Análisis molecular, distribución e identificación de hongos fitopatógenos asociados a Passiflora foetida L. en Colombia

dc.contributor.advisorMorales Osorio, Juan Gonzalo
dc.contributor.advisorSalazar Yepes, Mauricio Alberto
dc.contributor.authorBetancur García, Paola
dc.contributor.orcid0009-0008-4818-1847spa
dc.contributor.researchgroupFitotecnia Tropicalspa
dc.date.accessioned2024-01-30T16:24:12Z
dc.date.available2024-01-30T16:24:12Z
dc.date.issued2021
dc.descriptionIlustraciones a color, mapasspa
dc.description.abstractPassiflora foetida es una especie originaria del centro y sur de América, la cual se extendió hacia la costa de África oriental y las Islas del océano Pacífico, Australia, Indonesia, Malasia e India. Esta planta se ha declarado como especie invasora en Australia al carecer de organismos que controlen su población. Actualmente, para el control de P. foetida se realiza extracción manual y la aplicación de herbicidas. El control biológico clásico como alternativa de manejo está relacionado con la búsqueda de enemigos naturales en el lugar de origen de la especie y la liberación inicial en el lugar donde fue introducida. Como primer paso para la búsqueda de posibles agentes de control biológico de P. foetida se realizó una búsqueda en diferentes herbarios de Colombia y publicaciones en la web de registros de esta especie en el país, lo cual permitió colectar muestras en seis departamentos de Colombia. En cada punto de muestreo se seleccionó y almacenó material sano para la identificación y caracterización molecular de P. foetida, y además se tomaron muestras de diferentes tejidos de la planta que presentaban algún síntoma asociado con hongos. Para verificar la identidad y cercanía filogenética de P. foetida con otras especies pertenecientes a la misma familia botánica y de otras regiones del mundo, se realizaron amplificaciones de ADN mediante reacciones en cadena de la polimerasa PCR, para la región genómica del espaciador transcrito interno (ITS) y el gen de la glutamina sintetasa expresada en el cloroplasto (ncpGS). Los productos de PCR fueron purificados y secuenciados para luego crear árboles filogenéticos utilizando el método de máxima verosimilitud. Además del análisis molecular, se realizó la caracterización bioclimática de las zonas de crecimiento de P. foetida en Colombia y Australia, mediante la implementación de un modelo de distribución de especies (SDM) con el fin de estimar la probabilidad de ocurrencia de esta especie para Colombia. Para la identificación y aislamiento de hongos en Colombia con potencial para control biológico de P. foetida en Australia, se colectaron muestras en seis departamentos de Colombia, y posteriormente se confirmaron los postulados de Koch en hoja desprendida. La identificación de los hongos causales de enfermedad se basó en caracteres morfométricos de estructuras reproductivas del hongo, características de las colonias en medio de cultivo V8-PDA, 1/10 PDA, agar agua + CaCO3, caldo de acículas de pino, PDA comercial y PDA + Acículas puestas en la superficie del medio, además en pruebas moleculares. Para realizar los análisis filogenéticos de los aislamientos patogénicos sobre P. foetida, se secuenciaron las regiones genómicas del ITS, el factor de elongación de la traducción 1-alfa (TEF1α) y la beta tubulina (β-Tub2). Posterior a la identificación se seleccionaron los hongos con potencial para control biológico y se realizaron pruebas preliminares de especificidad en hoja desprendida de Passiflora edulis, P. edulis Sims, P. quadrangularis y P. ligularis. El análisis bioclimático mostró una alta variabilidad de las condiciones en sitios reportados para P. foetida, teniendo un rango más amplio de crecimiento en Australia (lugar introducido) en cuanto a precipitación y temperatura comparado con Colombia (país con distribución nativa). El SDM mostró una mayor probabilidad de ocurrencia en las regiones Andina, Caribe y Pacífica. En cuanto al análisis filogenético, P. foetida diverge genéticamente de otras especies de Passiflora de importancia económica como P. edulis, P. ligularis, P. quadrangularis, y P. edulis Sims, pero se encuentra estrechamente relacionada con otras accesiones de P. foetida registradas para países como India y China, que no constituyen zonas de origen. De los 125 aislamientos de hongos obtenidos, 21 afectaron más del 50% de las hojas inoculadas de P. foetida. Estos aislamientos corresponden a Aspergillus sp., Cladosporium oxysporum, Cladosporium tenuissimum, Colletotrichum sp., Corynespora cassiicola, Curvularia sp., Diaporthe sp., Epicoccum sorghinum, Fusarium spp., Lasiodiplodia sp., Neopestalotiopsis sp., y Phialemoniopsis curvata, los cuales se identificaron como posibles agentes de control biológico de P. foetida en Australia (texto tomado de la fuente)spa
dc.description.abstractPassiflora foetida is a specie native to Central and South America, which was introduced the coast of East Africa and the Pacific Ocean Islands, Australia, Indonesia, Malaysia and India. This plant has been declared an invasive species in Australia due to the lack of organisms that control its population. Currently, for the control of P. foetida, manual extractions and application of herbicides are carried out. Classic biological control as a management alternative is related to the search for natural enemies in the place of origin of the species and the initial release in the place where it was imported. As a first step in the biological search for possible agents for the control of P. foetida, a search was carried out in different herbaria in Colombia and web publications of records of this species in the country, which was obtained by collecting samples in six departments of Colombia. At each sampling point, healthy material was selected and stored for the identification and molecular characterization of P. foetida, and samples of different plant tissues that presented some symptom associated with fungi were also taken. To verify the identity and phylogenetic closeness of P. foetida with other species belonging to the same botanical family and from other regions of the world, DNA amplifications were performed using PCR polymerase chain reactions for the internal transcribed spacer (ITS) genomic region. and the gene for chloroplast-expressed glutamine synthetase (ncpGS). The PCR products were purified and sequenced to create phylogenetic trees using the maximum likelihood method. In addition to the molecular analysis, the bioclimatic characterization of the P. foetida growth zones in Colombia and Australia was carried out, through the implementation of a species distribution model (SDM) in order to estimate the probability of occurrence of this species for Colombia. For the identification and isolation of fungi in Colombia with biological control potential of P. foetida in Australia, samples were collected in six departments of Colombia, and later Koch's postulates were confirmed in detached leaf. The identification of the fungi causing the disease was based on morphometric characters of the reproductive structures of the fungus, characteristics of the colonies in culture medium V8-PDA, PDA 1/10, water agar + CaCO3, pine needle broth, commercial PDA and PDA + Needles placed on the surface of the medium, in addition to molecular tests. To perform the phylogenetic analyzes of the pathogenic isolates on P. foetida, the genomic regions of ITS, translation elongation factor 1-alpha (TEF1α) and beta tubulin (β-Tub2) were sequenced. After identification, fungi with biological control potential were selected and preliminary specificity tests were performed on detached leaves of Passiflora edulis, P. edulis Sims, P. quadrangularis and P. ligularis. The bioclimatic analysis showed a high climatic variation in the reported sites for P. foetida, having a greater growth range in Australia (place of introduction) in terms of precipitation and temperature compared to Colombia (country of native distribution). The SDM showed a higher probability of occurrences in the Andean, Caribbean and Pacific regions. With regard to phylogenetic analysis, P. foetida diverges genetically from other economically important Passiflora species such as P. edulis, P. ligularis, P. quadrangularis and P. edulis Sims, but is related to other P. foetida accessions registered for countries such as India and China, which are not areas of origin. Of the 125 fungal isolates obtained, 21 affected more than 50% of the inoculated leaves of P. foetida. These isolates correspond to Aspergillus sp., Cladosporium oxysporum, Cladosporium tenuissimum, Colletotrichum sp., Corynespora cassiicola, Curvularia sp., Diaporthe sp., Epicoccum sorghinum, Fusarium spp., Lasiodiplodia sp., Neopestalotiopsis sp. and Phialemoniopsis curvata, which are identified as potential biological control agents for P. foetida in Australiaeng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias Agrariasspa
dc.description.researchareaSanidad Vegetalspa
dc.format.extent100 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85523
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAbdElfatah, H. A. S., Sallam, N. M., Mohamed, M. S., & Bagy, H. M. K. (2021). Curvularia lunata as new causal pathogen of tomato early blight disease in Egypt. Molecular Biology Reports, 48, 3001-3006. https://doi.org/10.1007/s11033-021-06254-8spa
dc.relation.referencesAbram, P. K., Labbe, R. M., & Mason, P. G. (2021). Ranking the host range of biological control agents with quantitative metrics of taxonomic specificity. Biological Control, 152, 104427. https://doi.org/10.1016/j.biocontrol.2020.104427spa
dc.relation.referencesAdams, V. M., Petty, A. M., Douglas, M. M., Buckley, Y. M., Ferdinands, K. B., Okazaki, T., Ko, D. W., & Setterfield, S. A. (2015). Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods in Ecology and Evolution, 6(7), 782–794. https://doi.org/10.1111/2041-210X.12392spa
dc.relation.referencesAhmad, Y., Ahmad, M. N., Zia, A., Alam, S. S., Khan, R. A. A., & Riaz, M. (2020). Biocontrol of economically important weed species through endophytic fungi isolated from Parthenium hysterophorus (Family: Asteraceae). Egyptian Journal of Biological Pest Control, 30(1), 1-8.. https://doi.org/10.1186/s41938-020-00339-5spa
dc.relation.referencesAiello, D., Fiorenza, A., Leonardi, G. R., Vitale, A., & Polizzi, G. (2021). Fusarium nirenbergiae (Fusarium oxysporum species complex) causing the wilting of passion fruit in Italy. Plants, 10(10), 2011. https://doi.org/https://doi.org/10.3390/plants10102011spa
dc.relation.referencesAneja, K. R., Kumar, V., Jiloha, P., Kaur, M., Sharma, C., Surain, P., Dhiman, R., & Aneja, A. (2013). Potential bioherbicides: Indian perspectives. Biotechnology: prospects and applications, 197-215. https://doi.org/10.1007/978-81-322-1683-4_15spa
dc.relation.referencesAriyawansa, H. A., Tsai, I., Wang, J. Y., Withee, P., Tanjira, M., Lin, S. R., Suwannarach, N., Kumla, J., Elgorban, A.M., & Cheewangkoon, R. (2021). Molecular phylogenetic diversity and biological characterization of Diaporthe species associated with leaf spots of Camellia sinensis in Taiwan. Plants, 10(7), 1434. https://doi.org/10.3390/plants10071434spa
dc.relation.referencesAvila, C. F., Moreira, G. M., Nicolli, C. P., Gomes, L. B., Abreu, L. M., Pfenning, L. H., Haidukowski, M., Moretti, A., Logrieco, A., & Del Ponte, E. M. (2019). Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 306, 108267. https://doi.org/10.1016/j.ijfoodmicro.2019.108267spa
dc.relation.referencesAyoubi, N., & Soleimani, M. J. (2016). Strawberry Fruit Rot Caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology, 72(3), 329–336. https://doi.org/10.1007/s00284-015-0955-yspa
dc.relation.referencesBailey, K. L., Boyetchko, S. M., & Längle, T. (2010). Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52(3), 221–229. https://doi.org/10.1016/j.biocontrol.2009.05.003spa
dc.relation.referencesBailey, K. L., Pitt, W. M., Leggett, F., Sheedy, C., & Derby, J. (2011). Determining the infection process of Phoma macrostoma that leads to bioherbicidal activity on broadleaved weeds. Biological Control, 59(2), 268–276. https://doi.org/10.1016/j.biocontrol.2011.06.019spa
dc.relation.referencesBailey, Karen L. (2004). Microbial weed control: An off-beat application of plant pathology. Canadian Journal of Plant Pathology, 26(3), 239–244. https://doi.org/10.1080/07060660409507140spa
dc.relation.referencesBaiswar, P., Chandra, S., Bag, T. K., Patel, R. K., Ngachan, S. V., & Deka, B. C. (2011). Cladosporium oxysporum on Prunus nepalensis in India. Australasian Plant Disease Notes, 6(1), 3–6. https://doi.org/10.1007/s13314-011-0002-1spa
dc.relation.referencesBaldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri botanical garden, 82(2), 247-277. https://doi.org/10.2307/2399880spa
dc.relation.referencesBao, X. T., Dharmasena, D. S. P., Li, D. X., Wang, X., Jiang, S. L., Ren, Y. F., Wang, D. L., Song, B. A., & Chen, Z. (2019). First report of Epicoccum sorghinum causing leaf spot on tea in China. Plant Disease, 103(12), 3282-3282. https://doi.org/10.1094/PDIS-06-19-1296-PDNspa
dc.relation.referencesBaroncelli, R., Zapparata, A., Sarrocco, S., Sukno, S. A., Lane, C. R., Thon, M. R., Vannacci, G., Holub, E., & Sreenivasaprasad, S. (2015). Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species. PLoS ONE, 10(6), 1–21. https://doi.org/10.1371/journal.pone.0129140spa
dc.relation.referencesBarratt, B. I. P. (2011). Assessing safety of biological control introductions. CABI Reviews, 1-12. https://doi.org/10.1079/PAVSNNR20116042spa
dc.relation.referencesBarreto, R. W., Evans, H. C., & Ellison, C. A. (1995). The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycological Research, 99(7), 769–782. https://doi.org/10.1016/S0953-7562(09)80725-9spa
dc.relation.referencesBarrios Arango, L. (2005). Estudios de la diversidad de Passifloraceae en los departamentos de Caldas, Chocó, Nariño, Quindío, Risaralda y Valle del Cauca (Colombia), apoyado en los análisis ecogeográficos, palinológicos y citogenéticos. Tesis (Maestría en Recursos Fitogenéticos) (Doctoral dissertation, Universidad Nacional de Colombia, Departamento de Agronomía, Escuela de Postgrado).spa
dc.relation.referencesBarton, J. (2004). How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological Control, 31(1), 99–122. https://doi.org/10.1016/j.biocontrol.2004.04.008spa
dc.relation.referencesBarupal, T., Meena, M., & Sharma, K. (2021). Comparative analysis of bioformulations against Curvularia lunata (Wakker) Boedijn causing leaf spot disease of maize. Archives of Phytopathology and Plant Protection, 54(5–6), 261–272. https://doi.org/10.1080/03235408.2020.1827657spa
dc.relation.referencesBeery, S., Cole, E., Parker, J., Perona, P., & Winner, K. (2021). Species distribution modeling for machine learning practitioners: A review. In ACM SIGCAS conference on computing and sustainable societies, 329-348. https://doi.org/10.1145/3460112.3471966spa
dc.relation.referencesBeltra, A., Addison, P., Ávalos, J. A., Crochard, D., Garcia-Marí, F., Guerrieri, E., Giliomee, J. H., Malausa, T., Navarro-Campos, C., Palero, F., & Soto, A. (2015). Guiding classical biological control of an invasive mealybug using integrative taxonomy. PLoS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0128685spa
dc.relation.referencesBensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72, 1–401. https://doi.org/10.3114/sim0003spa
dc.relation.referencesBensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., … Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology (Vol. 67). https://doi.org/10.3114/sim.2010.67.01spa
dc.relation.referencesBensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. Studies in Mycology, 89, 177–301. https://doi.org/10.1016/j.simyco.2018.03.002spa
dc.relation.referencesBensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus cladosporium. Studies in mycology, 72, 1-401. https://doi.org/10.3114/sim0003spa
dc.relation.referencesBerner, D. K., & Bruckart, W. L. (2005). A decision tree for evaluation of exotic plant pathogens for classical biological control of introduced invasive weeds. Biological Control, 34(2), 222–232. https://doi.org/10.1016/j.biocontrol.2005.04.012spa
dc.relation.referencesBhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., & Hyde, K. D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’S postulates. Pathogens, 10(9), 1–18. https://doi.org/10.3390/pathogens10091096spa
dc.relation.referencesBladon, A. J., Donald, P. F., Collar, N. J., Denge, J., Dadacha, G., Wondafrash, M., & Green, R. E. (2021). Climatic change and extinction risk of two globally threatened Ethiopian endemic bird species. PLoS ONE, 16(5), 1–17. https://doi.org/10.1371/journal.pone.0249633spa
dc.relation.referencesBotella, C., Joly, A., Monestiez, P., Bonnet, P., & Munoz, F. (2020). Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection. PLoS ONE, 15(5), 1–18. https://doi.org/10.1371/journal.pone.0232078spa
dc.relation.referencesBowling, A. J., Vaughn, K. C., Hoagland, R. E., Stetina, K., & Boyette, C. D. (2010). Immunohistochemical investigation of the necrotrophic phase of the fungus Colletotrichum gloeosporioides in the biocontrol of hemp sesbania (Sesbania exaltata; Papilionaceae). American Journal of Botany, 97(12), 1915–1925. https://doi.org/10.3732/ajb.1000099spa
dc.relation.referencesBraun, U., Crous, P. W., Groenewald, J. Z., & Scheuer, C. (2011). Pseudovirgaria, a fungicolous hyphomycete genus. IMA Fungus, 2(1), 65–69. https://doi.org/10.5598/imafungus.2011.02.01.09spa
dc.relation.referencesBriese, D. T., & Walker, A. (2008). Choosing the right plants to test: The host-specificity of Longitarsus sp. (Coleoptera: Chrysomelidae) a potential biological control agent of Heliotropium amplexicaule. Biological Control, 44(3), 271–285. https://doi.org/10.1016/j.biocontrol.2007.05.001spa
dc.relation.referencesBrun, T., Rabuske, J. E., Confortin, T. C., Luft, L., Todero, I., Fischer, M., Zabot, G. L., & Mazutti, M. A. (2020). Weed control by metabolites produced from Diaporthe schini. Environmental Technology, 43(1), 139-148. https://doi.org/10.1080/09593330.2020.1780477spa
dc.relation.referencesBurdon, J. J., & Thrall, P. H. (2004). Genetic structure of natural plant and pathogen populations. In Genetics, evolution and biological control (pp. 1-17). Wallingford UK: CABI Publishing. https://doi.org/10.1079/9780851997353.0001spa
dc.relation.referencesBurg, N. A., Pradhan, A., Gonzalez, R. M., Morban, E. Z., Zhen, E. W., Sakchoowong, W., & Lohman, D. J. (2014). Inferring the provenance of an alien species with DNA barcodes: The neotropical butterfly Dryas iulia in Thailand. PLoS ONE, 9(8): e104076. https://doi.org/10.1371/journal.pone.0104076spa
dc.relation.referencesCâmara, A. C. L., Dalcin, L., & Soto-Blanco, B. (2014). Patogênese, sinais clínicos e epidemiologia das intoxicações por plantas cianogênicas no nordeste brasileiro. Semina:Ciencias Agrarias, 35(4), 1961–1971. https://doi.org/10.5433/1679- 0359.2014v35n4p1961spa
dc.relation.referencesCarbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553-556. https://doi.org/10.1080/00275514.1999.12061051spa
dc.relation.referencesCastellá, G., & Cabañes, F. J. (2014). Phylogenetic diversity of Fusarium incarnatum equiseti species complex isolated from Spanish wheat. Antonie Van Leeuwenhoek, 106, 309-317. https://doi.org/10.1007/s10482-014-0200-xspa
dc.relation.referencesCatford, J. A., Vesk, P. A., Richardson, D. M., & Pyšek, P. (2012). Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 18(1), 44–62. https://doi.org/10.1111/j.1365- 2486.2011.02549.xspa
dc.relation.referencesChaisiri, C., Luo, C. X., Liu, X. Y., Lin, Y., Li, J. B., & Xiong, B. (2020). Phylogenetic analysis and development of molecular tool for detection of Diaporthe citri causing melanose disease of citrus. Plants, 9(3). https://doi.org/10.3390/plants9030329spa
dc.relation.referencesChang, C. C., Li, C. Y., Tsai, Y. H., El-Shazly, M., Wei, C. K., Yang, Z. J., Chen, S. L., Wu, C. C., Wu, Y. C., & Chang, F. R. (2021). Bioactive polyketides from the pathogenic fungus of Epicoccum sorghinum. Planta, 253(6), 116. https://doi.org/10.1007/s00425-021-03635-yspa
dc.relation.referencesCharudattan, R. (2001). Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl, 46, 229-260. https://doi.org/10.1023/A:1011477531101spa
dc.relation.referencesCharudattan, Raghavan, & Dinoor, A. (2000). Biological control of weeds using plant pathogens: Accomplishments and limitations. Crop Protection, 19(8–10), 691–695. https://doi.org/10.1016/S0261-2194(00)00092-2spa
dc.relation.referencesChen, C., Li, Q., Fu, R., Wang, J., Fan, Z., Chen, X., & Lu, D. (2019). Characterization of the complete mitochondrial genome of Corynespora cassiicola (Pleosporales: Dothideomycetes), with its phylogenetic analysis. Mitochondrial DNA Part B: Resources, 4(2), 2938–2939. https://doi.org/10.1080/23802359.2019.1662753spa
dc.relation.referencesCheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16(1), 138–149. https://doi.org/10.1111/1755-0998.12438spa
dc.relation.referencesChung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T. H., Tzean, S. S., & Chung, C. L. (2020). Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports, 10(1), 14664. https://doi.org/10.1038/s41598-020-70878-2spa
dc.relation.referencesCordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44–49. https://doi.org/10.1016/j.cropro.2016.04.016spa
dc.relation.referencesCoutts, B. A., Kehoe, M. A., Webster, C. G., Wylie, S. J., & Jones, R. A. C. (2011). Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: Biological properties and comparison of coat protein nucleotide sequences. Archives of Virology, 156(10), 1757–1774. https://doi.org/10.1007/s00705-011-1046-4spa
dc.relation.referencesCowie, I. D., Finlayson, C. M., & Bailey, B. J. (1988). Alien plants in the Alligator Rivers region, Northern Territoy, Australia. Canberra: Australian Government Publishing Servicespa
dc.relation.referencesCrous, P. W., Wingfield, M. J., Richardson, D. M., Leroux, J. J., Strasberg, D., Edwards, J., ... & Groenewald, J. Z. (2016). Fungal Planet description sheets: 400–468. Persoonia Molecular Phylogeny and Evolution of Fungi, 36(1), 316-458. https://doi.org/10.3767/003158516X692185spa
dc.relation.referencesCui, W. L., Lu, X. Q., Bian, J. Y., Qi, X. L., Li, D. W., & Huang, L. (2020). Curvularia spicifera and Curvularia muehlenbeckiae causing leaf blight on Cunninghamia lanceolata. Plant Pathology, 69(6), 1139–1147. https://doi.org/10.1111/ppa.13198spa
dc.relation.referencesDaengsuwan, W., Wonglom, P., Arikit, S., & Sunpapao, A. (2021). Morphological and molecular identification of Neopestalotiopsis clavispora causing flower blight on Anthurium andraeanum in Thailand. Horticultural Plant Journal, 7(6), 573–578. https://doi.org/10.1016/j.hpj.2020.10.004spa
dc.relation.referencesDagno, K., Lahlali, R., Diourté, M., & Jijakli, M. H. (2011). Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes). Journal of Applied Microbiology, 110(2), 521–528. https://doi.org/10.1111/j.1365-2672.2010.04908.xspa
dc.relation.referencesDahlberg, K. R., & Etten, J. L. V. (1982). Physiology and Biochemistry of Fungal Sporulation. Annual Review of Phytopathology, 20(1), 281–301. https://doi.org/10.1146/annurev.py.20.090182.001433spa
dc.relation.referencesDamm, U., Sato, T., Alizadeh, A., Groenewald, J. Z., & Crous, P. W. (2019). The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology, 92, 1–46. https://doi.org/10.1016/j.simyco.2018.04.001spa
dc.relation.referencesDavid, J. C. (1997). A Contribution to the Systematics of Cladosporium: Revision of the Fungi Previously Referred to Heterosporium. Mycological Papers. Retrieved from https://books.google.com.co/books?id=ebdmQgAACAAJspa
dc.relation.referencesDavis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88(3), 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.xspa
dc.relation.referencesDe Melo, N. F., & Guerra, M. (2003). Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany, 92(2), 309–316. https://doi.org/10.1093/aob/mcg138spa
dc.relation.referencesDe Silva, N. I., Brooks, S., Lumyong, S., & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001spa
dc.relation.referencesDe Souza, F. C., da Silva, K. F., da Silveira, S. F., Kowata-Dresch, L. S., dos Santos, C. A., & do Carmo, M. G. F. (2018). Conidial sporulation of Stemphylium solani under laboratory conditions and infectivity of the inoculum produced in vitro. European Journal of Plant Pathology, 152(3), 691–700. https://doi.org/10.1007/s10658-018-1511-yspa
dc.relation.referencesDe Vicente, M. C., Guzmán, F. A., Engels, J., & Ramanatha, R. (2005). The Role of Biotechnology Genetic Characterization and Its Use in Decision Making for the Conservation of Crop Germplasm. Journal of Biotechnology, 121–128spa
dc.relation.referencesDeneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. (2021). Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Computational Biology, 17(4), 1–21. https://doi.org/10.1371/journal.pcbi.1008856spa
dc.relation.referencesDentika, P., Ozier-Lafontaine, H., & Penet, L. (2021). Weeds as pathogen hosts and disease risk for crops in the wake of a reduced use of herbicides: Evidence from yam (Dioscorea alata) fields and Colletotrichum pathogens in the tropics. Journal of Fungi, 7(4). https://doi.org/10.3390/jof7040283spa
dc.relation.referencesDhileepan, K., Treviño, M., & Raghu, S. (2005). Effect of temperature on the survival of Aconophora compressa Walker (Hemiptera: Membracidae): Implications for weed biocontrol. Australian Journal of Entomology, 44(4), 457–462. https://doi.org/10.1111/j.1440-6055.2005.00507.xspa
dc.relation.referencesDinis, M., Vicente, J. R., César de Sá, N., López-Núñez, F. A., Marchante, E., & Marchante, H. (2020). Can Niche Dynamics and Distribution Modeling Predict the Success of Invasive Species Management Using Biocontrol? Insights From Acacia longifolia in Portugal. Frontiers in Ecology and Evolution, 8, 576667. https://doi.org/10.3389/fevo.2020.576667spa
dc.relation.referencesDiogo, E., Gonçalves, C. I., Silva, A. C., Valente, C., Bragança, H., & Phillips, A. J. L. (2021). Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycological Progress, 20(11), 1441–1456. https://doi.org/10.1007/s11557-021-01741-5spa
dc.relation.referencesDissanayake, A. J., Phillips, A. J. L., Hyde, K. D., Yan, J. Y., & Li, X. H. (2017). The current status of species in Diaporthe. Mycosphere, 8(5), 1106–1156. https://doi.org/10.5943/MYCOSPHERE/8/5/5spa
dc.relation.referencesDissanayake, Asha J., Chen, Y. Y., & Liu, J. K. (2020). Unravelling Diaporthe species associated with woody hosts from karst formations (Guizhou) in China. Journal of Fungi, 6(4), 1–29. https://doi.org/10.3390/jof6040251spa
dc.relation.referencesDixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9), 1015–1027. https://doi.org/10.1094/PHYTO-99-9-1015spa
dc.relation.referencesDong, Z., Manawasinghe, I. S., Huang, Y., Shu, Y., Phillips, A. J. L., Dissanayake, A. J., Hyde, K. D., Xiang, M & Luo, M. (2021). Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Frontiers in Microbiology, 11, 609387. https://doi.org/10.3389/fmicb.2020.609387spa
dc.relation.referencesDugan, F. M., Schubert, K., & Braun, U. (2004). Check-list of Cladosporium names. Schlechtendalia, 11, 1–103spa
dc.relation.referencesEcheverri, F., Cardona, G., Torres, F., Pelaez, C., Quiñones, W., & Renteria, E. (1991). Ermanin: An insect deterrent flavonoid from Passiflora foetida resin. Phytochemistry, 30(1), 153–155. https://doi.org/10.1016/0031-9422(91)84116-Aspa
dc.relation.referencesElith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159spa
dc.relation.referencesElzein, A., Kroschel, J., & Cadisch, G. (2008). Efficacy of Pesta granular formulation of Striga-mycoherbicide Fusarium oxysporum f. sp. strigae Foxy 2 after 5-year of storage. Journal of Plant Diseases and Protection, 115(6), 259–262. https://doi.org/10.1007/BF03356274spa
dc.relation.referencesEmshwiller, E., & Doyle, J. J. (2002). Origins of domestication and polypliody in oca (Oxalis tuberosa: Oxalidaceae). 2. Chloroplast-expressed glutamine synthetase data. American Journal of Botany, 89(7), 1042–1056. https://doi.org/10.3732/ajb.89.7.1042spa
dc.relation.referencesEvans, H. C. (1993). Studies on the rust, Maravalia cryptostegiae, a potential biological control agent of rubber vine, Cryptostegia grandiflora (Asclepiadaceae: Peripiocoidae), in Australia, I: life-cycle. Mycopathologia, 124(3), 175–184.spa
dc.relation.referencesEvans, K. J., & Gomez, D. R. (2004). Genetic markers in rust fungi and their application to weed biocontrol. Genetics, Evolution and Biological Control, 73–96. https://doi.org/10.1079/9780851997353.0073spa
dc.relation.referencesFalloon, R. E. (1976). Curvularia trifolii as a high-temperature turfgrass pathogen. New Zealand Journal of Agricultural Research, 19(2), 243–248. https://doi.org/10.1080/00288233.1976.10426773spa
dc.relation.referencesFarr, D. F., & Rossman, A. Y. (2021). Fungal databases, U.S. National Fungus Collections. ARS, USDA. Retrieved from https://nt.ars-grin.gov/fungaldatabases/spa
dc.relation.referencesGao, L., & Liu, X. (2010). Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. Journal of Microbiology, 48(6), 767–770. https://doi.org/10.1007/s12275-010-0049-2spa
dc.relation.referencesGao, S., Zeng, R., Xu, L., Song, Z., Gao, P., & Dai, F. (2020). Genome sequence and spore germination-associated transcriptome analysis of Corynespora cassiicola from cucumber. BMC Microbiology, 20(1), 1–20. https://doi.org/10.1186/s12866-020- 01873-wspa
dc.relation.referencesGarcia, T., Doyle, V., Singh, R., Price, T., & Collins, K. (2018). First report of Curvularia leaf spot of corn, caused by Curvularia lunata, in the United States. Plant Health Progress, 19(2), 140–142. https://doi.org/10.1094/PHP-02-18-0008-BRspa
dc.relation.referencesGerardo, S. S., Tovar, J. M., Maharachchikumbura, S. S. N., Apodaca, M. A., Correia, K. C., Sauceda, C. P., Camacho, M., Hyde, K., Marraiki, N., Elgorban, A. & Beltrán, H. (2020). Characterization of Neopestalotiopsis species associated with mango grey leaf spot disease in Sinaloa, Mexico. Pathogens, 9(10), 1–17. https://doi.org/10.3390/pathogens9100788spa
dc.relation.referencesGhuffar, S., Irshad, G., Ahmed, M. Z., Zeshan, M. A., Ali, R., Haq, E., Anwaar, H. A., Abdullah, A., Haque, K. & Ahmad, F. (2020). First Report of Aspergillus flavus Causing Fruit Rot of Grapes (Vitis vinifera) in Pakistan. Plant Disease, 104(11), 104. https://doi.org/10.1094/PDIS-04-20-0863-PDNspa
dc.relation.referencesGilbert, G. S., Magarey, R., Suiter, K., & Webb, C. O. (2012). Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 5(8), 869–878. https://doi.org/10.1111/j.1752-4571.2012.00265.xspa
dc.relation.referencesGlass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995spa
dc.relation.referencesGoh, J., Mun, H. Y., Jeon, Y. J., Chung, N., Park, Y. H., Park, S., Hwang, H. & Cheon, W. (2020). First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of Korea. Korean Journal of Mycology, 48(2), 103–116. https://doi.org/10.4489/KJM.20200012spa
dc.relation.referencesGoher, F., Khan, F. S., Saeed, S., Ahmed, Z., Ghuffar, S., Asif, M. A., Anwaar, H. A., Shafique, M. S., Razzaq, K. & Ali, M. A. (2020). First Report of Aspergillus niger Causing Preharvest Ear Rot Infection of Maize in Pakistan. Plant Disease, 105(1), 228. https://doi.org/10.1094/PDIS-05-20-1105-PDNspa
dc.relation.referencesGomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41. https://doi.org/https://doi.org/10.3767/003158513X666844spa
dc.relation.referencesGonçalves, Z. S., Lima, L. K. S., Soares, T. L., de Souza, E. H., & de Jesus, O. N. (2021). Leaf anatomical aspects of CABMV infection in Passiflora spp. by light and fluorescence microscopy. Australasian Plant Pathology, 50(2), 203–215. https://doi.org/10.1007/s13313-020-00763-zspa
dc.relation.referencesGoolsby, J. A., Van Klinken, R. D., & Palmer, W. A. (2006). Maximising the contribution of native-range studies towards the identification and prioritisation of weed biocontrol agents. Australian Journal of Entomology, 45(4), 276–286. https://doi.org/10.1111/j.1440-6055.2006.00551.xspa
dc.relation.referencesGuo, Z., Yu, Z., Wang, H., Xie, H., & Liu, T. (2020). Leaf spot caused by Epicoccum latusicollum on tobacco in China. Plant Disease, 105(2), 501-501. https://doi.org/10.1094/PDIS-07-20-1443-PDNspa
dc.relation.referencesHarms, N. E., Cronin, J. T., Diaz, R., & Winston, R. L. (2020). A review of the causes and consequences of geographical variability in weed biological control successes. Biological Control, 151, 104398. https://doi.org/10.1016/j.biocontrol.2020.104398spa
dc.relation.referencesHasan, S. (1985). Search in Greece and Turkey for Puccinia chondrillina strains suitable to Australian forms of skeleton weed. Proceedings of the VI International Symposium on Biological Control of Weeds, pp. 625–632spa
dc.relation.referencesHassan, H. A., Koutb, M., Nafady, N. A., & Hassan, E. A. (2018). Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere, 202, 750–756. https://doi.org/10.1016/j.chemosphere.2018.03.114spa
dc.relation.referencesHeimpel, G. E., Abram, P. K., & Brodeur, J. (2021). A phylogenetic perspective on parasitoid host ranges with implications for biological control. Current Opinion in Insect Science, 44, 95–100. https://doi.org/10.1016/j.cois.2021.04.003spa
dc.relation.referencesHershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 26(10), 1313–1328. https://doi.org/10.1080/09583157.2016.1209161spa
dc.relation.referencesHess, M. C. M., Mesléard, F., & Buisson, E. (2019). Priority effects: Emerging principles for invasive plant species management. Ecological Engineering, 127, 48–57. https://doi.org/10.1016/j.ecoleng.2018.11.011spa
dc.relation.referencesHirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027–2036. https://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2spa
dc.relation.referencesHopley, T., Webber, B. L., Raghu, S., Morin, L., & Byrne, M. (2021). Revealing the Introduction History and Phylogenetic Relationships of Passiflora foetida sensu lato in Australia. Frontiers in plant science, 12, 651805. https://doi.org/10.3389/fpls.2021.651805spa
dc.relation.referencesHorst, R. K. (1990). Plant diseases and their pathogens. Westcott’s plant disease handbook, 86-515. https://doi.org/10.1007/978-1-4684-7682-8_4spa
dc.relation.referencesHuang, S., Xia, J., Zhang, X., & Sun, W. (2021). Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China. MycoKeys, 78, 49–77. https://doi.org/10.3897/mycokeys.78.60878spa
dc.relation.referencesHuang, X. Y., Liu, Z. H., Hu, J. X., Wang, S. W., Zou, Y., Zhang, S., & Yang, H. (2012). First report of a leaf spot on pepper caused by Cladosporium oxysporum in China. Plant Disease, 96(7), 1072-1072. https://doi.org/10.1094/PDIS-04-12-0323-PDNspa
dc.relation.referencesHurtado, S. (2020). Aislamiento de endófitos en gulupa (Passiflora edulis Sims f.) y su potencial para promoción de crecimiento de la planta y control del Fitopatógeno Fusarium oxysporum (Doctoral dissertation, Universidad Nacional de Colombia)spa
dc.relation.referencesHynes, R. (2018). Phoma macrostoma: as a broad spectrum bioherbicide for turf grass and agricultural applications. CABI Reviews, 1-9. https://doi.org/10.1079/PAVSNNR201813005spa
dc.relation.referencesIdrees, A., Qadir, Z. A., Akutse, K. S., Afzal, A., Hussain, M., Islam, W., Waqas, M. S., Bamisile, B. S., & Li, J. (2021). Effectiveness of entomopathogenic fungi on immature stages and feeding performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects, 12(11), 1044. https://doi.org/10.3390/insects12111044spa
dc.relation.referencesJacobs, A., Laraba, I., Geiser, D. M., Busman, M., Vaughan, M. M., Proctor, R. H., McCormick, S. P., & O’Donnell, K. (2018). Molecular systematics of two sister clades, the Fusarium concolor and F. babinda species complexes, and the discovery of a novel microcycle macroconidium–producing species from South Africa. Mycologia, 110(6), 1189–1204. https://doi.org/10.1080/00275514.2018.1526619spa
dc.relation.referencesJacques, S., Lenzo, L., Stevens, K., Lawrence, J., & Tan, K. C. (2021). An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant Methods, 17(1), 1–12. https://doi.org/10.1186/s13007-021-00751-4spa
dc.relation.referencesJongsareejit, B., Tepboonrueng, P., Srisuksam, C., Yodpanan, P., Wattananukit, W., Wichienchote, N., Klamchao, K., & Amnuaykanjanasin, A. (2020). Colletotrichum siamense as a myco-biocontrol agent for management of the tridax daisy (Tridax procumbens). Physiological and Molecular Plant Pathology, 112, 101563. https://doi.org/10.1016/j.pmpp.2020.101563spa
dc.relation.referencesKanjana, M., Kanimozhi, G., & Panneerselvam, A. (2019). Phytochemical and antioxidant studies of some isolated endophytic fungi. International Journal of Advanced Scientific Research and Management, 4(1), 38–49spa
dc.relation.referencesKarger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 1–20. https://doi.org/10.1038/sdata.2017.122spa
dc.relation.referencesKhodadadi, F., González, J. B., Martin, P. L., Giroux, E., Bilodeau, G. J., Peter, K. A., Doyle, V. P., & Aćimović, S. G. (2020). Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Scientific Reports, 10(1), 11043. https://doi.org/10.1038/s41598-020-66761-9spa
dc.relation.referencesKuhnem, P. R., Ward, T. J., Silva, C. N., Spolti, P., Ciliato, M. L., Tessmann, D. J., & Del Ponte, E. M. (2016). Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathology, 65(7), 1185–1191. https://doi.org/10.1111/ppa.12497spa
dc.relation.referencesKumar, A., Verma, V. C., Gond, S. K., Kumar, V., & Kharwar, R. N. (2009). Bio-control potential in Cladosporium sp. (MCPL - 461), against a noxious weed Parthenium hysterophorus L. Journal of Environmental Biology, 30(2), 307–312spa
dc.relation.referencesKumar, P., Gupta, V. K., Tiwari, A. K., & Kamle, M. (2016). Current Trends in Plant Disease Diagnostics and Management Practices. Springer International Publishingspa
dc.relation.referencesKumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096spa
dc.relation.referencesKurose, D., Furuya, N., Saeki, T., Tsuchiya, K., Tsushima, S., & Seier, M. K. (2016). Species-specific detection of Mycosphaerella polygoni-cuspidati as a biological control agent for Fallopia japonica by PCR assay. Molecular Biotechnology, 58(10), 626–633. https://doi.org/10.1007/s12033-016-9962-xspa
dc.relation.referencesKurose, D., Furuya, N., Seier, M. K., Djeddour, D. H., Evans, H. C., Matsushita, Y., Tsuchiya, K., & Tsushima, S. (2015). Factors affecting the efficacy of the leaf-spot fungus Mycosphaerella polygoni-cuspidati (Ascomycota): A potential classical biological control agent of the invasive alien weed Fallopia japonica (Polygonaceae) in the UK. Biological Control, 85, 1–11. https://doi.org/10.1016/j.biocontrol.2015.03.002spa
dc.relation.referencesKusai, N. A., Mior Zakuan Azmi, M., Zulkifly, S., Yusof, M. T., & Mohd Zainudin, N. A. I. (2016). Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia. Rendiconti Lincei, 27(2), 205–214. https://doi.org/10.1007/s12210-015-0458-6spa
dc.relation.referencesKwong, R. M., Broadhurst, L. M., Keener, B. R., Coetzee, J. A., Knerr, N., & Martin, G. D. (2017). Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla – Implications for biological control in Australia and South Africa. Biological Control, 112, 10–19. https://doi.org/10.1016/j.biocontrol.2017.06.002spa
dc.relation.referencesLarena, I., Torres, R., Cal, A. De, Liñán, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., Ochoa de Eribe, X., & Usall, J. (2005). Biological control of postharvest brown rot (Monilinia spp .) of peaches by W eld applications of Epicoccum nigrum. Biological Control, 32, 305–310spa
dc.relation.referencesLi, C. Y., Chang, C. C., Tsai, Y. H., El-Shazly, M., Wu, C. C., Wang, S. W., Hwang, T. L., Wei, C. K., Hohmann, J., Yang, Z. J., Cheng, Y. B., Wu, Y. C., & Chang, F. R. (2020). Anti-inflammatory, antiplatelet aggregation, and antiangiogenesis polyketides from Epicoccum sorghinum: toward an understating of its biological activities and potential applications. ACS Omega, 5(19), 11092–11099. https://doi.org/10.1021/acsomega.0c01000spa
dc.relation.referencesLi, W., Hu, M., Xue, Y., Li, Z., Zhang, Y., Zheng, D., Lu, G., Wang, J., & Zhou, J. (2020). Five fungal pathogens are responsible for bayberry twig blight and fungicides were screened for disease control. Microorganisms, 8(5), 1–21. https://doi.org/10.3390/microorganisms8050689spa
dc.relation.referencesLiang, Y., Ran, S. F., Bhat, J., Hyde, K. D., Wang, Y., & Zhao, D. G. (2018). Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China. MycoKeys, 29, 49–61. https://doi.org/10.3897/mycokeys.29.21122spa
dc.relation.referencesLinaldeddu, B. T., Deidda, A., Scanu, B., Franceschini, A., Serra, S., Berraf-Tebbal, A., Zouaoui Boutiti, M., Ben Jamâa, M. L., & Phillips, A. J. L. (2015). Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Diversity, 71(1), 201–214. https://doi.org/10.1007/s13225-014-0301-xspa
dc.relation.referencesLooi, H. K., Toh, Y. F., Yew, S. M., Na, S. L., Tan, Y. C., Chong, P. S., Khoo, J. S., Yee, W. Y., Ng, K. P., & Kuan, C. S. (2017). Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ, 2017(1), 1–28. https://doi.org/10.7717/peerj.2841spa
dc.relation.referencesLouda, S. M., Pemberton, R. W., Johnson, M. T., & Follett, P. A. (2003). Nontarget effects the a chilles’s heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annual Review of Entomology, 48(1), 365–396. https://doi.org/10.1146/annurev.ento.48.060402.102800spa
dc.relation.referencesLowe, S., Browne, M., Boudjelas, S., & Poorter, M. De. (2000). 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Databasespa
dc.relation.referencesMäder, G., Zamberlan, P. M., Fagundes, N. J. R., Magnus, T., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2010). The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae). Genetics and Molecular Biology, 33(1), 99–108. https://doi.org/10.1590/S1415-47572009005000101spa
dc.relation.referencesManamgoda, D. S., Rossman, A. Y., Castlebury, L. A., Crous, P. W., Madrid, H., Chukeatirote, E., & Hyde, K. D. (2014). The genus Bipolaris. Studies in Mycology, 79(1), 221–288. https://doi.org/10.1016/j.simyco.2014.10.002spa
dc.relation.referencesMarcenaro, D., & Valkonen, J. P. T. (2016). Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA rojo) in Nicaragua. PLoS ONE, 11(12), 1–18. https://doi.org/10.1371/journal.pone.0168662spa
dc.relation.referencesMarin-Felix, Y., Groenewald, J. Z., Cai, L., Chen, Q., Marincowitz, S., Barnes, I., Bensch, K., Braun, U., Camporesi, E., Damm, U., de Beer, Z. W., Dissanayake, A., Edwards, J., Giraldo, A., Hernández-Restrepo, M., Hyde, K. D., Jayawardena, R. S., Lombard, L., Luangsa, J., McTaggart, A. R., & Crous, P. W. (2017). Genera of phytopathogenic fungi: GOPHY 1. Studies in Mycology, 86, 99–216. https://doi.org/10.1016/j.simyco.2017.04.002spa
dc.relation.referencesMarley, P. S., & Shebayan, J. A. Y. (2005). Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. BioControl, 50(2), 389–399. https://doi.org/10.1007/s10526-004-0461-9spa
dc.relation.referencesMatute, D. R., & Sepúlveda, V. E. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology, 131, 103249. https://doi.org/10.1016/j.fgb.2019.103249spa
dc.relation.referencesMcCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S., & Baum, K. A. (2016). Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: distribution patterns and implications for conservation. Journal of Insect Conservation, 20(2), 223–237. https://doi.org/10.1007/s10841-016-9856-zspa
dc.relation.referencesMedeiros, A. G., Savi, D. C., Mitra, P., Shaaban, K. A., Jha, A. K., Thorson, J. S., Rohr, J., & Glienke, C. (2018). Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiologica, 63(4), 499–505. https://doi.org/10.1007/s12223-018-0587-2spa
dc.relation.referencesMelotto, M., Underwood, W., & Sheng, Y. H. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology, 46, 101–122. https://doi.org/10.1146/annurev.phyto.121107.104959spa
dc.relation.referencesMena, E., Stewart, S., Montesano, M., & Ponce de León, I. (2020). Soybean stem canker caused by Diaporthe caulivora; pathogen diversity, colonization process, and plant defense activation. Frontiers in Plant Science, 10, 1–21. https://doi.org/10.3389/fpls.2019.01733spa
dc.relation.referencesMesquita, D., Pereira, O. L., Wheeler, G. S., & Barreto, R. W. (2013). Corynespora cassiicola f. sp. schinii, a Potential Biocontrol Agent for the Weed Schinus terebinthifolius in the United States. Plant Disease, 97(4), 496–500. https://doi.org/10.1094/pdis-06-12-0598-respa
dc.relation.referencesMinghetti, E., Maestro, M., & Dellapé, P. M. (2021). Engytatus passionarius sp. nov. (Hemiptera: Miridae), a new natural enemy of the invasive stinking passion flower Passiflora foetida L. Austral Entomology, 60(2), 295–300. https://doi.org/10.1111/aen.12533spa
dc.relation.referencesMinisterio de Vivienda. (2015). Zonificacion climatica de Colombia y Humedades Relativas, (2), 18. Retrieved from http://camacolvalle.org.co/wp content/uploads/2016/07/ANEXO-2-Zonificacion-climatica-jul-7-2015.pdfspa
dc.relation.referencesMira, Y. (2020). Potencial fitopatogénico de hongos asociados a arvenses en cultivos del Altiplano Oriente de Antioquia, Colombia. Universidad Nacional de Colombia. Retrieved from https://repositorio.unal.edu.co/handle/unal/79327spa
dc.relation.referencesMitchell, C. E., Agrawal, A. A., Bever, J. D., Gilbert, G. S., Hufbauer, R. A., Klironomos, J. N., Maron, J. L., Morris, W. F., Parker, I. M., Power, A. G., Seabloom, E. W., Torchin, M. E., & Vázquez, D. P. (2006). Biotic interactions and plant invasions. Ecology Letters, 9(6), 726–740. https://doi.org/10.1111/j.1461-0248.2006.00908.xspa
dc.relation.referencesMoody, M. L., Palomino, N., Weyl, P. S. R., Coetzee, J. A., Newman, R. M., Harms, N. E., Liu, X., & Thum, R. A. (2016). Unraveling the biogeographic origins of the Eurasian watermilfoil (Myriophyllum spicatum) invasion in North America. American Journal of Botany, 103(4), 709–718. https://doi.org/10.3732/ajb.1500476spa
dc.relation.referencesMoral, J., Agustí-Brisach, C., Raya, M. C., Jurado-Bello, J., López-Moral, A., Roca, L. F., Chattaoui, M., Rhouma, A., Nigro, F., Sergeeva, V., & Trapero, A. (2021). Diversity of Colletotrichum species associated with olive anthracnose worldwide. Journal of Fungi, 7(9), 741. https://doi.org/10.3390/jof7090741spa
dc.relation.referencesMorales, M. P. (2019). Ciencia Unisalle Comparación de la morfología y biología floral de Passiflora ( Passifloraceae ) en especies silvestres y cultivadas en Casanare Orinoquía colombiana BIOLOGÍA FLORAL DE Passifloraspa
dc.relation.referencesMoreira, R. R., Caus, G., Gomes Figueiredo, J. A., & May De Mio, L. L. (2020). Phomopsis rot caused by Diaporthe infecunda on fruit and flowers of Passiflora edulis in Brazil. Australasian Plant Pathology, 49(2), 141–145. https://doi.org/10.1007/s13313-020-00684-xspa
dc.relation.referencesMorin, L, Jourdan, M., & Paynter, Q. (2000). The gloomy future of the broom rust as a biocontrol agent, 638, 633–638spa
dc.relation.referencesMorin, Louise, Evans, K. J., & Sheppard, A. W. (2006). Selection of pathogen agents in weed biological control: Critical issues and peculiarities in relation to arthropod agents. Australian Journal of Entomology, 45(4), 349–365. https://doi.org/10.1111/j.1440-6055.2006.00562.xspa
dc.relation.referencesMorris, M. J. (1997). Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa. Biological Control, 10(2), 75–82. https://doi.org/10.1006/bcon.1997.0560spa
dc.relation.referencesMukherjee, A., Banerjee, A. K., & Raghu, S. (2021). Biological control of Parkinsonia aculeata: Using species distribution models to refine agent surveys and releases. Biological Control, 159, 104630. https://doi.org/10.1016/j.biocontrol.2021.104630spa
dc.relation.referencesMukherjee, A., Diaz, R., Thom, M., Overholt, W. A., & Cuda, J. P. (2012). Niche-based prediction of establishment of biocontrol agents: An example with Gratiana boliviana and tropical soda apple. Biocontrol Science and Technology, 22(4), 447–461. https://doi.org/10.1080/09583157.2012.664616spa
dc.relation.referencesMuschner, V. C., Lorenz, A. P., Cervi, A. C., Bonatto, S. L., Souza-Chies, T. T., Salzano, F. M., & Freitas, L. B. (2003). A first molecular phylogenetic analysis of Passiflora (Passifloraceae). American Journal of Botany, 90(8), 1229–1238. https://doi.org/10.3732/ajb.90.8.1229spa
dc.relation.referencesNakasato, K., Fujioka, S., Sugawara, Y., Ono, T., Nishio, T., & Tsuda, S. (2022). Correction to: First detection of two potyviruses, uraria mosaic virus and passiflora foetida virus Y, from passionfruit in Japan. Journal of General Plant Pathology, 1-1. https://doi.org/10.1007/s10327-021-01016-7spa
dc.relation.referencesNinos, T. F., Veloso, J. S., da Silva, M. A., da Paz, C. D., Câmara, M. P. S., & Peixoto, A. R. (2021). Occurence of Fusarium bostrycoides as cause of wilt on yellow passion fruit plants in Brazil. Journal of Plant Pathology, 1361–1362. https://doi.org/10.1007/s42161-021-00928-9spa
dc.relation.referencesNoonim, P., Mahakarnchanakul, W., Varga, J., Frisvad, J. C., & Samson, R. A. (2008). Two novel species of Aspergillus section Nigri from Thai coffee beans. International Journal of Systematic and Evolutionary Microbiology, 58(7), 1727–1734. https://doi.org/10.1099/ijs.0.65694-0spa
dc.relation.referencesNyongesa, B. W., Okoth, S., & Ayugi, V. (2015). Identification key for Aspergillus species isolated from maize and soil of Nandi County, Kenya. Advances in Microbiology, 05(04), 205–229. https://doi.org/10.4236/aim.2015.54020spa
dc.relation.referencesOcampo, J., d’Eeckenbrugge, G. C., & Jarvis, A. (2010). Distribution of the genus Passiflora L. Diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2(11), 1158–1180. https://doi.org/10.3390/d2111158spa
dc.relation.referencesOcampo Pérez, J., & Coppens d’Eeckenbrugge, G. (2017). Morphological characterization in the genus Passiflora L.: an approach to understanding its complex variability. Plant Systematics and Evolution, 303(4), 531–558. https://doi.org/10.1007/s00606-017-1390-2spa
dc.relation.referencesÖnen, H., Özer, Z., & Telci, I. (2002). Bioherbicidal effects of some plant essential oils on different weed species. Journal of Plant Diseases and Protection Sonderheft XVIII, 597-605spa
dc.relation.referencesOrtega, S. Á., Ochoa, D. L., Hernández, J., & Palemón, F. A. (2019). Morphological and genetic characterization of Corynespora cassiicola isolates obtained from roselle and associated weeds. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 38(1), 1–17. https://doi.org/10.18781/r.mex.fit.1909-2spa
dc.relation.referencesOsorio, J. A., Martínez Lemus, E. P., Hio, J. C., Aguirre, J. E., Vergara, J. A., Luque, N. Y., Rojas, E. D., & Cruz, G. N. (2020). Caracterización sanitaria de los cultivos de granadilla, gulupa y maracuyá en Colombia, con especial referencia a la secadera causada por Fusarium solani f. sp. passiflorae. Corporación Colombiana de Investigación Agropecuariaspa
dc.relation.referencesPacheco, T. G., Lopes, A. de S., Welter, J. F., Yotoko, K. S. C., Otoni, W. C., Vieira, L. do N., Guerra, M. P., Nodari, R. O., Balsanelli, E., Pedrosa, F. de O., de Souza, E. M., & Rogalski, M. (2020). Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. Plant Molecular Biology, 104(1–2), 21–37. https://doi.org/10.1007/s11103-020-01020-zspa
dc.relation.referencesPaiva, C. L., Viana, A. P., Santos, E. A., Freitas, J. C. D. O., Silva, R. N. O., & Oliveira, E. J. D. (2014). Genetic variability assessment in the genus Passiflora by SSR markers. Chilean Journal of Agricultural Research, 74(3), 355–360. https://doi.org/10.4067/S0718-58392014000300015spa
dc.relation.referencesPalmer, W. A., & Haseler, W. H. (1992). The Host Specificity and Biology of Trirhabda bacharidis (Weber) (Coleoptera: Chrysomelidae), a Species Introduced into Australia for the Biological Control of Baccharis halimifolia L. The Coleopterists Bulletin, 46(1), 61–66. http://www.jstor.org/stable/4008937spa
dc.relation.referencesParisi, J. J., Fischer, I. H., Medina, P. F., Firmino, A. C., & Meletti, L. M. (2018). Pathogenicity and transmission of fungi detected on Passiflora alata seeds. Arquivos Do Instituto Biológico, 85(0), 1–8. https://doi.org/10.1590/1808-1657000702017spa
dc.relation.referencesParry, J. N., Davis, R. I., & Thomas, J. E. (2004). Passiflora virus Y, a novel virus infecting Passiflora spp. in Australia and the Indonesian Province of Papua. Australasian Plant Pathology, 33(3), 423–427. https://doi.org/10.1071/AP04042spa
dc.relation.referencesParry, J. N., Davis, R. I., & Thomas, J. E. (2004). Passiflora virus Y, a novel virus infecting Passiflora spp. in Australia and the Indonesian Province of Papua. Australasian Plant Pathology, 33(3), 423–427. https://doi.org/10.1071/AP04042spa
dc.relation.referencesPerdomo, H., García, D., Gené, J., Cano, J., Sutton, D. D., Summerbell, R., & Guarro, J. (2013). Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia, 105(2), 398–421. https://doi.org/10.3852/12-137spa
dc.relation.referencesPereira, J. M., Barreto, R. W., Ellison, C. A., & Maffia, L. A. (2003). Corynespora cassiicola f. sp. lantanae: A potential biocontrol agent from Brazil for Lantana camara. Biological Control, 26(1), 21–31. https://doi.org/10.1016/S1049-9644(02)00112-3spa
dc.relation.referencesPereira, O. L., & Barreto, R. W. (2005). The mycobiota of the weed Mitracarpus hirtus in Minas Gerais (Brazil), with particular reference to fungal pathogens for biological control. Australasian Plant Pathology, 34(1), 41–50. https://doi.org/10.1071/AP04083spa
dc.relation.referencesPerrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J. C., Meijer, M., Noonim, P., Mahakarnchanakul, W., & Samson, R. A. (2007). Biodiversity of Aspergillus species in some important agricultural products. Studies in Mycology, 59, 53–66. https://doi.org/10.3114/sim.2007.59.07spa
dc.relation.referencesPesole, G., Bozzetti, M. P., Lanave, C., Preparata, G., & Saccone, C. (1991). Glutamine synthetase gene evolution: a good molecular clock. Proceedings of the National Academy of Sciences, 88(2), 522-526. https://doi.org/10.1073/pnas.88.2.52spa
dc.relation.referencesPetersen, L. M., Hoeck, C., Frisvad, J. C., Gotfredsen, C. H., & Larsen, T. O. (2014). Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules, 19(8), 10898–10921. https://doi.org/10.3390/molecules190810898spa
dc.relation.referencesPicos-Muñoz, P. A., García-Estrada, R. S., León-Félix, J., Sañudo-Barajas, A., & Allende Molar, R. (2015). Lasiodiplodia theobromae en cultivos agrícolas de México: Taxonomía, Hospedantes, Diversidad y Control. Revista Mexicana de Fitopatología, 33(1), 54–74spa
dc.relation.referencesPolat, Z., Gültekin, M. A., Palacıoğlu, G., & Bayraktar, H. (2022). First report of Botryosphaeria dothidea causing stem canker of hazelnut in Turkey. Journal of Plant Pathology, 104(1), 467-467. https://doi.org/10.1007/s42161-021-01002-0spa
dc.relation.referencesPornsuriya, C., Ito, S. ichi, & Sunpapao, A. (2018). First report of leaf spot on lettuce caused by Curvularia aeria. Journal of General Plant Pathology, 84(4), 296–299. https://doi.org/10.1007/s10327-018-0782-7spa
dc.relation.referencesPrasannath, K., Galea, V. J., & Akinsanmi, O. A. (2020). Characterisation of leaf spots caused by Neopestalotiopsis clavispora and Colletotrichum siamense in macadamia in Australia. European Journal of Plant Pathology, 156(4), 1219–1225. https://doi.org/10.1007/s10658-020-01962-6spa
dc.relation.referencesPrasannath, Kandeeparoopan, Shivas, R. G., Galea, V. J., & Akinsanmi, O. A. (2021). Neopestalotiopsis species associated with flower diseases of Macadamia integrifolia in Australia. Journal of Fungi, 7(9), 771. https://doi.org/10.3390/jof7090771spa
dc.relation.referencesPreece, N., Harvey, K., Hempel, C., & Woinarski, J. C. Z. (2010). Uneven distribution of weeds along extensive transects in Australia’s Northern Territory points to management solutions. Ecological Management and Restoration, 11(2), 127–134. https://doi.org/10.1111/j.1442-8903.2010.00530.xspa
dc.relation.referencesPrevéy, J. S., & Seastedt, T. R. (2015). Increased winter precipitation benefits the native plant pathogen Ustilago bullata that infects an invasive grass. Biological Invasions, 17(10), 3041–3047. https://doi.org/10.1007/s10530-015-0934-zspa
dc.relation.referencesPuia, J. D., Hoshino, A. T., Klein, E. M., Almeida, E. D. De, Vigo, S. C., & Canteri, M. G. (2021). Morphological characterization of Corynespora cassiicola Isolates in culture media. Journal of Agricultural Science, 13(11), 74. https://doi.org/10.5539/jas.v13n11p74spa
dc.relation.referencesPyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18(5), 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.xspa
dc.relation.referencesQiu, F., Li, X., Xie, C. P., Li, J., & Zheng, F. Q. (2021). Identification of Colletotrichum brevisporum causing fruit rot in yellow passion fruit (Passiflora edulis f. flavicarpa) in China. Australasian Plant Pathology, 50(2), 229–232. https://doi.org/10.1007/s13313-020-00766-wspa
dc.relation.referencesRabah, S. O., Shrestha, B., Hajrah, N. H., Sabir, M. J., Alharby, H. F., Sabir, M. J., Alhebshi, A. M., Sabir, J. S. M., Gilbert, L. E., Ruhlman, T. A., & Jansen, R. K. (2019). Passiflora plastome sequencing reveals widespread genomic rearrangements. Journal of Systematics and Evolution, 57(1), 1–14. https://doi.org/10.1111/jse.12425spa
dc.relation.referencesRabinovich, J. E., Costa, A. A., Muñoz, I. J., Schilman, P. E., & Fountain-Jones, N. M. (2021). Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae). PLoS Neglected Tropical Diseases, 15(3), 1–15. https://doi.org/10.1371/journal.pntd.0008822spa
dc.relation.referencesRadhakrishnan, R., Alqarawi, A. A., & Abd_Allah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, 158, 131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018spa
dc.relation.referencesRamaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Genetic diversity in Passiflora species assessed by morphological and ITS sequence analysis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/598313spa
dc.relation.referencesRamírez, G. H., Anderson, F. E., & Bianchinotti, M. V. (2019). Induction of sporulation of cercosporoid pathogens of moth vine (Araujia hortorum). New Zealand Journal of Botany, 57(3), 179–187. https://doi.org/10.1080/0028825X.2019.1578244spa
dc.relation.referencesRathnayake, G. R. N., Kumar, N. S., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2018). Chemical investigation of metabolites produced by an endophytic fungi Phialemonium curvatum from the leaves of Passiflora edulis. Natural Product Research, 32(20), 2483–2486. https://doi.org/10.1080/14786419.2017.1416373spa
dc.relation.referencesRichardson, D. M., & Van Wilgen, B. W. (2004). Invasive alien plants in South Africa: how well do we understand the ecological impacts?: working for water. South African Journal of Science, 100(1), 45-52spa
dc.relation.referencesRiska, Nakamura, M., & Iwai, H. (2020). Effects of coinfection with East Asian Passiflora virus and East Asian Passiflora distortion virus on Passiflora foetida. Journal of General Plant Pathology, 86(3), 211–218. https://doi.org/10.1007/s10327-020-00913-7spa
dc.relation.referencesRizwan, H. M., Zhimin, L., Harsonowati, W., Waheed, A., Qiang, Y., Yousef, A. F., Munir, N., Wei, X., Scholz, S. S., Reichelt, M., Oelmuller, R., & Chen, F. (2021). Identification of fungal pathogens to control postharvest passion fruit (Passiflora edulis) decays and multi-omics comparative pathway analysis reveals purple is more resistant to pathogens than a yellow cultivar. Journal of Fungi, 7(10), 879. https://doi.org/10.3390/jof7100879spa
dc.relation.referencesRobertson, M. P., Kriticos, D. J., & Zachariades, C. (2008). Climate matching techniques to narrow the search for biological control agents. Biological Control, 46(3), 442–452. https://doi.org/10.1016/j.biocontrol.2008.04.002spa
dc.relation.referencesRodríguez-Gálvez, E., Guerrero, P., Barradas, C., Crous, P. W., & Alves, A. (2017). Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru. Fungal Biology, 121(4), 452–465. https://doi.org/10.1016/j.funbio.2016.06.004spa
dc.relation.referencesRodríguez-Rey, M., Consuegra, S., Börger, L., & de Leaniz, C. G. (2019). Improving species distribution modelling of freshwater invasive species for management applications. PLoS ONE, 14(6), 1–14. https://doi.org/10.1371/journal.pone.0217896spa
dc.relation.referencesRoger, E., Duursma, D. E., Downey, P. O., Gallagher, R. V., Hughes, L., Steel, J., Johnson, S. B., & Leishman, M. R. (2015). A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management, 159, 121–127. https://doi.org/10.1016/j.jenvman.2015.05.039spa
dc.relation.referencesSax, D., & Brown, J. (2000). The paradox of invasion. Global Ecology & Biogeography, 363–371. https://doi.org/10.3905/JOI.2010.19.1.032spa
dc.relation.referencesShahin, E. A., & Shepard, J. F. (1979). An efficient technique for inducing profuse sporulation of Alternaria species. Phytopathology, 69, 618–620spa
dc.relation.referencesShea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Ecology & Evolution, 17(4), 170–176. https://doi.org/10.1016/s0169-5347(02)02495-3spa
dc.relation.referencesShi, G. Y., Zeng, Q., Wei, Y. W., Hu, C. J., Ye, X. L., & Jiao, C. (2021). First report of anthracnose caused by Colletotrichum brasiliense on violet passion fruit in China. Plant Disease, 106(2), 769. https://doi.org/https://doi.org/10.1094/PDIS-11-20-2485-PDNspa
dc.relation.referencesShishkoff, N., & Bruckart, W. L. (1996). Water Stress and Damage Caused by Puccinia jaceaeon Two Centaurea Species. Biological Control, 6(1), 57-63. https://doi.org/10.1006/bcon.1996.0008spa
dc.relation.referencesShrestha, B., Weng, M. L., Theriot, E. C., Gilbert, L. E., Ruhlman, T. A., Krosnick, S. E., & Jansen, R. K. (2019). Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Molecular Phylogenetics and Evolution, 138, 53–64. https://doi.org/10.1016/j.ympev.2019.05.030spa
dc.relation.referencesShrestha, S. K., Lamour, K., & Young-Kelly, H. (2017). Genome sequences and SNP analyses of Corynespora cassiicola from cotton and soybean in the southeastern United States reveal limited diversity. PLoS ONE, 12(9), 6–14. https://doi.org/10.1371/journal.pone.0184908spa
dc.relation.referencesSilva, D. M., Batista, L. R., Rezende, E. F., Fungaro, M. H. P., Sartori, D., & Alves, E. (2011). Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Brazilian Journal of Microbiology, 42(2), 761–773. https://doi.org/10.1590/S1517-83822011000200044spa
dc.relation.referencesSilva, G. S., & Souza, M. M. (2020). Origin of the cultivated passion fruit Passiflora edulis f. flavicarpa and genomic relationships among species of the subgenera Decaloba and Passiflora. Plant Biology, 22(3), 533–540. https://doi.org/10.1111/plb.13100spa
dc.relation.referencesSilva, J. L., Silva, W. F. D. S., Lopes, L. E. M., Silva, M. J. D. S., Silva-Cabral, J. R. A., Costa, J. F. D. O., Lima, G. S. A., & Assunção, I. P. (2021). First report of Colletotrichum tropicale causing anthracnose on Passiflora edulis in Brazil. Plant Disease, 105(11). https://doi.org/https://doi.org/10.1094/PDIS-07-20-1440-PDNspa
dc.relation.referencesSilva, W. P. K., Deverall, B. J., & Lyon, B. R. (1998). Molecular, physiological and pathological characterization of Corynespora leaf spot fungi from rubber plantations in Sri Lanka. Plant Pathology, 47(3), 267–277. https://doi.org/10.1046/j.1365-3059.1998.00245.xspa
dc.relation.referencesSimberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology and Evolution, 28(1), 58–66. https://doi.org/10.1016/j.tree.2012.07.013spa
dc.relation.referencesSingh, B. P., & Gupta, V. K. (2017). Molecular markers in mycology. Springer International Publishing Switzerland.spa
dc.relation.referencesSmith, L., Datnoff, L., Pernezny, K., & Schlub, R. (2009). Phylogenetic and pathogenic characterization of Corynespora cassiicola isolates. Acta Horticulturae, 808, 51–56. 10.17660/ActaHortic.2009.808.6spa
dc.relation.referencesSoares, A. C. F., Sousa, C. D. S., Garrido, M. D. S., Perez, J. O., & De Almeida, N. S. (2006). Soil streptomycetes with in vitro activity against the yam pathogens Curvularia eragrostides and Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 37(4), 456–461. https://doi.org/10.1590/S1517-83822006000400010spa
dc.relation.referencesSolarte, F., Muñoz, C. G., Maharachchikumbura, S. S. N., & Álvarez, E. (2018). Diversity of Neopestalotiopsis and Pestalotiopsis spp., causal agents of guava scab in Colombia. Plant Disease, 102(1), 49–59. https://doi.org/10.1094/PDIS-01-17-0068-REspa
dc.relation.referencesStoetzel, H. J., Leseberg, N. P., Murphy, S. A., Andrew, M. E., Plant, K. J., Harrington, G. N., & Watson, J. E. M. (2020). Modelling the habitat of the endangered Carpentarian Grasswren (Amytornis dorotheae): The importance of spatio-temporal habitat availability in a fire prone landscape. Global Ecology and Conservation, 24, e01341. https://doi.org/10.1016/j.gecco.2020.e01341spa
dc.relation.referencesSu, L., Deng, H., & Niu, Y. C. (2016). Phialemoniopsis endophytica sp. nov., a new species of endophytic fungi from Luffa cylindrica in Henan, China. Mycological Progress, 15(5). https://doi.org/10.1007/s11557-016-1189-5spa
dc.relation.referencesSu, Y. Y., Qi, Y. L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195–200. https://doi.org/10.1080/21501203.2012.719042spa
dc.relation.referencesSumabat, L. G., Kemerait, R. C., Kim, D. K., Mehta, Y. R., & Brewer, M. T. (2018). Clonality and geographic structure of host-specialized populations of Corynespora cassiicolacausing emerging target spot epidemics in the southeastern United States. PLoS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205849spa
dc.relation.referencesSun, W., Huang, S., Xia, J., Zhang, X., & Li, Z. (2021). Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys, 77, 65–95. https://doi.org/10.3897/MYCOKEYS.77.59852spa
dc.relation.referencesSwarbreck, S. M., Defoin-Platel, M., Hindle, M., Saqi, M., & Habash, D. Z. (2011). New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany, 62(4), 1511–1522. https://doi.org/10.1093/jxb/erq356spa
dc.relation.referencesTaguiam, J. D., Evallo, E., Bengoa, J., Maghirang, R., & Balendres, M. A. (2020). Pathogenicity of Epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. Journal of Phytopathology, 168(6), 303–310. https://doi.org/10.1111/jph.12893spa
dc.relation.referencesTamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752spa
dc.relation.referencesTamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023spa
dc.relation.referencesTan, Y. P., Crous, P. W., & Shivas, R. G. (2018). Cryptic species of Curvularia in the culture collection of the Queensland Plant Pathology Herbarium. MycoKeys, 35, 1–25. https://doi.org/10.3897/mycokeys.35.25665spa
dc.relation.referencesTaylor, J. W. (2011). One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus, 2(2), 113–120. https://doi.org/10.5598/imafungus.2011.02.02.01spa
dc.relation.referencesTe Beest, D. O., Yang, X. B., & Cisar, C. R. (1992). The status of biological control of weeds with fungal pathogens. Annual Review of Phytopathology, 30, 637–657. https://doi.org/10.1146/annurev.py.30.090192.003225spa
dc.relation.referencesTennakoon, D. S., Kuo, C. H., Maharachchikumbura, S. S. N., Thambugala, K. M., Gentekaki, E., Phillips, A. J. L., Bhat, D. J., Wanasinghe, D. N., de Silva, N., Promputtha, I., & Hyde, K. D. (2021). Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity, 108(1), 1-215. https://doi.org/10.1007/s13225-021-00474-wspa
dc.relation.referencesTorres, A. G. (2019). Fungos fitopatogênicos associados a Passiflora foetida no brasil e o seu potencial para uso em controle biológico. Universidade Federal de Viçosaspa
dc.relation.referencesTran, D. M., Clément-Demange, A., Déon, M., Garcia, D., Le Guen, V., Clément-Vidal, A., Soumahoro, M., Masson, A., Label, P., Le, M. T., & Pujade-Renaud, V. (2016). Genetic determinism of sensitivity to Corynespora cassiicola exudates in rubber tree(Hevea brasiliensis). PLoS ONE, 11(10), 1–25. https://doi.org/10.1371/journal.pone.0162807spa
dc.relation.referencesTriest, D., Piérard, D., De Cremer, K., & Hendrickx, M. (2016). Fusarium musae infected banana fruits as potential source of human fusariosis: May occur more frequently than we might think and hypotheses about infection. Communicative and Integrative Biology, 9(2), 1–5. https://doi.org/10.1080/19420889.2016.1162934spa
dc.relation.referencesTrujillo, E. E., & Obrero, F. P. (1978). Cephalosporium wilt of Cassia surattensis in Hawaii. Proceedings of the IV International Symposium on Biological Control of Weeds, August 30–September 2, 1976. Center Env. Prog., Inst. Food Agric. Sci., Univ. Florida, Gainesville, FL, 217–220spa
dc.relation.referencesValverde, E., Bianchini, A., Herr, J. R., Rose, D. J., Wegulo, S. N., & Hallen-Adams, H. E. (2020). Recent population changes of Fusarium head blight pathogens: drivers and implications. Canadian Journal of Plant Pathology, 42(3), 315–329. https://doi.org/10.1080/07060661.2019.1680442spa
dc.relation.referencesVan Hove, F., Waalwijk, C., Logrieco, A., Munaut, F., & Moretti, A. (2011). Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia, 103(3), 570–585. https://doi.org/10.3852/10-038spa
dc.relation.referencesVanderplank, J. (2013). A revision of Passiflora section Dysosmia. Curtis’s Botanical Magazine, 30(4), 318–387. https://doi.org/10.1111/curt.12050spa
dc.relation.referencesVicente, J. R., Fernandes, R. F., Randin, C. F., Broennimann, O., Gonçalves, J., Marcos, B., Pôças, I., Alves, P., Guisan, A., & Honrado, J. P. (2013). Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 131, 185–195. https://doi.org/10.1016/j.jenvman.2013.09.032spa
dc.relation.referencesVieira, B. S., Dias, L. V. S. A., Langoni, V. D., & Lopes, E. A. (2018). Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick. Australasian Plant Pathology, 47(3), 277–283. https://doi.org/10.1007/s13313-018-0555-yspa
dc.relation.referencesVillani, A., Moretti, A., De Saeger, S., Han, Z., Di Mavungu, J. D., Soares, C. M. G., Proctor, R. H., Venâncio, A., Lima, N., Stea, G., Paciolla, C., Logrieco, A. F. R., & Susca, A. (2016). A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. International Journal of Food Microbiology, 234, 24–35. https://doi.org/10.1016/j.ijfoodmicro.2016.06.023spa
dc.relation.referencesVoglmayr, H., & Jaklitsch, W. M. (2017). Corynespora, Exosporium and Helminthosporium revisited – New species and generic reclassification. Studies in Mycology, 87, 43–76. https://doi.org/10.1016/j.simyco.2017.05.001spa
dc.relation.referencesVolcy, C. (2008). Génesis y evolución de los postulados de Koch y su relación con la fitopatología. Una revisión. Agronomía Colombiana, 26(1), 107–115spa
dc.relation.referencesWan, J. Z., & Wang, C. J. (2018). Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecological Informatics, 46, 8–18. https://doi.org/10.1016/j.ecoinf.2018.04.004spa
dc.relation.referencesWang, J., Wang, X., Yuan, B., & Qiang, S. (2013). Differential gene expression for Curvularia eragrostidis Pathogenic Incidence in Crabgrass (Digitaria sanguinalis) Revealed by cDNA-AFLP Analysis. PLoS ONE, 8(10), 6–11. https://doi.org/10.1371/journal.pone.0075430spa
dc.relation.referencesWang, L., Nysetvold, E., & Zhou, X. G. (2021). Culture media promoting sporulation of rice kernel smut fungus Tilletia barclayana. European Journal of Plant Pathology, 161(3), 629–635. https://doi.org/10.1007/s10658-021-02348-yspa
dc.relation.referencesWang, N., Chi, F., Ji, Z., Zhou, Z., & Zhang, J. (2021). First report of passion fruit anthracnose caused by Colletotrichum constrictum. Plant Disease, 105(12), 4158 https://doi.org/https://doi.org/10.1094/PDIS-04-21-0754-PDNspa
dc.relation.referencesWebber, B. L., Yeoh, P. B., & Scott, J. K. (2014). Invasive Passiflora foetida in the Kimberley and Pilbara: understanding the threat and exploring solutions. CSIROspa
dc.relation.referencesWhite, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1spa
dc.relation.referencesWhiteside, J. O. (1966). A revised list of plant diseases in Rhodesia. Kirkia, 5(2), 87–196. http://www.jstor.org/stable/23501041spa
dc.relation.referencesWitt, A., & Luke, Q. (2017). Guide to the naturalized and invasive plants of Eastern Africa. CAB International. https://doi.org/10.1079/9781786392152.0000spa
dc.relation.referencesWong, Mélanie, J., Puchooa, D., Bahorun, T., & Jeewon, R. (2021). Molecular characterization of marine fungi associated with Haliclona sp. (sponge) and Turbinaria conoides and Sargassum portierianum (brown algae). Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 91(3), 643–656. https://doi.org/10.1007/s40011-021-01229-yspa
dc.relation.referencesWonglom, P., Ito, S., & Sunpapao, A. (2018). First report of Curvularia lunata causing leaf spot of Brassica rapa subsp. pekinensis in Thailand . New Disease Reports, 38(1), 15–15. https://doi.org/10.5197/j.2044-0588.2018.038.015spa
dc.relation.referencesWSSA. (2016). Do you have a weed, noxious weed, invasive weed or “superweed”? Simple distinctions make all the difference, 1spa
dc.relation.referencesXi, K., Shan, L., Yang, Y., Zhang, G., Zhang, J., & Guo, W. (2021). Species diversity and chemotypes of Fusarium species associated with maize stalk rot in Yunnan province of southwest China. Frontiers in Microbiology, 12, 652062. https://doi.org/10.3389/fmicb.2021.652062spa
dc.relation.referencesXie, X., Huang, Y., Shi, Y., CHAI, A. L., Li, L., & Li, B. (2021). First Report of Cladosporium tenuissimum causing leaf spots on carnation in China. Plant Disease, 2–5. https://doi.org/10.1094/pdis-07-21-1437-pdnspa
dc.relation.referencesXie, Y., Han, S., Li, X., Amombo, E., & Fu, J. (2017). Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions, 30(3), 245–254. https://doi.org/10.1094/MPMI-12-16-0263-Rspa
dc.relation.referencesYockteng, R., Coppens, G., Souza-chies, T. T., & Leo, P. C. De. (2011). Wild crop relatives: genomic and breeding resources. Wild Crop Relatives: Genomic and Breeding Resources. https://doi.org/10.1007/978-3-642-20447-0spa
dc.relation.referencesYockteng, R., & Nadot, S. (2004). Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 31(1), 379–396. https://doi.org/10.1016/S1055-7903(03)00277-Xspa
dc.relation.referencesYodsing, N., Lekphrom, R., Sangsopha, W., Aimi, T., & Boonlue, S. (2018). Secondary metabolites and their biological activity from Aspergillus aculeatus KKU-CT2. Current Microbiology, 75(5), 513–518. https://doi.org/10.1007/s00284-017-1411-yspa
dc.relation.referencesZhang, Q., Yang, Z. F., Cheng, W., Wijayawardene, N. N., Hyde, K. D., Chen, Z., & Wang, Y. (2020). Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. Nov. MycoKeys, 63, 49–67. https://doi.org/10.3897/mycokeys.63.49264spa
dc.relation.referencesZhang, W., Niu, X., & Yang, J. (2021). Lasiodiplodia mediterranea sp. nov. de vid, encina y naranjo dulce y Lasiodiplodia exigua. Plant Disease, 105(4)spa
dc.relation.referencesZhao, Q., Shi, Y., Wang, Y., Xie, X., Li, L., Guo, L., Chai, A., & Li, B. (2021). Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Frontiers in Microbiology, 12, 716758. https://doi.org/10.3389/fmicb.2021.716758spa
dc.relation.referencesZheng, C., Liu, Z.-H., Tang, S.-S., Lu, D., & Huang, X.-Y. (2014). First report of leaf spot caused by Cladosporium oxysporum on greenhouse eggplant in China. Plant Disease, 98(4), 566-566. https://doi.org/10.1094/PDIS-06-13-0606-PDNspa
dc.relation.referencesZhu, J. Z., Chen, J., Wang, Y., Li, C. X., Zhang, C. J., He, A. G., & Zhong, J. (2020). Leaf spot of Hydrangea macrophylla caused by Corynespora cassiicola in China. Canadian Journal of Plant Pathology, 42(1), 125–132. https://doi.org/10.1080/07060661.2019.1632934spa
dc.relation.referencesZozaya-Hinchliffe, M., Potenza, C., Ortega, J. L., & Sengupta-Gopalan, C. (2005). Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa (Medicago sativa). Plant Science, 168(4), 1041–1052. https://doi.org/10.1016/j.plantsci.2004.12.001spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetalesspa
dc.subject.lembPlantas invasivas
dc.subject.lembControl biológico de hongos
dc.subject.proposalPassiflora foetidaspa
dc.subject.proposalFitopatógenospa
dc.subject.proposalControl biológicospa
dc.subject.proposalPhytopathogeneng
dc.subject.proposalBiological controleng
dc.subject.wikidataPassiflora foetida
dc.titleAnálisis molecular, distribución e identificación de hongos fitopatógenos asociados a Passiflora foetida L. en Colombiaspa
dc.title.translatedMolecular analysis, distribution and identification of phytopathogenic fungi associated with Passiflora foetida L. in Colombiaeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleControl biológico de Conyza bonariensis y Passiflora foetida con hongos fitopatógenos en Colombiaspa
oaire.fundernameCSIROspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037623168.2021.pdf
Tamaño:
7.08 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: