Evaluación in vitro de las propiedades probióticas de bacterias ácido-lácticas aisladas del Queso Doble Crema
dc.contributor.advisor | Montoya Campuzano, Olga Inés | |
dc.contributor.advisor | Márquez Fernández, María Elena | |
dc.contributor.advisor | Ruiz Villadiego, Orlando Simon | |
dc.contributor.author | Gómez Rodríguez, Sara Lucía | |
dc.contributor.researchgroup | Probióticos y bioprospección | spa |
dc.date.accessioned | 2023-02-06T16:15:05Z | |
dc.date.available | 2023-02-06T16:15:05Z | |
dc.date.issued | 2022 | |
dc.description | Ilustraciones | spa |
dc.description.abstract | Los alimentos que contienen microorganismos con propiedades probióticas en cantidades adecuadas proveen diversos beneficios para la salud del consumidor. El Queso Doble Crema (QDC) es un tipo de queso colombiano artesanal, elaborado en las regiones de los Valles de Ubaté y Chiquinquirá. Este tipo de queso tiene una microbiota autóctona conformada principalmente, por bacterias ácido-lácticas (BAL), que le confiere sus características órganosensoriales; sin embargo, se desconoce la capacidad probiótica de esta microbiota nativa. El objetivo de este estudio fue evaluar, en condiciones in vitro, las propiedades probióticas de las BAL: Leuconostoc mesenteroides subsp. mesenteroides 89MgMLAF, Limosilactobacillus fermentum 104MgMLAF y Pediococcus acidilactici 26MgQDC. Para ello, se confirmaron las características BAL de las cepas (morfología y patrón de fermentación de azúcares) y se evaluó la seguridad (actividad hemolítica, sensibilidad a antibióticos y degradación de mucinas), la supervivencia (tolerancia a pH 3.0, 6.5 y 8.0 y sales biliares a 0.3%, 0.6%, y 1.0% p / v), la adhesión (la autoagregación, la producción de biopelícula, la hidrofobicidad de la superficie celular) y el antagonismo frente a enteropatógenos (la actividad antibacteriana, la coagregación y la inhibición de la adhesión). Los resultados muestran que las BAL del QDC, en condiciones in vitro, poseen propiedades probióticas, siendo Lc. mesenteroides 89MgMLAF y L. fermentum 104MgMLAF, las de mayor potencial, por su capacidad antagónica frente a Listeria monocytogenes y Salmonella enterica subsp enterica serovar Typhimurium. Es importante resaltar que estas cepas provienen de quesos artesanales comercializados y, en consecuencia, las propiedades probióticas identificadas, representarían un valor agregado para los productos autóctonos colombianos. (Tomado de la fuente) | spa |
dc.description.abstract | Foods that contain microorganisms with probiotic properties in adequate amounts provide various health benefits for the consumer. Double Cream Cheese (QDC) is a type of artisanal Colombian cheese, made in the regions of the Ubaté and Chiquinquirá Valleys. This type of cheese has an autochthonous microbiota made up mainly of lactic acid bacteria (LAB) that gives it its organosensory characteristics. However, the probiotic capacity of this native microbiota is unknown. The objective of this study was to evaluate the probiotic properties of LAB under in vitro conditions: Leuconostoc mesenteroides subsp. mesenteroides 89MgMLAF, Limosilactobacillus fermentum 104MgMLAF, and Pediococcus acidilactici 26MgQDC. For this, the BAL characteristics of the strains (morphology and sugar fermentation pattern) were validated for safety (hemolytic activity, sensitivity to antibiotics and mucin degradation), survival (tolerance to pH of 3.0, 6.5, and 8.0, and bile salts at 0.3%, 0.6%, and 1.0% w/v), adhesion (autoaggregation, biofilm production, cell surface hydrophobicity), and antagonism against enteropathogens (antibacterial activity, coaggregation, and inhibition of adhesion). The results show that the LAB of the QDC under in vitro conditions has probiotic properties, with Lc. mesenteroides 89MgMLAF and L. fermentum 104MgMLAF being the ones with the greatest potential due to their antagonistic capacity against Listeria monocytogenes and Salmonella enterica subsp enterica serovar Typhimurium. It's significant to highlight that these strains come from commercialized artisan cheeses and, consequently, the identified probiotic properties would represent an added value to Colombian native products. | eng |
dc.description.curriculararea | Área curricular Biotecnología | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Biotecnología | spa |
dc.description.researcharea | Probióticos | spa |
dc.format.extent | xiv, 91 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/83317 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.program | Medellín - Ciencias - Maestría en Ciencias - Biotecnología | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | Abbasiliasi, S., Tan, J. S., Bashokouh, F., Ibrahim, T. A. T., Mustafa, S., Vakhshiteh, F., Sivasamboo, S., & Ariff, A. B. (2017). In vitro assessment of Pediococcus acidilactici Kp10 for its potential use in the food industry. BMC Microbiology, 17(1), 1–11. https://doi.org/10.1186/S12866-017-1000-Z/TABLES/5 | spa |
dc.relation.references | Abdalla, A. K., Ayyash, M. M., Olaimat, A. N., Osaili, T. M., Al-Nabulsi, A. A., Shah, N. P., & Holley, R. (2021). Exopolysaccharides as Antimicrobial Agents: Mechanism and Spectrum of Activity. Frontiers in Microbiology, 12. https://doi.org/10.3389/FMICB.2021.664395 | spa |
dc.relation.references | Allaire, J. M., Crowley, S. M., Law, H. T., Chang, S. Y., Ko, H. J., & Vallance, B. A. (2018). The Intestinal Epithelium: Central Coordinator of Mucosal Immunity. Trends in Immunology, 39(9), 677–696. https://doi.org/10.1016/j.it.2018.04.002 | spa |
dc.relation.references | Angelin, J., & Kavitha, M. (2020). Exopolysaccharides from probiotic bacteria and their health potential. International Journal of Biological Macromolecules, 162, 853–865. https://doi.org/10.1016/j.ijbiomac.2020.06.190 | spa |
dc.relation.references | Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G., Garrido, C., & Guzzo, J. (2016). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology, 53, 51–59. https://doi.org/10.1016/J.FM.2015.04.009 | spa |
dc.relation.references | Ayivi, R. D., Gyawali, R., Krastanov, A., Aljaloud, S. O., Worku, M., Tahergorabi, R., Silva, R. C. da, & Ibrahim, S. A. (2020). Lactic Acid Bacteria: Food Safety and Human Health Applications. Dairy, 1(3), 202–232. https://doi.org/10.3390/dairy1030015 | spa |
dc.relation.references | Ayyash, M., Abushelaibi, A., Al-Mahadin, S., Enan, M., El-Tarabily, K., & Shah, N. (2018). In-vitro investigation into probiotic characterisation of Streptococcus and Enterococcus isolated from camel milk. LWT, 87, 478–487. https://doi.org/10.1016/J.LWT.2017.09.019 | spa |
dc.relation.references | Aziz, K., Tariq, M., & Zaidi, A. (2019). Biofilm development in L. Fermentum under shear flow & sequential GIT digestion. FEMS Microbiology Letters, 366(6). https://doi.org/10.1093/femsle/fnz064 | spa |
dc.relation.references | Bansal, P., Raman Kumar, ·, Singh, J., & Dhanda, S. (2019). Next generation sequencing, biochemical characterization, metabolic pathway analysis of novel probiotic Pediococcus acidilactici NCDC 252 and it’s evolutionary relationship with other lactic acid bacteria. 46, 5883–5895. https://doi.org/10.1007/s11033-019-05022- z | spa |
dc.relation.references | Bengoa, A. A., Zavala, L., Carasi, P., Trejo, S. A., Bronsoms, S., Serradell, M. de los Á., Garrote, G. L., & Abraham, A. G. (2018). Simulated gastrointestinal conditions increase adhesion ability of Lactobacillus paracasei strains isolated from kefir to Caco-2 cells and mucin. Food Research International, 103, 462–467. https://doi.org/10.1016/j.foodres.2017.09.093 | spa |
dc.relation.references | Bhagat, D., Raina, N., Kumar, A., Katoch, M., Khajuria, Y., Slathia, P. S., & Sharma, P. (2020). Probiotic properties of a phytase producing Pediococcus acidilactici strain SMVDUDB2 isolated from traditional fermented cheese product, Kalarei. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-58676-2 | spa |
dc.relation.references | Bindu, A., & Lakshmidevi, N. (2021). Identification and in vitro evaluation of probiotic attributes of lactic acid bacteria isolated from fermented food sources. Archives of Microbiology, 203(2), 579–595. https://doi.org/10.1007/S00203-020-02037- 0/TABLES/8 | spa |
dc.relation.references | Bintsis, T. (2018a). Lactic acid bacteria: their applications in foods. Journal of Bacteriology & Mycology: Open Access, 6(2), 89–94. https://doi.org/10.15406/jbmoa.2018.06.00182 | spa |
dc.relation.references | BIOMÉRIEUX. (2016). Tarjeta de Identificación VITEK®2 ANC (No. 21347) | spa |
dc.relation.references | Bonet, R., & Garrote, A. (2017). Probióticos. Farmacia Profesional, 31(2), 13–16 | spa |
dc.relation.references | Brunser, O. (2017). Probiotics: Innocuousness, prevention and risks. Revista Chilena de Pediatria, 88(4), 534–540. https://doi.org/10.4067/S0370-41062017000400015 | spa |
dc.relation.references | Caggianiello, G., Kleerebezem, M., & Spano, G. (2016). Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Applied Microbiology and Biotechnology, 100(9), 3877–3886. https://doi.org/10.1007/S00253-016-7471-2/FIGURES/2 | spa |
dc.relation.references | Cai, R., Cheng, C., Chen, J., Xu, X., Ding, C., & Gu, B. (2020). Interactions of commensal and pathogenic microorganisms with the mucus layer in the colon. Gut Microbes, 11(4), 680–690. https://doi.org/10.1080/19490976.2020.1735606 | spa |
dc.relation.references | Casarotti, S. N., Carneiro, B. M., Todorov, S. D., Nero, L. A., Rahal, P., & Penna, A. L. B. (2017). In vitro assessment of safety and probiotic potential characteristics of Lactobacillus strains isolated from water buffalo mozzarella cheese. Annals of Microbiology, 67(4), 289–301. https://doi.org/10.1007/s13213-017-1258-2 | spa |
dc.relation.references | Castro Rodríguez, D., Hernández Sánchez, H., & Yáñez Fernández, J. (2015). Probiotic Properties of Leuconostoc mesenteroides Isolated from Aguamiel of Agave salmiana. Probiotics and Antimicrobial Proteins, 7(2), 107–117. https://doi.org/10.1007/S12602-015-9187-5 | spa |
dc.relation.references | Chatterjee, M., Pushkaran, A. C., Vasudevan, A. K., Menon, K. K. N., Biswas, R., & Mohan, C. G. (2018). Understanding the adhesion mechanism of a mucin binding domain from Lactobacillus fermentum and its role in enteropathogen exclusion. International Journal of Biological Macromolecules, 110, 598–607. https://doi.org/10.1016/J.IJBIOMAC.2017.10.107 | spa |
dc.relation.references | Chugh, B., & Kamal-Eldin, A. (2020). Bioactive compounds produced by probiotics in food products. Current Opinion in Food Science, 32, 76–82. https://doi.org/10.1016/j.cofs.2020.02.003 | spa |
dc.relation.references | Cisneros, L., Cattelan, N., Villalba, M. I., Rodriguez, C., Serra, D. O., Yantorno, O., & Fadda, S. (2021). Lactic acid bacteria biofilms and their ability to mitigate Escherichia coli O157:H7 surface colonization. Letters in Applied Microbiology, 73(2), 247–256. https://doi.org/10.1111/lam.13509 | spa |
dc.relation.references | Coordinador, F. G., Co-coordinadora, M. E. S., Uu, E. E., Israel, R. E., Canadá, R. F., Sudáfrica, J. G., Turquía, T. K., Andrés, J., Irlanda, F. S., Polonia, H. S., Canadá, A. T., Le, A., & Países, M. (2017). Probióticos y prebióticos. | spa |
dc.relation.references | Cozzolino, A., Vergalito, F., Tremonte, P., Iorizzo, M., Lombardi, S. J., Sorrentino, E., Luongo, D., Coppola, R., Di Marco, R., & Succi, M. (2020). Preliminary evaluation of the safety and probiotic potential of akkermansia muciniphila DSM 22959 in comparison with lactobacillus rhamnosus GG. Microorganisms, 8(2), 1–13. https://doi.org/10.3390/microorganisms8020189 | spa |
dc.relation.references | Cristiny de Oliveira Vieira, K., Da Silva Ferreira, C., Toso Bueno, E. B., De Moraes, Y. A., Campagnolo Gonçalves Toledo, A. C., Nakagaki, W. R., Pereira, V. C., & Winkelstroter, L. K. (2020). Development and viability of probiotic orange juice supplemented by Pediococcus acidilactici CE51. LWT, 130. | spa |
dc.relation.references | Daliri, E. B. M., Kim, Y., Do, Y., Chelliah, R., & Oh, D. H. (2022). In Vitro and In Vivo Cholesterol Reducing Ability and Safety of Probiotic Candidates Isolated from Korean Fermented Soya Beans. Probiotics and Antimicrobial Proteins, 14(1), 87–98. https://doi.org/10.1007/S12602-021-09798-0/TABLES/3 | spa |
dc.relation.references | David, A., 1a, C., Porras, O. O., 2a, A., Carolina Bermúdez, S., Velasco, N. J., 4a, S., Laudid, M., & Padilla, O. (2016). Detección de Listeria ssp y Salmonella spp en queso y su relación con las caraterísticas fisicoquímicas. 12(23), 91–98. http://revistas.elpoli.edu.co/index.php/pol/article/viewFile/903/772 | spa |
dc.relation.references | De Almeida, C. V., De Camargo, M. R., Russo, E., & Amedei, A. (2019). Role of diet and gut microbiota on Colorectal cancer immunomodulation. In World Journal of Gastroenterology. https://doi.org/10.3748/wjg.v25.i2.151 | spa |
dc.relation.references | de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V., & Soccol, C. R. (2018). How to select a probiotic? A review and update of methods and criteria. Biotechnology Advances, 36(8), 2060–2076. https://doi.org/10.1016/j.biotechadv.2018.09.003 | spa |
dc.relation.references | de Souza, B. M. S., Borgonovi, T. F., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Lactobacillus casei and Lactobacillus fermentum Strains Isolated from Mozzarella Cheese: Probiotic Potential, Safety, Acidifying Kinetic Parameters and Viability under Gastrointestinal Tract Conditions. Probiotics and Antimicrobial Proteins, 11(2), 382–396. https://doi.org/10.1007/S12602-018-9406-Y/TABLES/7 | spa |
dc.relation.references | Dhanani, A. S., & Bagchi, T. (2013). The expression of adhesin EF-Tu in response to mucin and its role in Lactobacillus adhesion and competitive inhibition of enteropathogens to mucin. Journal of Applied Microbiology, 115(2), 546–554. https://doi.org/10.1111/JAM.12249 | spa |
dc.relation.references | Dušková, M., Morávková, M., Mrázek, J., Florianová, M., Vorlová, L., & Karpíšková, R. (2020). Assessment of antibiotic resistance in starter and non-starter lactobacilli of food origin. Acta Veterinaria Brno, 89(4), 401–411. https://doi.org/10.2754/avb202089040401 | spa |
dc.relation.references | EFSA BIOHAZ Panel. (2017). Scientific Opinion on the update of the list of QPS‐ recommended biological agents intentionally added to food or feed as notified to EFSA†. EFSA Journal, 15(3). https://doi.org/10.2903/J.EFSA.2017.4664 | spa |
dc.relation.references | El Issaoui, K., Khay, E. O., Abrini, J., Zinebi, S., Amajoud, N., Senhaji, N. S., & Abriouel, H. (2021). Molecular identification and antibiotic resistance of bacteriocinogenic lactic acid bacteria isolated from table olives. Archives of Microbiology, 203(2), 597–607. https://doi.org/10.1007/S00203-020-02053-0/TABLES/5 | spa |
dc.relation.references | Eslami, M., Yousefi, B., Kokhaei, P., Jazayeri Moghadas, A., Sadighi Moghadam, B., Arabkari, V., & Niazi, Z. (2019). Are probiotics useful for therapy of Helicobacter pylori diseases? In Comparative Immunology, Microbiology and Infectious Diseases. https://doi.org/10.1016/j.cimid.2019.02.010 | spa |
dc.relation.references | Ettinger, G., MacDonald, K., Reid, G., & Burton, J. P. (2015). The influence of the human microbiome and probiotics on cardiovascular health. In Gut Microbes. https://doi.org/10.4161/19490976.2014.983775 | spa |
dc.relation.references | Falah, F., Vasiee, A., Behbahani, B. A., Yazdi, F. T., Moradi, S., Mortazavi, S. A., & Roshanak, S. (2019). Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4-17 against Escherichia coli causing urinary tract infection in humans. Microbial Pathogenesis, 131, 246–253. https://doi.org/10.1016/J.MICPATH.2019.04.006 | spa |
dc.relation.references | FAO. (2006). Probiotics in food Health and nutritional properties and guidelines for evaluation. In FAO Food and Nutrition Paper. | spa |
dc.relation.references | Fijan, S. (2014). Microorganisms with claimed probiotic properties: An overview of recent literature. International Journal of Environmental Research and Public Health, 11(5), 4745–4767. https://doi.org/10.3390/ijerph110504745 | spa |
dc.relation.references | Flach, J., van der Waal, M. B., van den Nieuwboer, M., Claassen, E., & Larsen, O. F. A. (2018). The underexposed role of food matrices in probiotic products: Reviewing the relationship between carrier matrices and product parameters. Critical Reviews in Food Science and Nutrition, 58(15), 2570–2584. https://doi.org/10.1080/10408398.2017.1334624 | spa |
dc.relation.references | Flemming, H. C., Wingender, J., Szewzyk, U., Steinberg, P., Rice, S. A., & Kjelleberg, S. (2016). Biofilms: an emergent form of bacterial life. Nature Reviews Microbiology 2016 14:9, 14(9), 563–575. https://doi.org/10.1038/nrmicro.2016.94 | spa |
dc.relation.references | Flórez, A. B., Campedelli, I., Delgado, S., Alegría, Á., Salvetti, E., E. Felis, G., Mayo, B., & Torriani, S. (2016). Antibiotic Susceptibility Profiles of Dairy Leuconostoc, Analysis of the Genetic Basis of Atypical Resistances and Transfer of Genes In Vitro and in a Food Matrix. PLoS ONE, 11(1), e0145203. https://doi.org/10.1371/journal.pone.0145203 | spa |
dc.relation.references | Fonseca, H. C., de Sousa Melo, D., Ramos, C. L., Dias, D. R., & Schwan, R. F. (2021). Probiotic Properties of Lactobacilli and Their Ability to Inhibit the Adhesion of Enteropathogenic Bacteria to Caco-2 and HT-29 Cells. Probiotics and Antimicrobial Proteins, 13(1), 102–112. https://doi.org/10.1007/S12602-020-09659-2/FIGURES/3 | spa |
dc.relation.references | Ghosh, T., Beniwal, A., Semwal, A., & Navani, N. K. (2019). Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Frontiers in Microbiology, 10(MAR). https://doi.org/10.3389/fmicb.2019.00502 | spa |
dc.relation.references | Giles-Gómez, M., Sandoval García, J. G., Matus, V., Campos Quintana, I., Bolívar, F., & Escalante, A. (2016). In vitro and in vivo probiotic assessment of Leuconostoc mesenteroides P45 isolated from pulque, a Mexican traditional alcoholic beverage. SpringerPlus, 5(1), 1–10. https://doi.org/10.1186/S40064-016-2370-7/FIGURES/2 | spa |
dc.relation.references | Gillis, C. C., Hughes, E. R., Spiga, L., Winter, M. G., Zhu, W., Furtado de Carvalho, T., Chanin, R. B., Behrendt, C. L., Hooper, L. V., Santos, R. L., & Winter, S. E. (2018). Dysbiosis-Associated Change in Host Metabolism Generates Lactate to Support Salmonella Growth. Cell Host & Microbe, 23(1), 54-64.e6. https://doi.org/10.1016/J.CHOM.2017.11.006 | spa |
dc.relation.references | Gontijo, M. T. P., Silva, J. de S., Vidigal, P. M. P., & Martin, J. G. P. (2020). Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese. Food Research International, 128, 108783. https://doi.org/10.1016/j.foodres.2019.108783 | spa |
dc.relation.references | Grajales, M. M. (2009). Estandarización del Proceso de Elaboración del Queso Doble Crema Tipo Mozarella (p. 125). http://repositorio.utp.edu.co/dspace/bitstream/handle/11059/1831/641370218H565.p df | spa |
dc.relation.references | Grom, L. C., Coutinho, N. M., Guimarães, J. T., Balthazar, C. F., Silva, R., Rocha, R. S., Freitas, M. Q., Duarte, M. C. K. H., Pimentel, T. C., Esmerino, E. A., Silva, M. C., & Cruz, A. G. (2020). Probiotic dairy foods and postprandial glycemia: A mini-review. Trends in Food Science and Technology, 101, 165–171. https://doi.org/10.1016/j.tifs.2020.05.012 | spa |
dc.relation.references | Grujović, M., Mladenović, K. G., Semedo-Lemsaddek, T., Laranjo, M., Stefanović, O. D., & Kocić-Tanackov, S. D. (2022). Advantages and disadvantages of non-starter lactic acid bacteria from traditional fermented foods: Potential use as starters or probiotics. Comprehensive Reviews in Food Science and Food Safety, November 2021, 1–31. | spa |
dc.relation.references | Gu, Q., & Li, P. (2016). Biosynthesis of Vitamins by Probiotic Bacteria. In Probiotics and Prebiotics in Human Nutrition and Health. https://doi.org/10.5772/63117 | spa |
dc.relation.references | Guarner, F., Sanders, M. E., Eliakim, R., Fedorak, R., Gangl, A., Garisch, J., Kaufman, P., Karakan, T., Khan, A. G., Kim, N., De Paula, J. A., Ramakrishna, Balakrishnan Shanahan, F., Szajewska, H., Thomson, A., & Le Mair, A. (2017). Probióticos y prebióticos. Guías Mundiales de La Organización Mundial de Gastroenterología, 2, 6–26. | spa |
dc.relation.references | Han, Q., Kong, B., Chen, Q., Sun, F., & Zhang, H. (2017). In vitro comparison of probiotic properties of lactic acid bacteria isolated from Harbin dry sausages and selected probiotics. Journal of Functional Foods, 32, 391–400. https://doi.org/10.1016/J.JFF.2017.03.020 | spa |
dc.relation.references | Han, S., Lu, Y., Xie, J., Fei, Y., Zheng, G., Wang, Z., Liu, J., Lv, L., Ling, Z., Berglund, B., Yao, M., & Li, L. (2021). Probiotic Gastrointestinal Transit and Colonization After Oral Administration: A Long Journey. Frontiers in Cellular and Infection Microbiology, 11, 102. https://doi.org/10.3389/FCIMB.2021.609722/BIBTEX | spa |
dc.relation.references | Han, X., Zhang, L. J., Wu, H. Y., Wu, Y. F., & Zhao, S. N. (2018). Investigation of microorganisms involved in kefir biofilm formation. Antonie van Leeuwenhoek, International Journal of General and Molecular Microbiology, 111(12), 2361–2370. https://doi.org/10.1007/S10482-018-1125-6/FIGURES/3 | spa |
dc.relation.references | Hatti-Kaul, R., Chen, L., Dishisha, T., & Enshasy, H. El. (2018). Lactic acid bacteria: From starter cultures to producers of chemicals. FEMS Microbiology Letters, 365(20), 1– 20. https://doi.org/10.1093/femsle/fny213 | spa |
dc.relation.references | Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology and Hepatology, 11, 506–514. https://doi.org/10.1038/nrgastro.2014.66 | spa |
dc.relation.references | Islam, M. Z., Uddin, M. E., Rahman, M. T., Islam, M. A., & Harun-ur-Rashid, M. (2021). Isolation and characterization of dominant lactic acid bacteria from raw goat milk: Assessment of probiotic potential and technological properties. Small Ruminant Research, 205, 106532. https://doi.org/10.1016/J.SMALLRUMRES.2021.106532 | spa |
dc.relation.references | ISO 10932/IDF 223. (2010). Milk and milk products — Determination of the minimal inhibitory concentration (MIC) of antibiotics applicable to bifidobacteria and nonenterococcal lactic acid bacteria (LAB). In Layout of microdilution plate (Vol. 2003, Issue Cmi). | spa |
dc.relation.references | Jain, A., Jain, R., & Jain, S. (2020). Preservation of Microorganisms: Stabs, Slants, Lyophilization and Cryopreservation. 105–110. https://doi.org/10.1007/978-1-4939- 9861-6_30 | spa |
dc.relation.references | Javanmard, A., Ashtari, S., Sabet, B., Davoodi, S. H., Rostami-Nejad, M., Esmaeil-Akbari, M., Niaz, A., & Mortazavian, A. M. (2018). Probiotics and their role in gastrointestinal cancers prevention and treatment; An overview. Gastroenterology and Hepatology from Bed to Bench, 11(4), 284–295. | spa |
dc.relation.references | Jessie Lau, L. Y., & Chye, F. Y. (2018). Antagonistic effects of Lactobacillus plantarum 0612 on the adhesion of selected foodborne enteropathogens in various colonic environments. Food Control, 91, 237–247. https://doi.org/10.1016/J.FOODCONT.2018.04.001 | spa |
dc.relation.references | Jiang, S., Cai, L., Lv, L., & Li, L. (2021). Pediococcus pentosaceus, a future additive or probiotic candidate. Microbial Cell Factories 2021 20:1, 20(1), 1–14. https://doi.org/10.1186/S12934-021-01537-Y | spa |
dc.relation.references | Jiménez Velásquez, S. del C., Torres Higuera, L. D., Parra Arango, J. L., Rodríguez Bautista, J. L., García Castro, F. E., & Patiño Burbano, R. E. (2020). Perfil de resistencia antimicrobiana en aislamientos de Staphylococcus spp. obtenidos de leche bovina en Colombia. Revista Argentina de Microbiología, 52(2), 121–130. https://doi.org/10.1016/J.RAM.2019.05.004 | spa |
dc.relation.references | Johansson, M. E. V., & Hansson, G. C. (2016). Immunological aspects of intestinal mucus and mucins. Nature Reviews Immunology, 16(10), 639–649. https://doi.org/10.1038/nri.2016.88 | spa |
dc.relation.references | Judkins, T. C., Archer, D. L., Kramer, D. C., & Solch, R. J. (2020). Probiotics , Nutrition , and the Small Intestine. 1–8. | spa |
dc.relation.references | Kebouchi, M., Hafeez, Z., Le Roux, Y., Dary-Mourot, A., & Genay, M. (2020). Importance of digestive mucus and mucins for designing new functional food ingredients. Food Research International, 131(January). https://doi.org/10.1016/j.foodres.2019.108906 | spa |
dc.relation.references | Kim, H., & Kang, S. S. (2019). Antifungal activities against Candida albicans, of cell-free supernatants obtained from probiotic Pediococcus acidilactici HW01. Archives of Oral Biology. https://doi.org/10.1016/j.archoralbio.2019.01.006 | spa |
dc.relation.references | Kinashi, Y., & Hase, K. (n.d.). Partners in Leaky Gut Syndrome: Intestinal Dysbiosis and Autoimmunity. https://doi.org/10.3389/fimmu.2021.673708 | spa |
dc.relation.references | Koutsoumanis, K., Allende, A., Álvarez-Ordóñz, A., Bolton, D., Bover-Cid, S., Chemaly, M., Davies, R., Hilbert, F., Lindqvist, R., Nauta, M., Peixe, L., Ru, G., Simmons, M., Skandamis, P., Suffredini, E., Cocconcelli, P. S., Escámez, P. S. F., Maradona, M. P., Querol, A., … Herman, L. (2019). Update of the list of QPS-recommended biological agents intentionally added to food or feed as notified to EFSA 9: Suitability of taxonomic units notified to EFSA until september 2018. EFSA Journal, 17(1), 1– 46. https://doi.org/10.2903/j.efsa.2019.5555 | spa |
dc.relation.references | Krausova, G., Hyrslova, I., & Hynstova, I. (2019). In Vitro Evaluation of Adhesion Capacity, Hydrophobicity, and Auto-Aggregation of Newly Isolated Potential Probiotic Strains. Fermentation 2019, Vol. 5, Page 100, 5(4), 100. https://doi.org/10.3390/FERMENTATION5040100 | spa |
dc.relation.references | Kumar Jain, A. (2014). Regulation of Foods Containing Probiotics-Codex Alimentarius, Japan, European Union and India. https://doi.org/10.5958/2321-712X.2014.01306.4 | spa |
dc.relation.references | Kumari, R., Singh, A., Yadav, A. N., Mishra, S., Sachan, A., & Sachan, S. G. (2020). Probiotics, prebiotics, and synbiotics: Current status and future uses for human health. New and Future Developments in Microbial Biotechnology and Bioengineering, 173–190. https://doi.org/10.1016/B978-0-12-820528-0.00012-0 | spa |
dc.relation.references | La, E. D. E., Útil, V., & Del, S. (2008). Evaluación De La Vida Útil Sensorial Del Queso Doble Crema Con Dos Niveles De Grasa. Revista de La Facultad de Medicina Veterinaria y de Zootecnia, 55(II), 91–99. | spa |
dc.relation.references | La Fata, G., Weber, P., & Mohajeri, M. H. (2018). Probiotics and the Gut Immune System: Indirect Regulation. Probiotics and Antimicrobial Proteins, 10(1), 11–21. https://doi.org/10.1007/s12602-017-9322-6 | spa |
dc.relation.references | Lee, S., & Kim, M. (2019). Leuconostoc mesenteroides MKSR isolated from kimchi possesses α-glucosidase inhibitory activity, antioxidant activity, and cholesterollowering effects. LWT, 116, 108570. https://doi.org/10.1016/J.LWT.2019.108570 | spa |
dc.relation.references | Leeuwendaal, N., Stanton, C., O’Toole, P. W., & Beresford, T. P. (2021). The potential of non-starter lactic acid bacteria from Cheddar cheese to colonise the gut. Journal of Functional Foods, 83, 104425. https://doi.org/10.1016/j.jff.2021.104425 | spa |
dc.relation.references | León Gómez, I. L., & Saray Palacio, Y. T. (2020). Análisis comparativo del sector lácteo colombiano frente a la Alianza del Pacífico [Universitaria Agustiniana]. In Repositorio Institucional UniAR. http://repositorio.uniagustiniana.edu.co/handle/123456789/1477 | spa |
dc.relation.references | Li, Y., Liu, T., Zhao, M., Zhong, H., Luo, W., & Feng, F. (2019). In vitro and in vivo investigations of probiotic properties of lactic acid bacteria isolated from Chinese traditional sourdough. Applied Microbiology and Biotechnology, 103(4), 1893–1903. https://doi.org/10.1007/s00253-018-9554-8 | spa |
dc.relation.references | Liu, J., Gu, Z., Song, F., Zhang, H., Zhao, J., & Chen, W. (2019). Lactobacillus plantarum ZS2058 and Lactobacillus rhamnosus GG Use Different Mechanisms to Prevent Salmonella Infection in vivo. Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2019.00299 | spa |
dc.relation.references | Liu, Y., Yu, X., Zhao, J., Zhang, H., Zhai, Q., & Chen, W. (2020). The role of MUC2 mucin in intestinal homeostasis and the impact of dietary components on MUC2 expression. International Journal of Biological Macromolecules, 164, 884–891. https://doi.org/10.1016/J.IJBIOMAC.2020.07.191 | spa |
dc.relation.references | Londoño-Zapata, A. F., Durango-Zuleta, M. M., Sepúlveda-Valencia, J. U., & Moreno Herrera, C. X. (2017a). Characterization of lactic acid bacterial communities associated with a traditional Colombian cheese: Double cream cheese. LWT - Food Science and Technology, 82, 39–48. https://doi.org/10.1016/j.lwt.2017.03.058 | spa |
dc.relation.references | Lopetuso, L. R., Scaldaferri, F., Bruno, G., Petito, V., Franceschi, F., & Gasbarrini, A. (2015). The therapeutic management of gut barrier leaking: the emerging role for mucosal barrier protectors. European Review for Medical and Pharmacological Sciences, 19(6), 1068–1076. http://www.ncbi.nlm.nih.gov/pubmed/25855934 | spa |
dc.relation.references | Louis, S. (2016). Gold Biotechnology Protocol Gram Staining Protocol for Bacterial Differentiation. In GoldBio (Vol. 3, Issue 3). | spa |
dc.relation.references | Lund, P. A., De Biase, D., Liran, O., Scheler, O., Mira, N. P., Cetecioglu, Z., Fernández, E. N., Bover-Cid, S., Hall, R., Sauer, M., & O’Byrne, C. (2020). Understanding How Microorganisms Respond to Acid pH Is Central to Their Control and Successful Exploitation. Frontiers in Microbiology, 11, 2233. https://doi.org/10.3389/FMICB.2020.556140/BIBTEX | spa |
dc.relation.references | Mahmoud, E. H., Abdel-atti Ali, A., Fawzy Nasr, N., Essam Elenany, Y., Abdel Moneim Hassan, A., & Mahmoud Elzeini Ã, H. (2021). Isolation and identification of lactic acid bacteria from the intestinal tracts of honey bees, Apis mellifera L., in Egypt. Journal of Apicultural Research, 60(2), 349–357. https://doi.org/10.1080/00218839.2020.1746019 | spa |
dc.relation.references | Mann, S., Park, M. S., Johnston, T. V., Ji, G. E., Hwang, K. T., & Ku, S. (2021). Isolation, Characterization and Biosafety Evaluation of Lactobacillus Fermentum OK with Potential Oral Probiotic Properties. Probiotics and Antimicrobial Proteins, 13(5), 1363–1386. https://doi.org/10.1007/s12602-021-09761-z | spa |
dc.relation.references | Margalho, L. P., Jorge, G. P., Noleto, D. A. P., Silva, C. E., Abreu, J. S., Piran, M. V. F., Brocchi, M., & Sant’Ana, A. S. (2021). Biopreservation and probiotic potential of a large set of lactic acid bacteria isolated from Brazilian artisanal cheeses: From screening to in product approach. Microbiological Research, 242(20). https://doi.org/10.1016/j.micres.2020.126622 | spa |
dc.relation.references | Martín, R., Chamignon, C., Mhedbi-Hajri, N., Chain, F., Derrien, M., Escribano-Vázquez, U., Garault, P., Cotillard, A., Pham, H. P., Chervaux, C., Bermúdez-Humarán, L. G., Smokvina, T., & Langella, P. (2019). The potential probiotic Lactobacillus rhamnosus CNCM I-3690 strain protects the intestinal barrier by stimulating both mucus production and cytoprotective response. Scientific Reports. https://doi.org/10.1038/s41598-019-41738-5 | spa |
dc.relation.references | Merchán-Castellanos, N., L, P.-G., A, C.-P., N, G.-N., M, O.-R., & Y, S.-N. (2019). Microorganismos comúnmente reportados como causantes de enfermedades transmitidas por el queso fresco en las Américas, 2007-2016. Revista Cubana de Higiene y Epidemiología, 56(1), 1–24. | spa |
dc.relation.references | Merchán, N., Zurymar T, S., Niño, L., & Uirbano, E. (2019). Determinación de la inocuidad microbiológica de quesos artesanales según las normas técnicas colombianas. Revista Chilena de Nutricion, 46(3), 288–294. | spa |
dc.relation.references | Ministerio de Agricultura y Desarrollo Rural. (2019). Cadena Láctea. In Información sectorial. https://sioc.minagricultura.gov.co/SICLA/Documentos/002 - Cifras Sectoriales/2016 Abril.pdf | spa |
dc.relation.references | Mohanty, D., Panda, S., Kumar, S., & Ray, P. (2019). In vitro evaluation of adherence and anti-infective property of probiotic Lactobacillus plantarum DM 69 against Salmonella enterica. Microbial Pathogenesis, 126, 212–217. https://doi.org/10.1016/j.micpath.2018.11.014 | spa |
dc.relation.references | Moludi, J., Alizadeh, M., Davari, M., Golmohammadi, A., & Maleki, V. (2019). The efficacy and safety of probiotics intervention in attenuating cardiac remodeling following myocardial infraction: Literature review and study protocol for a randomized, doubleblinded, placebo controlled trial. Contemporary Clinical Trials Communications, 15(March), 100364. https://doi.org/10.1016/j.conctc.2019.100364 | spa |
dc.relation.references | Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D., & Chatzifragkou, A. (2019). Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Applied Microbiology and Biotechnology, 103(16), 6463–6472. https://doi.org/10.1007/s00253-019-09978-7 | spa |
dc.relation.references | Muhammad, M. H., Idris, A. L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., & Huang, T. (2020). Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. Frontiers in Microbiology, 11. https://doi.org/10.3389/FMICB.2020.00928 | spa |
dc.relation.references | Nascimento, L. C. S., Casarotti, S. N., Todorov, S. D., & Penna, A. L. B. (2019). Probiotic potential and safety of enterococci strains. Annals of Microbiology, 69(3), 241–252. https://doi.org/10.1007/s13213-018-1412-5 | spa |
dc.relation.references | Neuman, H., Debelius, J. W., Knight, R., & Koren, O. (2015). Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiology Reviews, 39(4), 509–521. https://doi.org/10.1093/femsre/fuu010 | spa |
dc.relation.references | Nishiyama, K., & Mukai, T. (2019). Adhesion of lactobacillus to intestinal mucin. Methods in Molecular Biology, 1887(1), 159–166. https://doi.org/10.1007/978-1-4939-8907- 2_14 | spa |
dc.relation.references | Obioha, P. I., Ouoba, L. I. I., Anyogu, A., Awamaria, B., Atchia, S., Ojimelukwe, P. C., Sutherland, J. P., & Ghoddusi, H. B. (2021). Identification and characterisation of the lactic acid bacteria associated with the traditional fermentation of dairy fermented product. Brazilian Journal of Microbiology, 52(2), 869–881. https://doi.org/10.1007/S42770-021-00461-Y/FIGURES/2 | spa |
dc.relation.references | Ouwehand, A. C., Forssten, S., Hibberd, A. A., Lyra, A., & Stahl, B. (2016). Probiotic approach to prevent antibiotic resistance. Https://Doi.Org/10.3109/07853890.2016.1161232, 48(4), 246–255. https://doi.org/10.3109/07853890.2016.1161232 | spa |
dc.relation.references | Pakroo, S., Tarrah, A., Takur, R., Wu, M., Corich, V., & Giacomini, A. (2022). Limosilactobacillus fermentum ING8, a Potential Multifunctional Non-Starter Strain with Relevant Technological Properties and Antimicrobial Activity. Foods, 11(5), 1– 13. https://doi.org/https://doi.org/10.3390/foods11050703 | spa |
dc.relation.references | Pandey, L., Mogra, R., Singh, S., & Laxmi Pandey, C. (2019). Therapeutic applications of probiotic and prebiotic in metabolic syndrome and chronic kidney diseases. ~ 939 ~ Journal of Pharmacognosy and Phytochemistry, 8(2), 939–945. | spa |
dc.relation.references | Papadimitriou, K., Alegría, Á., Bron, P. A., de Angelis, M., Gobbetti, M., Kleerebezem, M., Lemos, J. A., Linares, D. M., Ross, P., Stanton, C., Turroni, F., van Sinderen, D., Varmanen, P., Ventura, M., Zúñiga, M., Tsakalidou, E., & Kok, J. (2016). Stress Physiology of Lactic Acid Bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837–890. https://doi.org/10.1128/mmbr.00076-15 | spa |
dc.relation.references | Parra Huertas, R. (2010). Bacterias ácido lacticas: papel funcional en los alimentos. Biotecnología En El Sector Agropecuario y Agroindustrial: BSAA, 8(1), 93–105. | spa |
dc.relation.references | Pelaseyed, T., & Hansson, G. C. (2020). Membrane mucins of the intestine at a glance. Journal of Cell Science, 133(5). https://doi.org/10.1242/JCS.240929 | spa |
dc.relation.references | Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., & Gil, A. (2019). Mechanisms of Action of Probiotics. Advances in Nutrition, 10(Issue suppl_1), S49–S66. https://doi.org/10.1093/advances/nmy063 | spa |
dc.relation.references | Poornachandra Rao, K., Chennappa, G., Suraj, U., Nagaraja, H., Charith Raj, A. P., & Sreenivasa, M. Y. (2015). Probiotic Potential of Lactobacillus Strains Isolated from Sorghum-Based Traditional Fermented Food. Probiotics and Antimicrobial Proteins, 7(2), 146–156. https://doi.org/10.1007/s12602-015-9186-6 | spa |
dc.relation.references | Prete, R., Long, S. L., Gallardo, A. L., Gahan, C. G., Corsetti, A., & Joyce, S. A. (2020). Beneficial bile acid metabolism from Lactobacillus plantarum of food origin. Scientific Reports 2020 10:1, 10(1), 1–11. https://doi.org/10.1038/s41598-020-58069-5 | spa |
dc.relation.references | Qi, C., Sun, J., Li, Y., Gu, M., Goulette, T., You, X., Sela, D. A., Wang, X., & Xiao, H. (2018). Peyer’s patch-specific: Lactobacillus reuteri strains increase extracellular microbial DNA and antimicrobial peptide expression in the mouse small intestine. Food and Function. https://doi.org/10.1039/c8fo00109j | spa |
dc.relation.references | Rahmeh, R., Akbar, A., Kishk, M., Al-Onaizi, T., Al-Azmi, A., Al-Shatti, A., Shajan, A., AlMutairi, S., & Akbar, B. (2019). Distribution and antimicrobial activity of lactic acid bacteria from raw camel milk. New Microbes and New Infections, 30. https://doi.org/10.1016/J.NMNI.2019.100560 | spa |
dc.relation.references | Rai, R., & Tamang, J. P. (2022). In vitro and genetic screening of probiotic properties of lactic acid bacteria isolated from naturally fermented cow-milk and yak-milk products of Sikkim, India. World Journal of Microbiology and Biotechnology, 38, 25. https://doi.org/10.1007/s11274-021-03215-y | spa |
dc.relation.references | Rakhmanova, A., Khan, Z. A., & Shah, K. (2018). A mini review fermentation and preservation: role of Lactic Acid Bacteria. MOJ Food Processing & Technology, 6(5), 414–417. https://doi.org/10.15406/mojfpt.2018.06.197 | spa |
dc.relation.references | Raveschot, C., Cudennec, B., Coutte, F., Flahaut, C., Fremont, M., Drider, D., & Dhulster, P. (2018). Production of bioactive peptides by lactobacillus species: From gene to application. In Frontiers in Microbiology. https://doi.org/10.3389/fmicb.2018.02354 | spa |
dc.relation.references | Reuben, R. C., Roy, P. C., Sarkar, S. L., Rubayet Ul Alam, A. S. M., & Jahid, I. K. (2020). Characterization and evaluation of lactic acid bacteria from indigenous raw milk for potential probiotic properties. Journal of Dairy Science, 103(2), 1223–1237. https://doi.org/10.3168/JDS.2019-17092 | spa |
dc.relation.references | Rocha-Mendoza, D., Kosmerl, E., Miyagusuku-Cruzado, G., Giusti, M. M., JiménezFlores, R., & García-Cano, I. (2020). Growth of lactic acid bacteria in milk phospholipids enhances their adhesion to Caco-2 cells. Journal of Dairy Science, 103(9), 7707–7718. https://doi.org/10.3168/JDS.2020-18271 | spa |
dc.relation.references | Rodríguez-Sánchez, S., Fernández-Pacheco, P., Seseña, S., Pintado, C., & Palop, M. L. (2021). Selection of probiotic Lactobacillus strains with antimicrobial activity to be used as biocontrol agents in food industry. LWT, 143, 111142. https://doi.org/10.1016/J.LWT.2021.111142 | spa |
dc.relation.references | Rolim, F. R. L., Freitas Neto, O. C., Oliveira, M. E. G., Oliveira, C. J. B., & Queiroga, R. C. R. E. (2020). Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends in Food Science and Technology, 100(April), 138–154. https://doi.org/10.1016/j.tifs.2020.04.008 | spa |
dc.relation.references | Romero, L. (2015). EVALUACIÓN FISICOQUÍMICA Y MICROBIOLÓGICA DEL PROCESO DE ELABORACIÓN DEL QUESO DOBLE CREMA EN UNA FÁBRICA DE LÁCTEOS DEL MUNICIPIO DE BELÉN (BOYACÁ) LILIANA ROMERO GARCÍA CÓD: 200821080 PROPUESTA DE TRABAJO DE GRADO MODALIDAD PRÁCTICA EMPRESARIAL PARA OPT | spa |
dc.relation.references | Rychen, G., Aquilina, G., Azimonti, G., Bampidis, V., Bastos, M. de L., Bories, G., Chesson, A., Cocconcelli, P. S., Flachowsky, G., Gropp, J., Kolar, B., Kouba, M., López-Alonso, M., López Puente, S., Mantovani, A., Mayo, B., Ramos, F., Saarela, M., Villa, R. E., … Galobart, J. (2018). Guidance on the characterisation of microorganisms used as feed additives or as production organisms. EFSA Journal, 16(3), 1–24. https://doi.org/10.2903/j.efsa.2018.5206 | spa |
dc.relation.references | Salas-Jara, M. J., Ilabaca, A., Vega, M., & García, A. (2016). Biofilm Forming Lactobacillus: New Challenges for the Development of Probiotics. Microorganisms 2016, Vol. 4, Page 35, 4(3), 35. https://doi.org/10.3390/MICROORGANISMS4030035 | spa |
dc.relation.references | Salvo-Romero, E., Alonso-Cotoner, C., Pardo-Camacho, C., Casado-Bedmar, M., & Vicario, M. (2015). Función barrera intestinal y su implicación en enfermedades digestivas. Revista Espanola de Enfermedades Digestivas, 107(11), 686–696. | spa |
dc.relation.references | Sánchez, B., Bressollier, P., & Urdaci, M. C. (2008). Exported proteins in probiotic bacteria: Adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. In FEMS Immunology and Medical Microbiology. https://doi.org/10.1111/j.1574-695X.2008.00454.x | spa |
dc.relation.references | Sánchez, B., Delgado, S., Blanco-Míguez, A., Lourenço, A., Gueimonde, M., & Margolles, A. (2017). Probiotics, gut microbiota, and their influence on host health and disease. Molecular Nutrition and Food Research, 61(1), 1–15. https://doi.org/10.1002/mnfr.201600240 | spa |
dc.relation.references | Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010a). Safety assessment of probiotics for human use. Https://Doi.Org/10.4161/Gmic.1.3.12127, 1(3), 164–185. https://doi.org/10.4161/GMIC.1.3.12127 | spa |
dc.relation.references | Sanders, M. E., Akkermans, L. M. A., Haller, D., Hammerman, C., Heimbach, J., Hörmannsperger, G., Huys, G., Levy, D. D., Lutgendorff, F., Mack, D., Phothirath, P., Solano-Aguilar, G., & Vaughan, E. (2010b). Safety assessment of probiotics for human use. Gut Microbes, 1(3), 164–185. | spa |
dc.relation.references | Sanders, M. E., Merenstein, D. J., Ouwehand, A. C., Reid, G., Salminen, S., Cabana, M. D., Paraskevakos, G., & Leyer, G. (2016). Probiotic use in at-risk populations. Journal of the American Pharmacists Association, 56(6), 680–686. https://doi.org/10.1016/j.japh.2016.07.001 | spa |
dc.relation.references | Satokari, R. (2019). Modulation of Gut Microbiota for Health by Current and NextGeneration Probiotics. Nutrients 2019, Vol. 11, Page 1921, 11(8), 1921. https://doi.org/10.3390/NU11081921 | spa |
dc.relation.references | Settanni, L., & Moschetti, G. (2010). Non-starter lactic acid bacteria used to improve cheese quality and provide health benefits. Food Microbiology, 27(6), 691–697. https://doi.org/10.1016/j.fm.2010.05.023 | spa |
dc.relation.references | Shao, X., Fang, K., Medina, D., Wan, J., Lee, J. L., & Hong, S. H. (2020). The probiotic, Leuconostoc mesenteroides, inhibits Listeria monocytogenes biofilm formation. Journal of Food Safety, 40(2), e12750. https://doi.org/10.1111/JFS.12750 | spa |
dc.relation.references | Sharma, A., Lavania, M., Singh, R., & Lal, B. (2021). Identification and probiotic potential of lactic acid bacteria from camel milk. Saudi Journal of Biological Sciences, 28(3), 1622–1632. https://doi.org/10.1016/J.SJBS.2020.11.062 | spa |
dc.relation.references | Sharma, K., Attri, S., & Goel, G. (2019). Selection and Evaluation of Probiotic and Functional Characteristics of Autochthonous Lactic Acid Bacteria Isolated from Fermented Wheat Flour Dough Babroo. Probiotics and Antimicrobial Proteins, 11(3), 774–784. https://doi.org/10.1007/S12602-018-9466-Z/FIGURES/2 | spa |
dc.relation.references | Shi, X., Zhang, J., Mo, L., Shi, J., Qin, M., & Huang, X. (2019). Efficacy and safety of probiotics in eradicating Helicobacter pylori: A network meta-analysis. Medicine. https://doi.org/10.1097/MD.0000000000015180 | spa |
dc.relation.references | Siddique, A., Azim, S., Ali, A., Adnan, F., Arif, M., Imran, M., Ganda, E., & Rahman, A. (2021). Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and FluoroquinoloneResistant Salmonella enterica. Animals 2021, Vol. 11, Page 3435, 11(12), 3435. https://doi.org/10.3390/ANI11123435 | spa |
dc.relation.references | Silva, M. S., Ramos, C. L., González-Avila, M., Gschaedler, A., Arrizon, J., Schwan, R. F., & Dias, D. R. (2017). Probiotic properties of Weissella cibaria and Leuconostoc citreum isolated from tejuino – A typical Mexican beverage. LWT, 86, 227–232. https://doi.org/10.1016/J.LWT.2017.08.009 | spa |
dc.relation.references | Stott, M. B., Lee, K. C.-Y., Morgan, X. C., & Carere, C. (2015). Firmicutes- Bacilli. In W. B. Whitman, F. Rainey, P. Kämpfer, M. Trujillo, J. Chun, P. DeVos, B. Hedlund, & S. Dedysh (Eds.), Bergey’s Manual of Systematics of Archaea and Bacteria (p. ´1-76). John Wiley & Sons, Ltd. https://doi.org/10.1002/9781118960608 | spa |
dc.relation.references | Sun, Z., Yu, J., Dan, T., Zhang, W., & Zhang, H. (2014). Phylogenesis and evolution of lactic acid bacteria. In Lactic Acid Bacteria: Fundamentals and Practice. https://doi.org/10.1007/978-94-017-8841-0_1 | spa |
dc.relation.references | Suwannaphan, S. (2021). Isolation, identification and potential probiotic characterization of lactic acid bacteria from Thai traditional fermented food. AIMS Microbiology, 7(4), 431. https://doi.org/10.3934/MICROBIOL.2021026 | spa |
dc.relation.references | Tailford, L. E., Crost, E. H., Kavanaugh, D., & Juge, N. (2015). Mucin glycan foraging in the human gut microbiome. Frontiers in Genetics, 5(FEB), 81. https://doi.org/10.3389/FGENE.2015.00081/ABSTRACT | spa |
dc.relation.references | Terraf, M. C. L., Juárez Tomás, M. S., Nader-Macías, M. E. F., & Silva, C. (2012). Screening of biofilm formation by beneficial vaginal lactobacilli and influence of culture media components. Journal of Applied Microbiology, 113(6), 1517–1529 | spa |
dc.relation.references | Tilocca, B., Costanzo, N., Morittu, V. M., Spina, A. A., Soggiu, A., Britti, D., Roncada, P., & Piras, C. (2020). Milk microbiota: Characterization methods and role in cheese production. Journal of Proteomics, 210. https://doi.org/10.1016/j.jprot.2019.103534 | spa |
dc.relation.references | Valeriano, V. D., Parungao-Balolong, M. M., & Kang, D. K. (2014). In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1. Journal of Applied Microbiology, 117(2), 485–497. https://doi.org/10.1111/jam.12539 | spa |
dc.relation.references | VANEGAS, M. F., LONDOÑO ZAPATA, A., DURANGO ZULETA, M., GUTIÉRREZ BURITICÁ, M., OCHOA AGUDELO, S., & SEPÚLVEDA VALENCIA, J. (2017). CAPACIDAD ANTIMICROBIANA DE BACTERIAS ÁCIDO LÁCTICAS AUTÓCTONAS AISLADAS DE QUESO DOBLE CREMA Y QUESILLO COLOMBIANO. Biotecnoloía En El Sector Agropecuario y Agroindustrial, 15(1), 45. https://doi.org/10.18684/BSAA(15)45-55 | spa |
dc.relation.references | Vasiee, A., Falah, F., Behbahani, B. A., & Tabatabaee-yazdi, F. (2020). Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering, 130(5), 471–479. https://doi.org/10.1016/J.JBIOSC.2020.07.002 | spa |
dc.relation.references | Vinderola, G., Gueimonde, M., Gomez-Gallego, C., Delfederico, L., & Salminen, S. (2017). Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends in Food Science and Technology, 68, 83–90. https://doi.org/10.1016/j.tifs.2017.08.005 | spa |
dc.relation.references | Wang, C., Cui, Y., & Qu, X. (2018). Mechanisms and improvement of acid resistance in lactic acid bacteria. Archives of Microbiology, 200(2), 195–201. https://doi.org/10.1007/S00203-017-1446-2/FIGURES/1 | spa |
dc.relation.references | Wang, K., Zhang, H., Feng, J., Ma, L., Fuente-Núñez, C. de la, Wang, S., & Lu, X. (2019). Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. Journal of Agriculture and Food Research, 1(October), 100006. https://doi.org/10.1016/j.jafr.2019.100006 | spa |
dc.relation.references | Wang, X., Yang, Y., & Huycke, M. M. (2020). Risks associated with enterococci as probiotics. Food Research International (Ottawa, Ont.), 129, 108788. https://doi.org/10.1016/j.foodres.2019.108788 | spa |
dc.relation.references | Wang, Y., Li, A., Jiang, X., Zhang, H., Mehmood, K., Zhang, L., Jiang, J., Waqas, M., Iqbal, M., & Li, J. (2018). Probiotic Potential of Leuconostoc pseudomesenteroides and Lactobacillus Strains Isolated From Yaks. Frontiers in Microbiology, 9, 2987. https://doi.org/10.3389/FMICB.2018.02987/BIBTEX | spa |
dc.relation.references | Wei, L., Singh, R., Ro, S., & Ghoshal, U. C. (2021). Gut microbiota dysbiosis in functional gastrointestinal disorders: Underpinning the symptoms and pathophysiology. JGH Open, 5(9), 976–987. https://doi.org/10.1002/JGH3.12528 | spa |
dc.relation.references | Wenjun, L., Huili, P., & Heping Zhang and Yimin Cai. (2014). Biodiversity of Lactic Acid Bacteria. In Lactic Acid Bacteria: Fundamentals and Practice (Vol. 1, pp. 325–366). https://doi.org/10.1002/9783527620821.ch10 | spa |
dc.relation.references | Yang, S., & Yu, M. (2021). Role of Goblet Cells in Intestinal Barrier and Mucosal Immunity. Journal of Inflammation Research, 14, 3171. https://doi.org/10.2147/JIR.S318327 | spa |
dc.relation.references | Yazgan, H., Kuley, E., Güven Gökmen, T., Regenstein, J. M., & Özogul, F. (2021). The antimicrobial properties and biogenic amine production of lactic acid bacteria isolated from various fermented food products. Journal of Food Processing and Preservation, 45(1), e15085. https://doi.org/10.1111/JFPP.15085 | spa |
dc.relation.references | Yoon, Y., Lee, S., & Choi, K. H. (2016). Microbial benefits and risks of raw milk cheese. Food Control, 63, 201–215. https://doi.org/10.1016/j.foodcont.2015.11.013 | spa |
dc.relation.references | Yousefi, B., Eslami, M., Ghasemian, A., Kokhaei, P., Salek Farrokhi, A., & Darabi, N. (2019). Probiotics importance and their immunomodulatory properties. In Journal of Cellular Physiology. https://doi.org/10.1002/jcp.27559 | spa |
dc.relation.references | Yunes, R. A., Poluektova, E. U., Vasileva, E. V., Odorskaya, M. V., Marsova, M. V., Kovalev, G. I., & Danilenko, V. N. (2020). A Multi-strain Potential Probiotic Formulation of GABA-Producing Lactobacillus plantarum 90sk and Bifidobacterium adolescentis 150 with Antidepressant Effects. Probiotics and Antimicrobial Proteins, 12(3), 973–979. https://doi.org/10.1007/s12602-019-09601-1 | spa |
dc.relation.references | Zachary, J. F. (2017). Mechanisms of Microbial Infections. Pathologic Basis of Veterinary Disease, 132. https://doi.org/10.1016/B978-0-323-35775-3.00004-7 | spa |
dc.relation.references | Zawistowska-Rojek, A., & Tyski, S. (2018). Are Probiotic Really Safe for Humans? Polish Journal of Microbiology, 67(3), 251. https://doi.org/10.21307/PJM-2018-044 | spa |
dc.relation.references | Zhang, S., Oh, J. H., Alexander, L. M., özçam, M., & van Pijkeren, J. P. (2018). D-AlanylD-alanine ligase as a broad-host-range counterselection marker in vancomycinresistant lactic acid bacteria. Journal of Bacteriology, 200(13). https://doi.org/10.1128/JB.00607-17/SUPPL_FILE/ZJB999094789S1.PDF | spa |
dc.relation.references | Zhang, X., Ali Esmail, G., Fahad Alzeer, A., Valan Arasu, M., Vijayaraghavan, P., Choon Choi, K., & Abdullah Al-Dhabi, N. (2020). Probiotic characteristics of Lactobacillus strains isolated from cheese and their antibacterial properties against gastrointestinal tract pathogens. Saudi Journal of Biological Sciences, 27(12), 3505–3513. https://doi.org/10.1016/j.sjbs.2020.10.022 | spa |
dc.relation.references | Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology, 70(4), 2782– 2858. https://doi.org/10.1099/ijsem.0.004107 | spa |
dc.relation.references | Zielińska, D., Kolozyn-Krajewska, D., & Laranjo, M. (2018). Food-Origin Lactic Acid Bacteria May Exhibit Probiotic Properties: Review. BioMed Research International, 2018. https://doi.org/10.1155/2018/5063185 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::637 - Procesamiento lechero y productos relacionados | spa |
dc.subject.lemb | Bacterias | |
dc.subject.lemb | Ácido láctico | |
dc.subject.lemb | Quesos | |
dc.subject.lemb | Fermentación láctica | |
dc.subject.proposal | Lacticaseibacillus | spa |
dc.subject.proposal | Limosilactobacillus | spa |
dc.subject.proposal | Pediococcus | spa |
dc.subject.proposal | Leuconostoc | spa |
dc.subject.proposal | Mucinas | spa |
dc.subject.proposal | Propiedades de adhesión | spa |
dc.subject.proposal | Queso colombiano | spa |
dc.subject.proposal | Lacticaseibacillus | eng |
dc.subject.proposal | Limosilactobacillus | eng |
dc.subject.proposal | Pediococcus | eng |
dc.subject.proposal | Leuconostoc | eng |
dc.subject.proposal | Mucin | eng |
dc.subject.proposal | Adhesion properties | eng |
dc.subject.proposal | Colombian cheese | eng |
dc.title | Evaluación in vitro de las propiedades probióticas de bacterias ácido-lácticas aisladas del Queso Doble Crema | spa |
dc.title.translated | In vitro evaluation of the probiotic properties of lactic acid bacteria isolated from Double Cream Cheese | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Bibliotecarios | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Maestros | spa |
dcterms.audience.professionaldevelopment | Medios de comunicación | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037629177.2022.pdf
- Tamaño:
- 1.38 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias - Biotecnología
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: