30). Academic Press; 1er edición (5 Octubre 2010).spa
dc.relation.referencesGutiérrez-Ramirez, L. A., David-Ruales, C. A., Montoya-Campuzano, O. I., & Betancur-Gonzalez, E. M. (2016). Efecto de la inclusión en la dieta de probióticos microencapsulados sobre algunos parámetros zootécnicos en alevinos de tilapia roja (Oreochromis sp.). Salud Animal, 38(2), 112–119. https://doi.org/10.1093/oxfordhb/9780199204540.003.0007spa
dc.relation.referencesHlordzi, V., Kuebutornye, F., Afriyie, G., Abarike, E., Lu, Y., & Chi, S. (2020). The use of Bacillus species in maintenance of water quality in aquaculture: A review. Aquaculture Reports, 18(100503). https://doi.org/https://doi.org/https://doi.org/10.1016/j.aqrep.2020.100503spa
dc.relation.referencesHuertas-Caro, C., Urbano-Cáceres, E., & Torres-Caycedo, M. (2019). CIENCIAS EPIDEMIOLÓGICAS Y SALUBRISTAS ARTÍCULO DE REVISIÓN Diagnóstico molecular una alternativa para la detección de patógenos en alimentos. Revista Habanera de Ciencias Médicas, 18(3), 513–528. http://www.revhabanera.sld.cu/index.php/rhab/article/view/2352spa
dc.relation.referencesIchimatsu, T., Mizuki, E., Nishimura, K., Akao, T., Saitoh, H., Higuchi, K., & Ohba, M. (2000). Occurrence of Bacillus thuringiensis in Fresh Waters of Japan. Current Microbiology, 40(4), 217–220. https://doi.org/10.1007/s002849910044spa
dc.relation.referencesIngerslev, H.-C., von Gersdorff Jørgensen, L., Lenz Strube, M., Larsen, N., Dalsgaard, I., Boye, M., & Madsen, L. (2014). The development of the gut microbiota in rainbow trout (Oncorhynchus mykiss) is affected by first feeding and diet type. Aquaculture, 424–425, 24–34. https://doi.org/https://doi.org/10.1016/j.aquaculture.2013.12.032spa
dc.relation.referencesIzvekova, G. I., Izvekov, E. I., & Plotnikov, A. O. (2007). Symbiotic microflora in fishes of different ecological groups. Biology Bulletin, 34(6), 610–618. https://doi.org/10.1134/S106235900706012Xspa
dc.relation.referencesKamei, Y., Sakata, T., & Kakimoto, D. (1985). Microflora in the alimentary tract of tilapia: Characterization and distri-bution of anaerobic bacteria. The Journal of General and Applied Microbiology, 31(2), 115–124. https://doi.org/10.2323/jgam.31.115spa
dc.relation.referencesKamilya, D., & Devi, W. M. (2022). Bacillus Probiotics and Bioremediation: An Aquaculture Perspective BT - Bacilli in Agrobiotechnology: Plant Stress Tolerance, Bioremediation, and Bioprospecting (M. T. Islam, M. Rahman, & P. Pandey (eds.); pp. 335–347). Springer International Publishing. https://doi.org/10.1007/978-3-030-85465-2_15spa
dc.relation.referencesKim, P. S., Shin, N.-R., Lee, J.-B., Kim, M.-S., Whon, T. W., Hyun, D.-W., Yun, J.-H., Jung, M.-J., Kim, J. Y., & Bae, J.-W. (2021). Host habitat is the major determinant of the gut microbiome of fish. Microbiome, 9(1), 166. https://doi.org/10.1186/s40168-021-01113-xspa
dc.relation.referencesLall, S. P., & Tibbetts, S. M. (2009). Nutrition, Feeding, and Behavior of Fish. Veterinary Clinics of North America: Exotic Animal Practice, 12(2), 361–372. https://doi.org/https://doi.org/10.1016/j.cvex.2009.01.005spa
dc.relation.referencesLi, T, Raza, S. H. A., Yang, B., Sun, Y., Wang, G., Sun, W., Qian, A., Wang, C., Kang, Y., & Shan, X. (2020). Aeromonas veronii infection in commercial freshwater fish: A potential threat to public health. Animals, 10(4). https://doi.org/https://doi.org/10.3390/ani10040608spa
dc.relation.referencesLi, Tongtong, Long, M., Gatesoupe, F.-J., Zhang, Q., Li, A., & Gong, X. (2015). Comparative Analysis of the Intestinal Bacterial Communities in Different Species of Carp by Pyrosequencing. Microbial Ecology, 69(1), 25–36. https://doi.org/10.1007/s00248-014-0480-8spa
dc.relation.referencesLiu, H., Guo, X., Gooneratne, R., Lai, R., Zeng, C., Zhan, F., & Wang, W. (2016). The gut microbiome and degradation enzyme activity of wild freshwater fishes influenced by their trophic levels. Scientific Reports, 6(1), 24340. https://doi.org/10.1038/srep24340spa
dc.relation.referencesLlewellyn, M. S., Boutin, S., Hoseinifar, S. H., & Derome, N. (2014). Teleost microbiomes: the state of the art in their characterization, manipulation and importance in aquaculture and fisheries. Frontiers in Microbiology, 5. https://doi.org/10.3389/fmicb.2014.00207spa
dc.relation.referencesLujan, N. K., German, D. P., & Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche?: Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology, 25(6), 1327–1338. https://doi.org/10.1111/j.1365-2435.2011.01883.xspa
dc.relation.referencesManuel, F., Arnaldo, C., Odalis, T., Deysy, C., Mario, C., & Virna, C. (2019). Caracterización molecular ómica de una cepa de Bacillus amyloliquefaciens aislada de la microbiota del paiche Arapaima gigas con actividad antagonista contra bacterias patógenas de peces. Revista de Investigaciones Veterinarias Del Perú, 30(2). https://doi.org/http://dx.doi.org/10.15381/rivep.v30i2.15407spa
dc.relation.referencesMarch, P., & Tillett, D. (1999). BioEdit Nucleicos. https://www.nucleics.com/about_nucleics/about_nucleics.htmlspa
dc.relation.referencesMarden, C. L., McDonald, R., Schreier, H. J., & Watts, J. E. M. (2017). Investigation into the fungal diversity within different regions of the gastrointestinal tract of Panaque nigrolineatus, a wood-eating fish. AIMS Microbiology, 3(4), 749–761. https://doi.org/10.3934/microbiol.2017.4.749spa
dc.relation.referencesMcCauley, M., German, D. P., Lujan, N. K., & Jackson, C. R. (2020). Gut microbiomes of sympatric Amazonian wood-eating catfishes (Loricariidae) reflect host identity and little role in wood digestion. Ecology and Evolution, 10(14), 7117–7128. https://doi.org/10.1002/ece3.6413spa
dc.relation.referencesMcdonald, R. C., Em, J., & Schreier, H. J. (2019). Efecto de la dieta sobre el microbioma entérico del bagre carnívoro Panaque nigrolineatus. 1–15.spa
dc.relation.referencesMcDonald, R., Schreier, H. J., & Watts, J. E. M. (2012). Phylogenetic Analysis of Microbial Communities in Different Regions of the Gastrointestinal Tract in Panaque nigrolineatus, a Wood-Eating Fish. PLoS ONE, 7(10). https://doi.org/10.1371/journal.pone.0048018spa
dc.relation.referencesMcDonald, R., Zhang, F., Watts, J. E. M., & Schreier, H. J. (2015). Nitrogenase diversity and activity in the gastrointestinal tract of the wood-eating catfish Panaque nigrolineatus. ISME Journal, 9(12), 2712–2724. https://doi.org/10.1038/ismej.2015.65spa
dc.relation.referencesMedela, D., Directora, T., Piazzon, C., Upv, H. T., & Mart, S. (2021). Recopilación bibliográfica y comparativa : la microbiota intestinal de dorada ( Sparus aurata ).spa
dc.relation.referencesMeidong, R., Nakao, M., Sakai, K., & Tongpim, S. (2021). Lactobacillus paraplantarum L34b-2 derived from fermented food improves the growth, disease resistance and innate immunity in Pangasius bocourti. Aquaculture, 531, 735878. https://doi.org/https://doi.org/10.1016/j.aquaculture.2020.735878spa
dc.relation.referencesMichl, S. C., Ratten, J.-M., Beyer, M., Hasler, M., LaRoche, J., & Schulz, C. (2017). The malleable gut microbiome of juvenile rainbow trout (Oncorhynchus mykiss): Diet-dependent shifts of bacterial community structures. PLOS ONE, 12(5), e0177735. https://doi.org/10.1371/journal.pone.0177735spa
dc.relation.referencesMojica, J., Castellanos, C., Usma, J., & Álvarez-León, R. (2012). Libro rojo de peces dulceacuícolas de Colombia. Serie Libros Rojos de Especies Amenazadas de Colombia. In Researchgate.Net.spa
dc.relation.referencesMotta, A. S., Cladera-Olivera, F., & Brandelli, A. (2004). Screening for antimicrobial activity among bacteria isolated from the Amazon Basin. In Brazilian Journal of Microbiology (Vol. 35). scielo .spa
dc.relation.referencesMuegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., González, A., Fontana, L., Henrissat, B., Knight, R., & Gordon, J. I. (2011). Diet Drives Convergence in Gut Microbiome Functions Across Mammalian Phylogeny and Within Humans. Science, 332(6032), 970–974. https://doi.org/10.1126/science.1198719spa
dc.relation.referencesNavarrete, P., Espejo, R. T., & Romero, J. (2009). Molecular analysis of microbiota along the digestive tract of juvenile atlantic salmon (Salmo salar L.). Microbial Ecology, 57(3), 550–561. https://doi.org/10.1007/s00248-008-9448-xspa
dc.relation.referencesNayak, S. (2010). Role of gastrointestinal microbiota in fish. Aquaculture Research, 41, 1553–1573. https://doi.org/10.1111/j.1365-2109.2010.02546.xspa
dc.relation.referencesNelson, J., Wubah, D., & Stewart, D. (1999). Wood‐eating catfishes of the genus Panaque : gut microflora and cellulolytic enzyme activities. Journal of Fish Biology, 54(5), 1069–1082. https://doi.org/10.1111/j.1095-8649.1999.tb00858.xspa
dc.relation.referencesO’Sullivan, J. N., O’Connor, P. M., Rea, M. C., O’Sullivan, O., Walsh, C. J., Healy, B., Mathur, H., Field, D., Hill, C., & Paul Ross, R. (2020). Nisin J, a novel natural nisin variant, is produced by Staphylococcus capitis sourced from the human skin microbiota. Journal of Bacteriology, 202(3). https://doi.org/https://doi.org/10.1128/JB.00639-19spa
dc.relation.referencesOulas, A., Pavloudi, C., Polymenakou, P., Pavlopoulos, G. A., Papanikolaou, N., Kotoulas, G., Arvanitidis, C., & Iliopoulos, loannis. (2015). Metagenomics: Tools and Insights for Analyzing Next-Generation Sequencing Data Derived from Biodiversity Studies. Bioinformatics and Biology Insights, 9, BBI.S12462. https://doi.org/10.4137/BBI.S12462spa
dc.relation.referencesPrasath, B. B., Wang, Y., Su, Y., Zheng, W., Lin, H., & Yang, H. (2021). Coagulant plus bacillus nitratireducens fermentation broth technique provides a rapid algicidal effect of toxic red tide dinoflagellate. Journal of Marine Science and Engineering, 9(4). https://doi.org/https://doi.org/10.3390/jmse9040395spa
dc.relation.referencesPuello-Caballero, P., Liseth, Inés Montoya-Campuzano, O., Alfonso Castañeda-Monsalve, V., & Mary Moreno-Murillo, L. (2018). Characterization of the microbiota present in the intestine of Piaractus brachypomus (Cachama blanca). Revista de Salud Animal, 40(2), 2224–4700.spa
dc.relation.referencesRabbee, M. F., Sarafat Ali, M., Choi, J., Hwang, B. S., Jeong, S. C., & Baek, K. hyun. (2019). Bacillus velezensis: A valuable member of bioactive molecules within plant microbiomes. Molecules, 24(6). https://doi.org/https://doi.org/10.3390/molecules24061046spa
dc.relation.referencesRawls, J. F., Samuel, B. S., & Gordon, J. I. (2004). Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proceedings of the National Academy of Sciences, 101(13), 4596–4601. https://doi.org/10.1073/pnas.0400706101spa
dc.relation.referencesRay, A., Roy, T., Mondal, S., & Ringø, E. (2010). Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquaculture Research, 41(10), 1462–1469. https://doi.org/https://doi.org/10.1111/j.1365-2109.2009.02437.xspa
dc.relation.referencesRay, A K, Ghosh, K., & Ringø, E. (2012). Enzyme-producing bacteria isolated from fish gut: a review. Aquaculture Nutrition, 18(5), 465–492. https://doi.org/https://doi.org/10.1111/j.1365-2095.2012.00943.xspa
dc.relation.referencesRay, Arun K., Bairagi, A., Sarkar Ghosh, K., & Sen, S. K. (2007). Optimization of fermentation conditions for cellulase production by Bacillus subtilis CY5 and Bacillus circulans TP3 isolated from fish gut. Acta Ichthyologica et Piscatoria, 37(1), 47–53. https://doi.org/10.3750/AIP2007.37.1.07spa
dc.relation.referencesRees, C. E. D., Green, L. H., Goldman, E., & Loessner, M. J. (2015). Manual de Bacteriología Sistemática de Bergey. In Practical Handbook of Microbiology, Third Edition. https://doi.org/10.1201/b17871spa
dc.relation.referencesRomero, J., & Navarrete, P. (2006). 16S rDNA-Based Analysis of Dominant Bacterial Populations Associated with Early Life Stages of Coho Salmon (Oncorhynchus kisutch). Microbial Ecology, 51(4), 422–430. http://www.jstor.org/stable/25153335spa
dc.relation.referencesSaha, S., Roy, R. N., Sen, S. K., & Ray, A. K. (2006). Characterization of cellulase-producing bacteria from the digestive tract of tilapia, Oreochromis mossambica (Peters) and grass carp, Ctenopharyngodon idella (Valenciennes). Aquaculture Research, 37(4), 380–388. https://doi.org/https://doi.org/10.1111/j.1365-2109.2006.01442.xspa
dc.relation.referencesScott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52–60. https://doi.org/https://doi.org/10.1016/j.phrs.2012.10.020spa
dc.relation.referencesSibbing, F. A. (1988). Specializations and limitations in the utilization of food resources by the carp, Cyprinus carpio: a study of oral food processing. Environmental Biology of Fishes, 22(3), 161–178. https://doi.org/10.1007/BF00005379spa
dc.relation.referencesSullam, K., Essinger, S., Rosen, G., Kilham, S., & Russell, J. (2010). Environmental and evolutionary factors that shape gut bacterial communities of fish: A meta-analysis.spa
dc.relation.referencesSuyehiro, Y. (1942). A Study on the digestive system and feeding habits of fish. In TA - TT -. Japanese journal of zoology [S.l.]. https://doi.org/LK - https://worldcat.org/title/492797911spa
dc.relation.referencesTalwar, C., Nagar, S., Lal, R., & Negi, R. K. (2018). Fish Gut Microbiome: Current Approaches and Future Perspectives. Indian Journal of Microbiology, 58(4), 397–414. https://doi.org/10.1007/s12088-018-0760-yspa
dc.relation.referencesTan, H. Y., Chen, S.-W., & Hu, S.-Y. (2019). Improvements in the growth performance, immunity, disease resistance, and gut microbiota by the probiotic Rummeliibacillus stabekisii in Nile tilapia (Oreochromis niloticus). Fish & Shellfish Immunology, 92, 265–275. https://doi.org/https://doi.org/10.1016/j.fsi.2019.06.027spa
dc.relation.referencesTiwari, S., Singh, R., Yadav, J., Gaur, R., Singh, A., Yadav, J. S., Pandey, P. K., Yadav, S. K., Prajapati, J., Helena, P., Dewangan, J., & Jamal, F. (2022). Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts, 12 (7). https://doi.org/https://doi.org/10.3390/catal12070749spa
dc.relation.referencesTrust, T. J., & Sparrow, R. A. H. (1974). The bacterial flora in the alimentary tract of freshwater salmonid fishes. Canadian Journal of Microbiology, 20(9), 1219–1228. https://doi.org/10.1139/m74-188spa
dc.relation.referencesTüre, M., Cebeci, A., & Özcelep, T. (2022). The first outbreak of citrobacteriosis caused by Citrobacter gillenii in reared Russian sturgeon (Acipenser gueldenstaedtii) in Turkiye. Veterinary Research Forum, 13(3), 323–329. https://doi.org/10.30466/vrf.2021.137808.3076spa
dc.relation.referencesVadstein, O., Bergh, Ø., Gatesoupe, F.-J., Galindo-Villegas, J., Mulero, V., Picchietti, S., Scapigliati, G., Makridis, P., Olsen, Y., Dierckens, K., Defoirdt, T., Boon, N., De Schryver, P., & Bossier, P. (2013). Microbiology and immunology of fish larvae. Reviews in Aquaculture, 5(s1), S1–S25. https://doi.org/https://doi.org/10.1111/j.1753-5131.2012.01082.xspa
dc.relation.referencesVan Kessel, M. A. H. J., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., Jetten, M. S. M., Klaren, P. H. M., & Op den Camp, H. J. M. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 41. https://doi.org/10.1186/2191-0855-1-41spa
dc.relation.referencesVásquez-Torres, W. (2004). Principios de Nutrición Aplicada al Cultivo de Peces (1st ed.). Universidad de los Llanos.spa
dc.relation.referencesViaud, S., Saccheri, F., Mignot, G., Yamazaki, T., Daillère, R., Hannani, D., Enot, D. P., Pfirschke, C., Engblom, C., Pittet, M. J., Schlitzer, A., Ginhoux, F., Apetoh, L., Chachaty, E., Woerther, P.-L., Eberl, G., Bérard, M., Ecobichon, C., Clermont, D., … Zitvogel, L. (2013). The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide. Science, 342(6161), 971–976. https://doi.org/10.1126/science.1240537spa
dc.relation.referencesWang, A. R., Ran, C., Ringø, E., & Zhou, Z. G. (2018). Progress in fish gastrointestinal microbiota research. Reviews in Aquaculture, 10(3), 626–640. https://doi.org/https://doi.org/10.1111/raq.12191spa
dc.relation.referencesWang, A., Ran, C., Ring, E., & Zhou, Z. (2017). Progress in fish gastrointestinal microbiota researche. Aquaculture, 0, 1–15.spa
dc.relation.referencesWang, C., Xie, B., Han, L., & Xu, X. (2013). Study of anaerobic ammonium oxidation bacterial community in the aged refuse bioreactor with 16S rRNA gene library technique. Bioresource Technology, 145, 65–70. https://doi.org/https://doi.org/10.1016/j.biortech.2013.01.170spa
dc.relation.referencesWatts, J. E. M., McDonald, R., Daniel, R., & Schreier, H. J. (2013). Examination of a culturable microbial population from the gastrointestinal tract of the wood-eating loricariid catfish panaque nigrolineatus. Diversity, 5(3), 641–656. https://doi.org/10.3390/d5030641spa
dc.relation.referencesWróbel, M., Śliwakowski, W., Kowalczyk, P., Kramkowski, K., & Dobrzyński, J. (2023). Bioremediation of Heavy Metals by the Genus Bacillus. In International Journal of Environmental Research and Public Health (Vol. 20, Issue 6). https://doi.org/10.3390/ijerph20064964spa
dc.relation.referencesWu, S., Wang, G., Angert, E. R., Wang, W., Li, W., & Zou, H. (2012). Composition, Diversity, and Origin of the Bacterial Community in Grass Carp Intestine. PLOS ONE, 7(2), e30440. https://doi.org/10.1371/journal.pone.0030440spa
dc.relation.referencesYe, L., Amberg, J., Chapman, D., Gaikowski, M., & Liu, W.-T. (2014). Fish gut microbiota analysis differentiates physiology and behavior of invasive Asian carp and indigenous American fish. The ISME Journal, 8(3), 541–551. https://doi.org/10.1038/ismej.2013.181spa
dc.relation.referencesYoshimizu, M., & Kimura, T. (1976). Study on the Intestinal Microflora of Salmonids. Fish Pathology, 10(2), 243–259. https://doi.org/10.3147/jsfp.10.243spa
dc.relation.referencesYounes, A., Saito, H., Tani, S., Ikeo, R., & Kawai, K. (2023). Metagenomic analysis of gut microbiome from tilapia species across several regions in Japan. Aquaculture, 576(March), 739809. https://doi.org/10.1016/j.aquaculture.2023.739809spa
dc.relation.referencesZatán Valdiviezo, A. E., Castillo Chunga, D., Castañeda Vargas, A. E., Feria Zevallos, M. A., Toledo Valdiviezo, O. E., Aguilar Zavaleta, J. L., Cueva Távara, M. D., & Motte, E. (2020). Caracterización de la microbiota intestinal en robalo (Centropomus sp.) y aislamiento de bacterias probióticas potenciales. Revista de Investigaciones Veterinarias Del Perú, 31(3), e16036. https://doi.org/10.15381/rivep.v31i3.16036spa
dc.relation.referencesZhai, Q., Yu, L., Li, T., Zhu, J., Zhang, C., Zhao, J., Zhang, H., & Chen, W. (2017). Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Antonie van Leeuwenhoek, 110(4), 501–513. https://doi.org/10.1007/s10482-016-0819-xspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.agrovocEspecies endémicas - Colombia
dc.subject.agrovocEspecies vulnerables - Colombia
dc.subject.agrovocPeces de agua dulce - Colombia
dc.subject.agrovocPanaque cochliodon
dc.subject.agrovocNutrición animal
dc.subject.agrovocFlora microbiana
dc.subject.agrovocMicrobiomas
dc.subject.ddc590 - Animalesspa
dc.subject.ddc570 - Biologíaspa
dc.subject.ddc570 - Biología::573 - Sistemas fisiológicos específicos en animales, histología regional y fisiología en los animalesspa
dc.subject.lembPeces de agua dulce - Digestión
dc.subject.proposalPanaque cochliodonspa
dc.subject.proposalcucha de ojos azulesspa
dc.subject.proposalmicrobiota intestinalspa
dc.subject.proposalMetagenómicaspa
dc.subject.proposalgen ADN 16Sspa
dc.subject.proposalblue-eyed plecoeng
dc.subject.proposalmetagenomicseng
dc.subject.proposalbacterial 16S rRNAeng
dc.subject.proposalintestinal microbiotaeng
dc.titleCaracterización de la diversidad microbiana asociada al tracto gastrointestinal del Panaque cochliodon (Cucha de ojos azules)spa
dc.title.translatedCharacterization of the microbial diversity associated with the gastrointestinal tract of the Panaque cochliodon (Blue-eyed Panaque)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentDataPaperspa
dc.type.contentImagespa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleIdentificación molecular del microbioma en el tracto gastrointestinal de la especie Panaque cochliodon (cucha de ojos azules)spa
oaire.fundernameCorporación Universitaria Lasallistaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1028004844.2024.pdf
Tamaño:
3.37 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: