Análisis molecular, distribución e identificación de hongos fitopatógenos asociados a Passiflora foetida L. en Colombia
dc.contributor.advisor | Morales Osorio, Juan Gonzalo | |
dc.contributor.advisor | Salazar Yepes, Mauricio Alberto | |
dc.contributor.author | Betancur García, Paola | |
dc.contributor.orcid | 0009-0008-4818-1847 | spa |
dc.contributor.researchgroup | Fitotecnia Tropical | spa |
dc.date.accessioned | 2024-01-30T16:24:12Z | |
dc.date.available | 2024-01-30T16:24:12Z | |
dc.date.issued | 2021 | |
dc.description | Ilustraciones a color, mapas | spa |
dc.description.abstract | Passiflora foetida es una especie originaria del centro y sur de América, la cual se extendió hacia la costa de África oriental y las Islas del océano Pacífico, Australia, Indonesia, Malasia e India. Esta planta se ha declarado como especie invasora en Australia al carecer de organismos que controlen su población. Actualmente, para el control de P. foetida se realiza extracción manual y la aplicación de herbicidas. El control biológico clásico como alternativa de manejo está relacionado con la búsqueda de enemigos naturales en el lugar de origen de la especie y la liberación inicial en el lugar donde fue introducida. Como primer paso para la búsqueda de posibles agentes de control biológico de P. foetida se realizó una búsqueda en diferentes herbarios de Colombia y publicaciones en la web de registros de esta especie en el país, lo cual permitió colectar muestras en seis departamentos de Colombia. En cada punto de muestreo se seleccionó y almacenó material sano para la identificación y caracterización molecular de P. foetida, y además se tomaron muestras de diferentes tejidos de la planta que presentaban algún síntoma asociado con hongos. Para verificar la identidad y cercanía filogenética de P. foetida con otras especies pertenecientes a la misma familia botánica y de otras regiones del mundo, se realizaron amplificaciones de ADN mediante reacciones en cadena de la polimerasa PCR, para la región genómica del espaciador transcrito interno (ITS) y el gen de la glutamina sintetasa expresada en el cloroplasto (ncpGS). Los productos de PCR fueron purificados y secuenciados para luego crear árboles filogenéticos utilizando el método de máxima verosimilitud. Además del análisis molecular, se realizó la caracterización bioclimática de las zonas de crecimiento de P. foetida en Colombia y Australia, mediante la implementación de un modelo de distribución de especies (SDM) con el fin de estimar la probabilidad de ocurrencia de esta especie para Colombia. Para la identificación y aislamiento de hongos en Colombia con potencial para control biológico de P. foetida en Australia, se colectaron muestras en seis departamentos de Colombia, y posteriormente se confirmaron los postulados de Koch en hoja desprendida. La identificación de los hongos causales de enfermedad se basó en caracteres morfométricos de estructuras reproductivas del hongo, características de las colonias en medio de cultivo V8-PDA, 1/10 PDA, agar agua + CaCO3, caldo de acículas de pino, PDA comercial y PDA + Acículas puestas en la superficie del medio, además en pruebas moleculares. Para realizar los análisis filogenéticos de los aislamientos patogénicos sobre P. foetida, se secuenciaron las regiones genómicas del ITS, el factor de elongación de la traducción 1-alfa (TEF1α) y la beta tubulina (β-Tub2). Posterior a la identificación se seleccionaron los hongos con potencial para control biológico y se realizaron pruebas preliminares de especificidad en hoja desprendida de Passiflora edulis, P. edulis Sims, P. quadrangularis y P. ligularis. El análisis bioclimático mostró una alta variabilidad de las condiciones en sitios reportados para P. foetida, teniendo un rango más amplio de crecimiento en Australia (lugar introducido) en cuanto a precipitación y temperatura comparado con Colombia (país con distribución nativa). El SDM mostró una mayor probabilidad de ocurrencia en las regiones Andina, Caribe y Pacífica. En cuanto al análisis filogenético, P. foetida diverge genéticamente de otras especies de Passiflora de importancia económica como P. edulis, P. ligularis, P. quadrangularis, y P. edulis Sims, pero se encuentra estrechamente relacionada con otras accesiones de P. foetida registradas para países como India y China, que no constituyen zonas de origen. De los 125 aislamientos de hongos obtenidos, 21 afectaron más del 50% de las hojas inoculadas de P. foetida. Estos aislamientos corresponden a Aspergillus sp., Cladosporium oxysporum, Cladosporium tenuissimum, Colletotrichum sp., Corynespora cassiicola, Curvularia sp., Diaporthe sp., Epicoccum sorghinum, Fusarium spp., Lasiodiplodia sp., Neopestalotiopsis sp., y Phialemoniopsis curvata, los cuales se identificaron como posibles agentes de control biológico de P. foetida en Australia (texto tomado de la fuente) | spa |
dc.description.abstract | Passiflora foetida is a specie native to Central and South America, which was introduced the coast of East Africa and the Pacific Ocean Islands, Australia, Indonesia, Malaysia and India. This plant has been declared an invasive species in Australia due to the lack of organisms that control its population. Currently, for the control of P. foetida, manual extractions and application of herbicides are carried out. Classic biological control as a management alternative is related to the search for natural enemies in the place of origin of the species and the initial release in the place where it was imported. As a first step in the biological search for possible agents for the control of P. foetida, a search was carried out in different herbaria in Colombia and web publications of records of this species in the country, which was obtained by collecting samples in six departments of Colombia. At each sampling point, healthy material was selected and stored for the identification and molecular characterization of P. foetida, and samples of different plant tissues that presented some symptom associated with fungi were also taken. To verify the identity and phylogenetic closeness of P. foetida with other species belonging to the same botanical family and from other regions of the world, DNA amplifications were performed using PCR polymerase chain reactions for the internal transcribed spacer (ITS) genomic region. and the gene for chloroplast-expressed glutamine synthetase (ncpGS). The PCR products were purified and sequenced to create phylogenetic trees using the maximum likelihood method. In addition to the molecular analysis, the bioclimatic characterization of the P. foetida growth zones in Colombia and Australia was carried out, through the implementation of a species distribution model (SDM) in order to estimate the probability of occurrence of this species for Colombia. For the identification and isolation of fungi in Colombia with biological control potential of P. foetida in Australia, samples were collected in six departments of Colombia, and later Koch's postulates were confirmed in detached leaf. The identification of the fungi causing the disease was based on morphometric characters of the reproductive structures of the fungus, characteristics of the colonies in culture medium V8-PDA, PDA 1/10, water agar + CaCO3, pine needle broth, commercial PDA and PDA + Needles placed on the surface of the medium, in addition to molecular tests. To perform the phylogenetic analyzes of the pathogenic isolates on P. foetida, the genomic regions of ITS, translation elongation factor 1-alpha (TEF1α) and beta tubulin (β-Tub2) were sequenced. After identification, fungi with biological control potential were selected and preliminary specificity tests were performed on detached leaves of Passiflora edulis, P. edulis Sims, P. quadrangularis and P. ligularis. The bioclimatic analysis showed a high climatic variation in the reported sites for P. foetida, having a greater growth range in Australia (place of introduction) in terms of precipitation and temperature compared to Colombia (country of native distribution). The SDM showed a higher probability of occurrences in the Andean, Caribbean and Pacific regions. With regard to phylogenetic analysis, P. foetida diverges genetically from other economically important Passiflora species such as P. edulis, P. ligularis, P. quadrangularis and P. edulis Sims, but is related to other P. foetida accessions registered for countries such as India and China, which are not areas of origin. Of the 125 fungal isolates obtained, 21 affected more than 50% of the inoculated leaves of P. foetida. These isolates correspond to Aspergillus sp., Cladosporium oxysporum, Cladosporium tenuissimum, Colletotrichum sp., Corynespora cassiicola, Curvularia sp., Diaporthe sp., Epicoccum sorghinum, Fusarium spp., Lasiodiplodia sp., Neopestalotiopsis sp. and Phialemoniopsis curvata, which are identified as potential biological control agents for P. foetida in Australia | eng |
dc.description.curriculararea | Área Curricular en Producción Agraria Sostenible | spa |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias Agrarias | spa |
dc.description.researcharea | Sanidad Vegetal | spa |
dc.format.extent | 100 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/85523 | |
dc.language.iso | spa | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | spa |
dc.publisher.faculty | Facultad de Ciencias Agrarias | spa |
dc.publisher.place | Medellín, Colombia | spa |
dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias | spa |
dc.relation.indexed | LaReferencia | spa |
dc.relation.references | AbdElfatah, H. A. S., Sallam, N. M., Mohamed, M. S., & Bagy, H. M. K. (2021). Curvularia lunata as new causal pathogen of tomato early blight disease in Egypt. Molecular Biology Reports, 48, 3001-3006. https://doi.org/10.1007/s11033-021-06254-8 | spa |
dc.relation.references | Abram, P. K., Labbe, R. M., & Mason, P. G. (2021). Ranking the host range of biological control agents with quantitative metrics of taxonomic specificity. Biological Control, 152, 104427. https://doi.org/10.1016/j.biocontrol.2020.104427 | spa |
dc.relation.references | Adams, V. M., Petty, A. M., Douglas, M. M., Buckley, Y. M., Ferdinands, K. B., Okazaki, T., Ko, D. W., & Setterfield, S. A. (2015). Distribution, demography and dispersal model of spatial spread of invasive plant populations with limited data. Methods in Ecology and Evolution, 6(7), 782–794. https://doi.org/10.1111/2041-210X.12392 | spa |
dc.relation.references | Ahmad, Y., Ahmad, M. N., Zia, A., Alam, S. S., Khan, R. A. A., & Riaz, M. (2020). Biocontrol of economically important weed species through endophytic fungi isolated from Parthenium hysterophorus (Family: Asteraceae). Egyptian Journal of Biological Pest Control, 30(1), 1-8.. https://doi.org/10.1186/s41938-020-00339-5 | spa |
dc.relation.references | Aiello, D., Fiorenza, A., Leonardi, G. R., Vitale, A., & Polizzi, G. (2021). Fusarium nirenbergiae (Fusarium oxysporum species complex) causing the wilting of passion fruit in Italy. Plants, 10(10), 2011. https://doi.org/https://doi.org/10.3390/plants10102011 | spa |
dc.relation.references | Aneja, K. R., Kumar, V., Jiloha, P., Kaur, M., Sharma, C., Surain, P., Dhiman, R., & Aneja, A. (2013). Potential bioherbicides: Indian perspectives. Biotechnology: prospects and applications, 197-215. https://doi.org/10.1007/978-81-322-1683-4_15 | spa |
dc.relation.references | Ariyawansa, H. A., Tsai, I., Wang, J. Y., Withee, P., Tanjira, M., Lin, S. R., Suwannarach, N., Kumla, J., Elgorban, A.M., & Cheewangkoon, R. (2021). Molecular phylogenetic diversity and biological characterization of Diaporthe species associated with leaf spots of Camellia sinensis in Taiwan. Plants, 10(7), 1434. https://doi.org/10.3390/plants10071434 | spa |
dc.relation.references | Avila, C. F., Moreira, G. M., Nicolli, C. P., Gomes, L. B., Abreu, L. M., Pfenning, L. H., Haidukowski, M., Moretti, A., Logrieco, A., & Del Ponte, E. M. (2019). Fusarium incarnatum-equiseti species complex associated with Brazilian rice: Phylogeny, morphology and toxigenic potential. International Journal of Food Microbiology, 306, 108267. https://doi.org/10.1016/j.ijfoodmicro.2019.108267 | spa |
dc.relation.references | Ayoubi, N., & Soleimani, M. J. (2016). Strawberry Fruit Rot Caused by Neopestalotiopsis iranensis sp. nov., and N. mesopotamica. Current Microbiology, 72(3), 329–336. https://doi.org/10.1007/s00284-015-0955-y | spa |
dc.relation.references | Bailey, K. L., Boyetchko, S. M., & Längle, T. (2010). Social and economic drivers shaping the future of biological control: A Canadian perspective on the factors affecting the development and use of microbial biopesticides. Biological Control, 52(3), 221–229. https://doi.org/10.1016/j.biocontrol.2009.05.003 | spa |
dc.relation.references | Bailey, K. L., Pitt, W. M., Leggett, F., Sheedy, C., & Derby, J. (2011). Determining the infection process of Phoma macrostoma that leads to bioherbicidal activity on broadleaved weeds. Biological Control, 59(2), 268–276. https://doi.org/10.1016/j.biocontrol.2011.06.019 | spa |
dc.relation.references | Bailey, Karen L. (2004). Microbial weed control: An off-beat application of plant pathology. Canadian Journal of Plant Pathology, 26(3), 239–244. https://doi.org/10.1080/07060660409507140 | spa |
dc.relation.references | Baiswar, P., Chandra, S., Bag, T. K., Patel, R. K., Ngachan, S. V., & Deka, B. C. (2011). Cladosporium oxysporum on Prunus nepalensis in India. Australasian Plant Disease Notes, 6(1), 3–6. https://doi.org/10.1007/s13314-011-0002-1 | spa |
dc.relation.references | Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., & Donoghue, M. J. (1995). The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylogeny. Annals of the Missouri botanical garden, 82(2), 247-277. https://doi.org/10.2307/2399880 | spa |
dc.relation.references | Bao, X. T., Dharmasena, D. S. P., Li, D. X., Wang, X., Jiang, S. L., Ren, Y. F., Wang, D. L., Song, B. A., & Chen, Z. (2019). First report of Epicoccum sorghinum causing leaf spot on tea in China. Plant Disease, 103(12), 3282-3282. https://doi.org/10.1094/PDIS-06-19-1296-PDN | spa |
dc.relation.references | Baroncelli, R., Zapparata, A., Sarrocco, S., Sukno, S. A., Lane, C. R., Thon, M. R., Vannacci, G., Holub, E., & Sreenivasaprasad, S. (2015). Molecular diversity of anthracnose pathogen populations associated with UK strawberry production suggests multiple introductions of three different Colletotrichum species. PLoS ONE, 10(6), 1–21. https://doi.org/10.1371/journal.pone.0129140 | spa |
dc.relation.references | Barratt, B. I. P. (2011). Assessing safety of biological control introductions. CABI Reviews, 1-12. https://doi.org/10.1079/PAVSNNR20116042 | spa |
dc.relation.references | Barreto, R. W., Evans, H. C., & Ellison, C. A. (1995). The mycobiota of the weed Lantana camara in Brazil, with particular reference to biological control. Mycological Research, 99(7), 769–782. https://doi.org/10.1016/S0953-7562(09)80725-9 | spa |
dc.relation.references | Barrios Arango, L. (2005). Estudios de la diversidad de Passifloraceae en los departamentos de Caldas, Chocó, Nariño, Quindío, Risaralda y Valle del Cauca (Colombia), apoyado en los análisis ecogeográficos, palinológicos y citogenéticos. Tesis (Maestría en Recursos Fitogenéticos) (Doctoral dissertation, Universidad Nacional de Colombia, Departamento de Agronomía, Escuela de Postgrado). | spa |
dc.relation.references | Barton, J. (2004). How good are we at predicting the field host-range of fungal pathogens used for classical biological control of weeds? Biological Control, 31(1), 99–122. https://doi.org/10.1016/j.biocontrol.2004.04.008 | spa |
dc.relation.references | Barupal, T., Meena, M., & Sharma, K. (2021). Comparative analysis of bioformulations against Curvularia lunata (Wakker) Boedijn causing leaf spot disease of maize. Archives of Phytopathology and Plant Protection, 54(5–6), 261–272. https://doi.org/10.1080/03235408.2020.1827657 | spa |
dc.relation.references | Beery, S., Cole, E., Parker, J., Perona, P., & Winner, K. (2021). Species distribution modeling for machine learning practitioners: A review. In ACM SIGCAS conference on computing and sustainable societies, 329-348. https://doi.org/10.1145/3460112.3471966 | spa |
dc.relation.references | Beltra, A., Addison, P., Ávalos, J. A., Crochard, D., Garcia-Marí, F., Guerrieri, E., Giliomee, J. H., Malausa, T., Navarro-Campos, C., Palero, F., & Soto, A. (2015). Guiding classical biological control of an invasive mealybug using integrative taxonomy. PLoS ONE, 10(6), 1–14. https://doi.org/10.1371/journal.pone.0128685 | spa |
dc.relation.references | Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus Cladosporium. Studies in Mycology, 72, 1–401. https://doi.org/10.3114/sim0003 | spa |
dc.relation.references | Bensch, K., Groenewald, J. Z., Dijksterhuis, J., Starink-Willemse, M., Andersen, B., Summerell, B. A., … Crous, P. W. (2010). Species and ecological diversity within the Cladosporium cladosporioides complex (Davidiellaceae, Capnodiales). Studies in Mycology (Vol. 67). https://doi.org/10.3114/sim.2010.67.01 | spa |
dc.relation.references | Bensch, K., Groenewald, J. Z., Meijer, M., Dijksterhuis, J., Jurjević, Andersen, B., Houbraken, J., Crous, P. W., & Samson, R. A. (2018). Cladosporium species in indoor environments. Studies in Mycology, 89, 177–301. https://doi.org/10.1016/j.simyco.2018.03.002 | spa |
dc.relation.references | Bensch, K., Braun, U., Groenewald, J. Z., & Crous, P. W. (2012). The genus cladosporium. Studies in mycology, 72, 1-401. https://doi.org/10.3114/sim0003 | spa |
dc.relation.references | Berner, D. K., & Bruckart, W. L. (2005). A decision tree for evaluation of exotic plant pathogens for classical biological control of introduced invasive weeds. Biological Control, 34(2), 222–232. https://doi.org/10.1016/j.biocontrol.2005.04.012 | spa |
dc.relation.references | Bhunjun, C. S., Phillips, A. J. L., Jayawardena, R. S., Promputtha, I., & Hyde, K. D. (2021). Importance of molecular data to identify fungal plant pathogens and guidelines for pathogenicity testing based on Koch’S postulates. Pathogens, 10(9), 1–18. https://doi.org/10.3390/pathogens10091096 | spa |
dc.relation.references | Bladon, A. J., Donald, P. F., Collar, N. J., Denge, J., Dadacha, G., Wondafrash, M., & Green, R. E. (2021). Climatic change and extinction risk of two globally threatened Ethiopian endemic bird species. PLoS ONE, 16(5), 1–17. https://doi.org/10.1371/journal.pone.0249633 | spa |
dc.relation.references | Botella, C., Joly, A., Monestiez, P., Bonnet, P., & Munoz, F. (2020). Bias in presence-only niche models related to sampling effort and species niches: Lessons for background point selection. PLoS ONE, 15(5), 1–18. https://doi.org/10.1371/journal.pone.0232078 | spa |
dc.relation.references | Bowling, A. J., Vaughn, K. C., Hoagland, R. E., Stetina, K., & Boyette, C. D. (2010). Immunohistochemical investigation of the necrotrophic phase of the fungus Colletotrichum gloeosporioides in the biocontrol of hemp sesbania (Sesbania exaltata; Papilionaceae). American Journal of Botany, 97(12), 1915–1925. https://doi.org/10.3732/ajb.1000099 | spa |
dc.relation.references | Braun, U., Crous, P. W., Groenewald, J. Z., & Scheuer, C. (2011). Pseudovirgaria, a fungicolous hyphomycete genus. IMA Fungus, 2(1), 65–69. https://doi.org/10.5598/imafungus.2011.02.01.09 | spa |
dc.relation.references | Briese, D. T., & Walker, A. (2008). Choosing the right plants to test: The host-specificity of Longitarsus sp. (Coleoptera: Chrysomelidae) a potential biological control agent of Heliotropium amplexicaule. Biological Control, 44(3), 271–285. https://doi.org/10.1016/j.biocontrol.2007.05.001 | spa |
dc.relation.references | Brun, T., Rabuske, J. E., Confortin, T. C., Luft, L., Todero, I., Fischer, M., Zabot, G. L., & Mazutti, M. A. (2020). Weed control by metabolites produced from Diaporthe schini. Environmental Technology, 43(1), 139-148. https://doi.org/10.1080/09593330.2020.1780477 | spa |
dc.relation.references | Burdon, J. J., & Thrall, P. H. (2004). Genetic structure of natural plant and pathogen populations. In Genetics, evolution and biological control (pp. 1-17). Wallingford UK: CABI Publishing. https://doi.org/10.1079/9780851997353.0001 | spa |
dc.relation.references | Burg, N. A., Pradhan, A., Gonzalez, R. M., Morban, E. Z., Zhen, E. W., Sakchoowong, W., & Lohman, D. J. (2014). Inferring the provenance of an alien species with DNA barcodes: The neotropical butterfly Dryas iulia in Thailand. PLoS ONE, 9(8): e104076. https://doi.org/10.1371/journal.pone.0104076 | spa |
dc.relation.references | Câmara, A. C. L., Dalcin, L., & Soto-Blanco, B. (2014). Patogênese, sinais clínicos e epidemiologia das intoxicações por plantas cianogênicas no nordeste brasileiro. Semina:Ciencias Agrarias, 35(4), 1961–1971. https://doi.org/10.5433/1679- 0359.2014v35n4p1961 | spa |
dc.relation.references | Carbone, I., & Kohn, L. M. (1999). A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia, 91(3), 553-556. https://doi.org/10.1080/00275514.1999.12061051 | spa |
dc.relation.references | Castellá, G., & Cabañes, F. J. (2014). Phylogenetic diversity of Fusarium incarnatum equiseti species complex isolated from Spanish wheat. Antonie Van Leeuwenhoek, 106, 309-317. https://doi.org/10.1007/s10482-014-0200-x | spa |
dc.relation.references | Catford, J. A., Vesk, P. A., Richardson, D. M., & Pyšek, P. (2012). Quantifying levels of biological invasion: Towards the objective classification of invaded and invasible ecosystems. Global Change Biology, 18(1), 44–62. https://doi.org/10.1111/j.1365- 2486.2011.02549.x | spa |
dc.relation.references | Chaisiri, C., Luo, C. X., Liu, X. Y., Lin, Y., Li, J. B., & Xiong, B. (2020). Phylogenetic analysis and development of molecular tool for detection of Diaporthe citri causing melanose disease of citrus. Plants, 9(3). https://doi.org/10.3390/plants9030329 | spa |
dc.relation.references | Chang, C. C., Li, C. Y., Tsai, Y. H., El-Shazly, M., Wei, C. K., Yang, Z. J., Chen, S. L., Wu, C. C., Wu, Y. C., & Chang, F. R. (2021). Bioactive polyketides from the pathogenic fungus of Epicoccum sorghinum. Planta, 253(6), 116. https://doi.org/10.1007/s00425-021-03635-y | spa |
dc.relation.references | Charudattan, R. (2001). Biological control of weeds by means of plant pathogens: significance for integrated weed management in modern agro-ecology. BioControl, 46, 229-260. https://doi.org/10.1023/A:1011477531101 | spa |
dc.relation.references | Charudattan, Raghavan, & Dinoor, A. (2000). Biological control of weeds using plant pathogens: Accomplishments and limitations. Crop Protection, 19(8–10), 691–695. https://doi.org/10.1016/S0261-2194(00)00092-2 | spa |
dc.relation.references | Chen, C., Li, Q., Fu, R., Wang, J., Fan, Z., Chen, X., & Lu, D. (2019). Characterization of the complete mitochondrial genome of Corynespora cassiicola (Pleosporales: Dothideomycetes), with its phylogenetic analysis. Mitochondrial DNA Part B: Resources, 4(2), 2938–2939. https://doi.org/10.1080/23802359.2019.1662753 | spa |
dc.relation.references | Cheng, T., Xu, C., Lei, L., Li, C., Zhang, Y., & Zhou, S. (2016). Barcoding the kingdom Plantae: New PCR primers for ITS regions of plants with improved universality and specificity. Molecular Ecology Resources, 16(1), 138–149. https://doi.org/10.1111/1755-0998.12438 | spa |
dc.relation.references | Chung, P. C., Wu, H. Y., Wang, Y. W., Ariyawansa, H. A., Hu, H. P., Hung, T. H., Tzean, S. S., & Chung, C. L. (2020). Diversity and pathogenicity of Colletotrichum species causing strawberry anthracnose in Taiwan and description of a new species, Colletotrichum miaoliense sp. nov. Scientific Reports, 10(1), 14664. https://doi.org/10.1038/s41598-020-70878-2 | spa |
dc.relation.references | Cordeau, S., Triolet, M., Wayman, S., Steinberg, C., & Guillemin, J. P. (2016). Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. Crop Protection, 87, 44–49. https://doi.org/10.1016/j.cropro.2016.04.016 | spa |
dc.relation.references | Coutts, B. A., Kehoe, M. A., Webster, C. G., Wylie, S. J., & Jones, R. A. C. (2011). Indigenous and introduced potyviruses of legumes and Passiflora spp. from Australia: Biological properties and comparison of coat protein nucleotide sequences. Archives of Virology, 156(10), 1757–1774. https://doi.org/10.1007/s00705-011-1046-4 | spa |
dc.relation.references | Cowie, I. D., Finlayson, C. M., & Bailey, B. J. (1988). Alien plants in the Alligator Rivers region, Northern Territoy, Australia. Canberra: Australian Government Publishing Service | spa |
dc.relation.references | Crous, P. W., Wingfield, M. J., Richardson, D. M., Leroux, J. J., Strasberg, D., Edwards, J., ... & Groenewald, J. Z. (2016). Fungal Planet description sheets: 400–468. Persoonia Molecular Phylogeny and Evolution of Fungi, 36(1), 316-458. https://doi.org/10.3767/003158516X692185 | spa |
dc.relation.references | Cui, W. L., Lu, X. Q., Bian, J. Y., Qi, X. L., Li, D. W., & Huang, L. (2020). Curvularia spicifera and Curvularia muehlenbeckiae causing leaf blight on Cunninghamia lanceolata. Plant Pathology, 69(6), 1139–1147. https://doi.org/10.1111/ppa.13198 | spa |
dc.relation.references | Daengsuwan, W., Wonglom, P., Arikit, S., & Sunpapao, A. (2021). Morphological and molecular identification of Neopestalotiopsis clavispora causing flower blight on Anthurium andraeanum in Thailand. Horticultural Plant Journal, 7(6), 573–578. https://doi.org/10.1016/j.hpj.2020.10.004 | spa |
dc.relation.references | Dagno, K., Lahlali, R., Diourté, M., & Jijakli, M. H. (2011). Effect of temperature and water activity on spore germination and mycelial growth of three fungal biocontrol agents against water hyacinth (Eichhornia crassipes). Journal of Applied Microbiology, 110(2), 521–528. https://doi.org/10.1111/j.1365-2672.2010.04908.x | spa |
dc.relation.references | Dahlberg, K. R., & Etten, J. L. V. (1982). Physiology and Biochemistry of Fungal Sporulation. Annual Review of Phytopathology, 20(1), 281–301. https://doi.org/10.1146/annurev.py.20.090182.001433 | spa |
dc.relation.references | Damm, U., Sato, T., Alizadeh, A., Groenewald, J. Z., & Crous, P. W. (2019). The Colletotrichum dracaenophilum, C. magnum and C. orchidearum species complexes. Studies in Mycology, 92, 1–46. https://doi.org/10.1016/j.simyco.2018.04.001 | spa |
dc.relation.references | David, J. C. (1997). A Contribution to the Systematics of Cladosporium: Revision of the Fungi Previously Referred to Heterosporium. Mycological Papers. Retrieved from https://books.google.com.co/books?id=ebdmQgAACAAJ | spa |
dc.relation.references | Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: A general theory of invasibility. Journal of Ecology, 88(3), 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x | spa |
dc.relation.references | De Melo, N. F., & Guerra, M. (2003). Variability of the 5S and 45S rDNA sites in Passiflora L. species with distinct base chromosome numbers. Annals of Botany, 92(2), 309–316. https://doi.org/10.1093/aob/mcg138 | spa |
dc.relation.references | De Silva, N. I., Brooks, S., Lumyong, S., & Hyde, K. D. (2019). Use of endophytes as biocontrol agents. Fungal Biology Reviews, 33(2), 133–148. https://doi.org/10.1016/j.fbr.2018.10.001 | spa |
dc.relation.references | De Souza, F. C., da Silva, K. F., da Silveira, S. F., Kowata-Dresch, L. S., dos Santos, C. A., & do Carmo, M. G. F. (2018). Conidial sporulation of Stemphylium solani under laboratory conditions and infectivity of the inoculum produced in vitro. European Journal of Plant Pathology, 152(3), 691–700. https://doi.org/10.1007/s10658-018-1511-y | spa |
dc.relation.references | De Vicente, M. C., Guzmán, F. A., Engels, J., & Ramanatha, R. (2005). The Role of Biotechnology Genetic Characterization and Its Use in Decision Making for the Conservation of Crop Germplasm. Journal of Biotechnology, 121–128 | spa |
dc.relation.references | Deneu, B., Servajean, M., Bonnet, P., Botella, C., Munoz, F., & Joly, A. (2021). Convolutional neural networks improve species distribution modelling by capturing the spatial structure of the environment. PLoS Computational Biology, 17(4), 1–21. https://doi.org/10.1371/journal.pcbi.1008856 | spa |
dc.relation.references | Dentika, P., Ozier-Lafontaine, H., & Penet, L. (2021). Weeds as pathogen hosts and disease risk for crops in the wake of a reduced use of herbicides: Evidence from yam (Dioscorea alata) fields and Colletotrichum pathogens in the tropics. Journal of Fungi, 7(4). https://doi.org/10.3390/jof7040283 | spa |
dc.relation.references | Dhileepan, K., Treviño, M., & Raghu, S. (2005). Effect of temperature on the survival of Aconophora compressa Walker (Hemiptera: Membracidae): Implications for weed biocontrol. Australian Journal of Entomology, 44(4), 457–462. https://doi.org/10.1111/j.1440-6055.2005.00507.x | spa |
dc.relation.references | Dinis, M., Vicente, J. R., César de Sá, N., López-Núñez, F. A., Marchante, E., & Marchante, H. (2020). Can Niche Dynamics and Distribution Modeling Predict the Success of Invasive Species Management Using Biocontrol? Insights From Acacia longifolia in Portugal. Frontiers in Ecology and Evolution, 8, 576667. https://doi.org/10.3389/fevo.2020.576667 | spa |
dc.relation.references | Diogo, E., Gonçalves, C. I., Silva, A. C., Valente, C., Bragança, H., & Phillips, A. J. L. (2021). Five new species of Neopestalotiopsis associated with diseased Eucalyptus spp. in Portugal. Mycological Progress, 20(11), 1441–1456. https://doi.org/10.1007/s11557-021-01741-5 | spa |
dc.relation.references | Dissanayake, A. J., Phillips, A. J. L., Hyde, K. D., Yan, J. Y., & Li, X. H. (2017). The current status of species in Diaporthe. Mycosphere, 8(5), 1106–1156. https://doi.org/10.5943/MYCOSPHERE/8/5/5 | spa |
dc.relation.references | Dissanayake, Asha J., Chen, Y. Y., & Liu, J. K. (2020). Unravelling Diaporthe species associated with woody hosts from karst formations (Guizhou) in China. Journal of Fungi, 6(4), 1–29. https://doi.org/10.3390/jof6040251 | spa |
dc.relation.references | Dixon, L. J., Schlub, R. L., Pernezny, K., & Datnoff, L. E. (2009). Host specialization and phylogenetic diversity of Corynespora cassiicola. Phytopathology, 99(9), 1015–1027. https://doi.org/10.1094/PHYTO-99-9-1015 | spa |
dc.relation.references | Dong, Z., Manawasinghe, I. S., Huang, Y., Shu, Y., Phillips, A. J. L., Dissanayake, A. J., Hyde, K. D., Xiang, M & Luo, M. (2021). Endophytic Diaporthe Associated With Citrus grandis cv. Tomentosa in China. Frontiers in Microbiology, 11, 609387. https://doi.org/10.3389/fmicb.2020.609387 | spa |
dc.relation.references | Dugan, F. M., Schubert, K., & Braun, U. (2004). Check-list of Cladosporium names. Schlechtendalia, 11, 1–103 | spa |
dc.relation.references | Echeverri, F., Cardona, G., Torres, F., Pelaez, C., Quiñones, W., & Renteria, E. (1991). Ermanin: An insect deterrent flavonoid from Passiflora foetida resin. Phytochemistry, 30(1), 153–155. https://doi.org/10.1016/0031-9422(91)84116-A | spa |
dc.relation.references | Elith, J., & Leathwick, J. R. (2009). Species distribution models: Ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics, 40, 677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159 | spa |
dc.relation.references | Elzein, A., Kroschel, J., & Cadisch, G. (2008). Efficacy of Pesta granular formulation of Striga-mycoherbicide Fusarium oxysporum f. sp. strigae Foxy 2 after 5-year of storage. Journal of Plant Diseases and Protection, 115(6), 259–262. https://doi.org/10.1007/BF03356274 | spa |
dc.relation.references | Emshwiller, E., & Doyle, J. J. (2002). Origins of domestication and polypliody in oca (Oxalis tuberosa: Oxalidaceae). 2. Chloroplast-expressed glutamine synthetase data. American Journal of Botany, 89(7), 1042–1056. https://doi.org/10.3732/ajb.89.7.1042 | spa |
dc.relation.references | Evans, H. C. (1993). Studies on the rust, Maravalia cryptostegiae, a potential biological control agent of rubber vine, Cryptostegia grandiflora (Asclepiadaceae: Peripiocoidae), in Australia, I: life-cycle. Mycopathologia, 124(3), 175–184. | spa |
dc.relation.references | Evans, K. J., & Gomez, D. R. (2004). Genetic markers in rust fungi and their application to weed biocontrol. Genetics, Evolution and Biological Control, 73–96. https://doi.org/10.1079/9780851997353.0073 | spa |
dc.relation.references | Falloon, R. E. (1976). Curvularia trifolii as a high-temperature turfgrass pathogen. New Zealand Journal of Agricultural Research, 19(2), 243–248. https://doi.org/10.1080/00288233.1976.10426773 | spa |
dc.relation.references | Farr, D. F., & Rossman, A. Y. (2021). Fungal databases, U.S. National Fungus Collections. ARS, USDA. Retrieved from https://nt.ars-grin.gov/fungaldatabases/ | spa |
dc.relation.references | Gao, L., & Liu, X. (2010). Sporulation of several biocontrol fungi as affected by carbon and nitrogen sources in a two-stage cultivation system. Journal of Microbiology, 48(6), 767–770. https://doi.org/10.1007/s12275-010-0049-2 | spa |
dc.relation.references | Gao, S., Zeng, R., Xu, L., Song, Z., Gao, P., & Dai, F. (2020). Genome sequence and spore germination-associated transcriptome analysis of Corynespora cassiicola from cucumber. BMC Microbiology, 20(1), 1–20. https://doi.org/10.1186/s12866-020- 01873-w | spa |
dc.relation.references | Garcia, T., Doyle, V., Singh, R., Price, T., & Collins, K. (2018). First report of Curvularia leaf spot of corn, caused by Curvularia lunata, in the United States. Plant Health Progress, 19(2), 140–142. https://doi.org/10.1094/PHP-02-18-0008-BR | spa |
dc.relation.references | Gerardo, S. S., Tovar, J. M., Maharachchikumbura, S. S. N., Apodaca, M. A., Correia, K. C., Sauceda, C. P., Camacho, M., Hyde, K., Marraiki, N., Elgorban, A. & Beltrán, H. (2020). Characterization of Neopestalotiopsis species associated with mango grey leaf spot disease in Sinaloa, Mexico. Pathogens, 9(10), 1–17. https://doi.org/10.3390/pathogens9100788 | spa |
dc.relation.references | Ghuffar, S., Irshad, G., Ahmed, M. Z., Zeshan, M. A., Ali, R., Haq, E., Anwaar, H. A., Abdullah, A., Haque, K. & Ahmad, F. (2020). First Report of Aspergillus flavus Causing Fruit Rot of Grapes (Vitis vinifera) in Pakistan. Plant Disease, 104(11), 104. https://doi.org/10.1094/PDIS-04-20-0863-PDN | spa |
dc.relation.references | Gilbert, G. S., Magarey, R., Suiter, K., & Webb, C. O. (2012). Evolutionary tools for phytosanitary risk analysis: Phylogenetic signal as a predictor of host range of plant pests and pathogens. Evolutionary Applications, 5(8), 869–878. https://doi.org/10.1111/j.1752-4571.2012.00265.x | spa |
dc.relation.references | Glass, N. L., & Donaldson, G. C. (1995). Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous ascomycetes. Applied and Environmental Microbiology, 61(4), 1323–1330. https://doi.org/10.1128/aem.61.4.1323-1330.1995 | spa |
dc.relation.references | Goh, J., Mun, H. Y., Jeon, Y. J., Chung, N., Park, Y. H., Park, S., Hwang, H. & Cheon, W. (2020). First report of six Sordariomycetes fungi isolated from plant litter in freshwater ecosystems of Korea. Korean Journal of Mycology, 48(2), 103–116. https://doi.org/10.4489/KJM.20200012 | spa |
dc.relation.references | Goher, F., Khan, F. S., Saeed, S., Ahmed, Z., Ghuffar, S., Asif, M. A., Anwaar, H. A., Shafique, M. S., Razzaq, K. & Ali, M. A. (2020). First Report of Aspergillus niger Causing Preharvest Ear Rot Infection of Maize in Pakistan. Plant Disease, 105(1), 228. https://doi.org/10.1094/PDIS-05-20-1105-PDN | spa |
dc.relation.references | Gomes, R. R., Glienke, C., Videira, S. I. R., Lombard, L., Groenewald, J. Z., & Crous, P. W. (2013). Diaporthe: a genus of endophytic, saprobic and plant pathogenic fungi. Persoonia, 31, 1–41. https://doi.org/https://doi.org/10.3767/003158513X666844 | spa |
dc.relation.references | Gonçalves, Z. S., Lima, L. K. S., Soares, T. L., de Souza, E. H., & de Jesus, O. N. (2021). Leaf anatomical aspects of CABMV infection in Passiflora spp. by light and fluorescence microscopy. Australasian Plant Pathology, 50(2), 203–215. https://doi.org/10.1007/s13313-020-00763-z | spa |
dc.relation.references | Goolsby, J. A., Van Klinken, R. D., & Palmer, W. A. (2006). Maximising the contribution of native-range studies towards the identification and prioritisation of weed biocontrol agents. Australian Journal of Entomology, 45(4), 276–286. https://doi.org/10.1111/j.1440-6055.2006.00551.x | spa |
dc.relation.references | Guo, Z., Yu, Z., Wang, H., Xie, H., & Liu, T. (2020). Leaf spot caused by Epicoccum latusicollum on tobacco in China. Plant Disease, 105(2), 501-501. https://doi.org/10.1094/PDIS-07-20-1443-PDN | spa |
dc.relation.references | Harms, N. E., Cronin, J. T., Diaz, R., & Winston, R. L. (2020). A review of the causes and consequences of geographical variability in weed biological control successes. Biological Control, 151, 104398. https://doi.org/10.1016/j.biocontrol.2020.104398 | spa |
dc.relation.references | Hasan, S. (1985). Search in Greece and Turkey for Puccinia chondrillina strains suitable to Australian forms of skeleton weed. Proceedings of the VI International Symposium on Biological Control of Weeds, pp. 625–632 | spa |
dc.relation.references | Hassan, H. A., Koutb, M., Nafady, N. A., & Hassan, E. A. (2018). Potentiality of Neopestalotiopsis clavispora ASU1 in biosorption of cadmium and zinc. Chemosphere, 202, 750–756. https://doi.org/10.1016/j.chemosphere.2018.03.114 | spa |
dc.relation.references | Heimpel, G. E., Abram, P. K., & Brodeur, J. (2021). A phylogenetic perspective on parasitoid host ranges with implications for biological control. Current Opinion in Insect Science, 44, 95–100. https://doi.org/10.1016/j.cois.2021.04.003 | spa |
dc.relation.references | Hershenhorn, J., Casella, F., & Vurro, M. (2016). Weed biocontrol with fungi: past, present and future. Biocontrol Science and Technology, 26(10), 1313–1328. https://doi.org/10.1080/09583157.2016.1209161 | spa |
dc.relation.references | Hess, M. C. M., Mesléard, F., & Buisson, E. (2019). Priority effects: Emerging principles for invasive plant species management. Ecological Engineering, 127, 48–57. https://doi.org/10.1016/j.ecoleng.2018.11.011 | spa |
dc.relation.references | Hirzel, A. H., Hausser, J., Chessel, D., & Perrin, N. (2002). Ecological-niche factor analysis: How to compute habitat-suitability maps without absence data? Ecology, 83(7), 2027–2036. https://doi.org/10.1890/0012-9658(2002)083[2027:ENFAHT]2.0.CO;2 | spa |
dc.relation.references | Hopley, T., Webber, B. L., Raghu, S., Morin, L., & Byrne, M. (2021). Revealing the Introduction History and Phylogenetic Relationships of Passiflora foetida sensu lato in Australia. Frontiers in plant science, 12, 651805. https://doi.org/10.3389/fpls.2021.651805 | spa |
dc.relation.references | Horst, R. K. (1990). Plant diseases and their pathogens. Westcott’s plant disease handbook, 86-515. https://doi.org/10.1007/978-1-4684-7682-8_4 | spa |
dc.relation.references | Huang, S., Xia, J., Zhang, X., & Sun, W. (2021). Morphological and phylogenetic analyses reveal three new species of Diaporthe from Yunnan, China. MycoKeys, 78, 49–77. https://doi.org/10.3897/mycokeys.78.60878 | spa |
dc.relation.references | Huang, X. Y., Liu, Z. H., Hu, J. X., Wang, S. W., Zou, Y., Zhang, S., & Yang, H. (2012). First report of a leaf spot on pepper caused by Cladosporium oxysporum in China. Plant Disease, 96(7), 1072-1072. https://doi.org/10.1094/PDIS-04-12-0323-PDN | spa |
dc.relation.references | Hurtado, S. (2020). Aislamiento de endófitos en gulupa (Passiflora edulis Sims f.) y su potencial para promoción de crecimiento de la planta y control del Fitopatógeno Fusarium oxysporum (Doctoral dissertation, Universidad Nacional de Colombia) | spa |
dc.relation.references | Hynes, R. (2018). Phoma macrostoma: as a broad spectrum bioherbicide for turf grass and agricultural applications. CABI Reviews, 1-9. https://doi.org/10.1079/PAVSNNR201813005 | spa |
dc.relation.references | Idrees, A., Qadir, Z. A., Akutse, K. S., Afzal, A., Hussain, M., Islam, W., Waqas, M. S., Bamisile, B. S., & Li, J. (2021). Effectiveness of entomopathogenic fungi on immature stages and feeding performance of Fall Armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae) Larvae. Insects, 12(11), 1044. https://doi.org/10.3390/insects12111044 | spa |
dc.relation.references | Jacobs, A., Laraba, I., Geiser, D. M., Busman, M., Vaughan, M. M., Proctor, R. H., McCormick, S. P., & O’Donnell, K. (2018). Molecular systematics of two sister clades, the Fusarium concolor and F. babinda species complexes, and the discovery of a novel microcycle macroconidium–producing species from South Africa. Mycologia, 110(6), 1189–1204. https://doi.org/10.1080/00275514.2018.1526619 | spa |
dc.relation.references | Jacques, S., Lenzo, L., Stevens, K., Lawrence, J., & Tan, K. C. (2021). An optimized sporulation method for the wheat fungal pathogen Pyrenophora tritici-repentis. Plant Methods, 17(1), 1–12. https://doi.org/10.1186/s13007-021-00751-4 | spa |
dc.relation.references | Jongsareejit, B., Tepboonrueng, P., Srisuksam, C., Yodpanan, P., Wattananukit, W., Wichienchote, N., Klamchao, K., & Amnuaykanjanasin, A. (2020). Colletotrichum siamense as a myco-biocontrol agent for management of the tridax daisy (Tridax procumbens). Physiological and Molecular Plant Pathology, 112, 101563. https://doi.org/10.1016/j.pmpp.2020.101563 | spa |
dc.relation.references | Kanjana, M., Kanimozhi, G., & Panneerselvam, A. (2019). Phytochemical and antioxidant studies of some isolated endophytic fungi. International Journal of Advanced Scientific Research and Management, 4(1), 38–49 | spa |
dc.relation.references | Karger, D. N., Conrad, O., Böhner, J., Kawohl, T., Kreft, H., Soria-Auza, R. W., Zimmermann, N. E., Linder, H. P., & Kessler, M. (2017). Climatologies at high resolution for the earth’s land surface areas. Scientific Data, 4, 1–20. https://doi.org/10.1038/sdata.2017.122 | spa |
dc.relation.references | Khodadadi, F., González, J. B., Martin, P. L., Giroux, E., Bilodeau, G. J., Peter, K. A., Doyle, V. P., & Aćimović, S. G. (2020). Identification and characterization of Colletotrichum species causing apple bitter rot in New York and description of C. noveboracense sp. nov. Scientific Reports, 10(1), 11043. https://doi.org/10.1038/s41598-020-66761-9 | spa |
dc.relation.references | Kuhnem, P. R., Ward, T. J., Silva, C. N., Spolti, P., Ciliato, M. L., Tessmann, D. J., & Del Ponte, E. M. (2016). Composition and toxigenic potential of the Fusarium graminearum species complex from maize ears, stalks and stubble in Brazil. Plant Pathology, 65(7), 1185–1191. https://doi.org/10.1111/ppa.12497 | spa |
dc.relation.references | Kumar, A., Verma, V. C., Gond, S. K., Kumar, V., & Kharwar, R. N. (2009). Bio-control potential in Cladosporium sp. (MCPL - 461), against a noxious weed Parthenium hysterophorus L. Journal of Environmental Biology, 30(2), 307–312 | spa |
dc.relation.references | Kumar, P., Gupta, V. K., Tiwari, A. K., & Kamle, M. (2016). Current Trends in Plant Disease Diagnostics and Management Practices. Springer International Publishing | spa |
dc.relation.references | Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096 | spa |
dc.relation.references | Kurose, D., Furuya, N., Saeki, T., Tsuchiya, K., Tsushima, S., & Seier, M. K. (2016). Species-specific detection of Mycosphaerella polygoni-cuspidati as a biological control agent for Fallopia japonica by PCR assay. Molecular Biotechnology, 58(10), 626–633. https://doi.org/10.1007/s12033-016-9962-x | spa |
dc.relation.references | Kurose, D., Furuya, N., Seier, M. K., Djeddour, D. H., Evans, H. C., Matsushita, Y., Tsuchiya, K., & Tsushima, S. (2015). Factors affecting the efficacy of the leaf-spot fungus Mycosphaerella polygoni-cuspidati (Ascomycota): A potential classical biological control agent of the invasive alien weed Fallopia japonica (Polygonaceae) in the UK. Biological Control, 85, 1–11. https://doi.org/10.1016/j.biocontrol.2015.03.002 | spa |
dc.relation.references | Kusai, N. A., Mior Zakuan Azmi, M., Zulkifly, S., Yusof, M. T., & Mohd Zainudin, N. A. I. (2016). Morphological and molecular characterization of Curvularia and related species associated with leaf spot disease of rice in Peninsular Malaysia. Rendiconti Lincei, 27(2), 205–214. https://doi.org/10.1007/s12210-015-0458-6 | spa |
dc.relation.references | Kwong, R. M., Broadhurst, L. M., Keener, B. R., Coetzee, J. A., Knerr, N., & Martin, G. D. (2017). Genetic analysis of native and introduced populations of the aquatic weed Sagittaria platyphylla – Implications for biological control in Australia and South Africa. Biological Control, 112, 10–19. https://doi.org/10.1016/j.biocontrol.2017.06.002 | spa |
dc.relation.references | Larena, I., Torres, R., Cal, A. De, Liñán, M., Melgarejo, P., Domenichini, P., Bellini, A., Mandrin, J. F., Lichou, J., Ochoa de Eribe, X., & Usall, J. (2005). Biological control of postharvest brown rot (Monilinia spp .) of peaches by W eld applications of Epicoccum nigrum. Biological Control, 32, 305–310 | spa |
dc.relation.references | Li, C. Y., Chang, C. C., Tsai, Y. H., El-Shazly, M., Wu, C. C., Wang, S. W., Hwang, T. L., Wei, C. K., Hohmann, J., Yang, Z. J., Cheng, Y. B., Wu, Y. C., & Chang, F. R. (2020). Anti-inflammatory, antiplatelet aggregation, and antiangiogenesis polyketides from Epicoccum sorghinum: toward an understating of its biological activities and potential applications. ACS Omega, 5(19), 11092–11099. https://doi.org/10.1021/acsomega.0c01000 | spa |
dc.relation.references | Li, W., Hu, M., Xue, Y., Li, Z., Zhang, Y., Zheng, D., Lu, G., Wang, J., & Zhou, J. (2020). Five fungal pathogens are responsible for bayberry twig blight and fungicides were screened for disease control. Microorganisms, 8(5), 1–21. https://doi.org/10.3390/microorganisms8050689 | spa |
dc.relation.references | Liang, Y., Ran, S. F., Bhat, J., Hyde, K. D., Wang, Y., & Zhao, D. G. (2018). Curvularia microspora sp. nov. associated with leaf diseases of Hippeastrum striatum in China. MycoKeys, 29, 49–61. https://doi.org/10.3897/mycokeys.29.21122 | spa |
dc.relation.references | Linaldeddu, B. T., Deidda, A., Scanu, B., Franceschini, A., Serra, S., Berraf-Tebbal, A., Zouaoui Boutiti, M., Ben Jamâa, M. L., & Phillips, A. J. L. (2015). Diversity of Botryosphaeriaceae species associated with grapevine and other woody hosts in Italy, Algeria and Tunisia, with descriptions of Lasiodiplodia exigua and Lasiodiplodia mediterranea sp. nov. Fungal Diversity, 71(1), 201–214. https://doi.org/10.1007/s13225-014-0301-x | spa |
dc.relation.references | Looi, H. K., Toh, Y. F., Yew, S. M., Na, S. L., Tan, Y. C., Chong, P. S., Khoo, J. S., Yee, W. Y., Ng, K. P., & Kuan, C. S. (2017). Genomic insight into pathogenicity of dematiaceous fungus Corynespora cassiicola. PeerJ, 2017(1), 1–28. https://doi.org/10.7717/peerj.2841 | spa |
dc.relation.references | Louda, S. M., Pemberton, R. W., Johnson, M. T., & Follett, P. A. (2003). Nontarget effects the a chilles’s heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annual Review of Entomology, 48(1), 365–396. https://doi.org/10.1146/annurev.ento.48.060402.102800 | spa |
dc.relation.references | Lowe, S., Browne, M., Boudjelas, S., & Poorter, M. De. (2000). 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database | spa |
dc.relation.references | Mäder, G., Zamberlan, P. M., Fagundes, N. J. R., Magnus, T., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2010). The use and limits of ITS data in the analysis of intraspecific variation in Passiflora L. (Passifloraceae). Genetics and Molecular Biology, 33(1), 99–108. https://doi.org/10.1590/S1415-47572009005000101 | spa |
dc.relation.references | Manamgoda, D. S., Rossman, A. Y., Castlebury, L. A., Crous, P. W., Madrid, H., Chukeatirote, E., & Hyde, K. D. (2014). The genus Bipolaris. Studies in Mycology, 79(1), 221–288. https://doi.org/10.1016/j.simyco.2014.10.002 | spa |
dc.relation.references | Marcenaro, D., & Valkonen, J. P. T. (2016). Seedborne pathogenic fungi in common bean (Phaseolus vulgaris cv. INTA rojo) in Nicaragua. PLoS ONE, 11(12), 1–18. https://doi.org/10.1371/journal.pone.0168662 | spa |
dc.relation.references | Marin-Felix, Y., Groenewald, J. Z., Cai, L., Chen, Q., Marincowitz, S., Barnes, I., Bensch, K., Braun, U., Camporesi, E., Damm, U., de Beer, Z. W., Dissanayake, A., Edwards, J., Giraldo, A., Hernández-Restrepo, M., Hyde, K. D., Jayawardena, R. S., Lombard, L., Luangsa, J., McTaggart, A. R., & Crous, P. W. (2017). Genera of phytopathogenic fungi: GOPHY 1. Studies in Mycology, 86, 99–216. https://doi.org/10.1016/j.simyco.2017.04.002 | spa |
dc.relation.references | Marley, P. S., & Shebayan, J. A. Y. (2005). Field assessment of Fusarium oxysporum based mycoherbicide for control of Striga hermonthica in Nigeria. BioControl, 50(2), 389–399. https://doi.org/10.1007/s10526-004-0461-9 | spa |
dc.relation.references | Matute, D. R., & Sepúlveda, V. E. (2019). Fungal species boundaries in the genomics era. Fungal Genetics and Biology, 131, 103249. https://doi.org/10.1016/j.fgb.2019.103249 | spa |
dc.relation.references | McCoshum, S. M., Andreoli, S. L., Stenoien, C. M., Oberhauser, K. S., & Baum, K. A. (2016). Species distribution models for natural enemies of monarch butterfly (Danaus plexippus) larvae and pupae: distribution patterns and implications for conservation. Journal of Insect Conservation, 20(2), 223–237. https://doi.org/10.1007/s10841-016-9856-z | spa |
dc.relation.references | Medeiros, A. G., Savi, D. C., Mitra, P., Shaaban, K. A., Jha, A. K., Thorson, J. S., Rohr, J., & Glienke, C. (2018). Bioprospecting of Diaporthe terebinthifolii LGMF907 for antimicrobial compounds. Folia Microbiologica, 63(4), 499–505. https://doi.org/10.1007/s12223-018-0587-2 | spa |
dc.relation.references | Melotto, M., Underwood, W., & Sheng, Y. H. (2008). Role of stomata in plant innate immunity and foliar bacterial diseases. Annual Review of Phytopathology, 46, 101–122. https://doi.org/10.1146/annurev.phyto.121107.104959 | spa |
dc.relation.references | Mena, E., Stewart, S., Montesano, M., & Ponce de León, I. (2020). Soybean stem canker caused by Diaporthe caulivora; pathogen diversity, colonization process, and plant defense activation. Frontiers in Plant Science, 10, 1–21. https://doi.org/10.3389/fpls.2019.01733 | spa |
dc.relation.references | Mesquita, D., Pereira, O. L., Wheeler, G. S., & Barreto, R. W. (2013). Corynespora cassiicola f. sp. schinii, a Potential Biocontrol Agent for the Weed Schinus terebinthifolius in the United States. Plant Disease, 97(4), 496–500. https://doi.org/10.1094/pdis-06-12-0598-re | spa |
dc.relation.references | Minghetti, E., Maestro, M., & Dellapé, P. M. (2021). Engytatus passionarius sp. nov. (Hemiptera: Miridae), a new natural enemy of the invasive stinking passion flower Passiflora foetida L. Austral Entomology, 60(2), 295–300. https://doi.org/10.1111/aen.12533 | spa |
dc.relation.references | Ministerio de Vivienda. (2015). Zonificacion climatica de Colombia y Humedades Relativas, (2), 18. Retrieved from http://camacolvalle.org.co/wp content/uploads/2016/07/ANEXO-2-Zonificacion-climatica-jul-7-2015.pdf | spa |
dc.relation.references | Mira, Y. (2020). Potencial fitopatogénico de hongos asociados a arvenses en cultivos del Altiplano Oriente de Antioquia, Colombia. Universidad Nacional de Colombia. Retrieved from https://repositorio.unal.edu.co/handle/unal/79327 | spa |
dc.relation.references | Mitchell, C. E., Agrawal, A. A., Bever, J. D., Gilbert, G. S., Hufbauer, R. A., Klironomos, J. N., Maron, J. L., Morris, W. F., Parker, I. M., Power, A. G., Seabloom, E. W., Torchin, M. E., & Vázquez, D. P. (2006). Biotic interactions and plant invasions. Ecology Letters, 9(6), 726–740. https://doi.org/10.1111/j.1461-0248.2006.00908.x | spa |
dc.relation.references | Moody, M. L., Palomino, N., Weyl, P. S. R., Coetzee, J. A., Newman, R. M., Harms, N. E., Liu, X., & Thum, R. A. (2016). Unraveling the biogeographic origins of the Eurasian watermilfoil (Myriophyllum spicatum) invasion in North America. American Journal of Botany, 103(4), 709–718. https://doi.org/10.3732/ajb.1500476 | spa |
dc.relation.references | Moral, J., Agustí-Brisach, C., Raya, M. C., Jurado-Bello, J., López-Moral, A., Roca, L. F., Chattaoui, M., Rhouma, A., Nigro, F., Sergeeva, V., & Trapero, A. (2021). Diversity of Colletotrichum species associated with olive anthracnose worldwide. Journal of Fungi, 7(9), 741. https://doi.org/10.3390/jof7090741 | spa |
dc.relation.references | Morales, M. P. (2019). Ciencia Unisalle Comparación de la morfología y biología floral de Passiflora ( Passifloraceae ) en especies silvestres y cultivadas en Casanare Orinoquía colombiana BIOLOGÍA FLORAL DE Passiflora | spa |
dc.relation.references | Moreira, R. R., Caus, G., Gomes Figueiredo, J. A., & May De Mio, L. L. (2020). Phomopsis rot caused by Diaporthe infecunda on fruit and flowers of Passiflora edulis in Brazil. Australasian Plant Pathology, 49(2), 141–145. https://doi.org/10.1007/s13313-020-00684-x | spa |
dc.relation.references | Morin, L, Jourdan, M., & Paynter, Q. (2000). The gloomy future of the broom rust as a biocontrol agent, 638, 633–638 | spa |
dc.relation.references | Morin, Louise, Evans, K. J., & Sheppard, A. W. (2006). Selection of pathogen agents in weed biological control: Critical issues and peculiarities in relation to arthropod agents. Australian Journal of Entomology, 45(4), 349–365. https://doi.org/10.1111/j.1440-6055.2006.00562.x | spa |
dc.relation.references | Morris, M. J. (1997). Impact of the gall-forming rust fungus Uromycladium tepperianum on the invasive tree Acacia saligna in South Africa. Biological Control, 10(2), 75–82. https://doi.org/10.1006/bcon.1997.0560 | spa |
dc.relation.references | Mukherjee, A., Banerjee, A. K., & Raghu, S. (2021). Biological control of Parkinsonia aculeata: Using species distribution models to refine agent surveys and releases. Biological Control, 159, 104630. https://doi.org/10.1016/j.biocontrol.2021.104630 | spa |
dc.relation.references | Mukherjee, A., Diaz, R., Thom, M., Overholt, W. A., & Cuda, J. P. (2012). Niche-based prediction of establishment of biocontrol agents: An example with Gratiana boliviana and tropical soda apple. Biocontrol Science and Technology, 22(4), 447–461. https://doi.org/10.1080/09583157.2012.664616 | spa |
dc.relation.references | Muschner, V. C., Lorenz, A. P., Cervi, A. C., Bonatto, S. L., Souza-Chies, T. T., Salzano, F. M., & Freitas, L. B. (2003). A first molecular phylogenetic analysis of Passiflora (Passifloraceae). American Journal of Botany, 90(8), 1229–1238. https://doi.org/10.3732/ajb.90.8.1229 | spa |
dc.relation.references | Nakasato, K., Fujioka, S., Sugawara, Y., Ono, T., Nishio, T., & Tsuda, S. (2022). Correction to: First detection of two potyviruses, uraria mosaic virus and passiflora foetida virus Y, from passionfruit in Japan. Journal of General Plant Pathology, 1-1. https://doi.org/10.1007/s10327-021-01016-7 | spa |
dc.relation.references | Ninos, T. F., Veloso, J. S., da Silva, M. A., da Paz, C. D., Câmara, M. P. S., & Peixoto, A. R. (2021). Occurence of Fusarium bostrycoides as cause of wilt on yellow passion fruit plants in Brazil. Journal of Plant Pathology, 1361–1362. https://doi.org/10.1007/s42161-021-00928-9 | spa |
dc.relation.references | Noonim, P., Mahakarnchanakul, W., Varga, J., Frisvad, J. C., & Samson, R. A. (2008). Two novel species of Aspergillus section Nigri from Thai coffee beans. International Journal of Systematic and Evolutionary Microbiology, 58(7), 1727–1734. https://doi.org/10.1099/ijs.0.65694-0 | spa |
dc.relation.references | Nyongesa, B. W., Okoth, S., & Ayugi, V. (2015). Identification key for Aspergillus species isolated from maize and soil of Nandi County, Kenya. Advances in Microbiology, 05(04), 205–229. https://doi.org/10.4236/aim.2015.54020 | spa |
dc.relation.references | Ocampo, J., d’Eeckenbrugge, G. C., & Jarvis, A. (2010). Distribution of the genus Passiflora L. Diversity in Colombia and its potential as an indicator for biodiversity management in the coffee growing zone. Diversity, 2(11), 1158–1180. https://doi.org/10.3390/d2111158 | spa |
dc.relation.references | Ocampo Pérez, J., & Coppens d’Eeckenbrugge, G. (2017). Morphological characterization in the genus Passiflora L.: an approach to understanding its complex variability. Plant Systematics and Evolution, 303(4), 531–558. https://doi.org/10.1007/s00606-017-1390-2 | spa |
dc.relation.references | Önen, H., Özer, Z., & Telci, I. (2002). Bioherbicidal effects of some plant essential oils on different weed species. Journal of Plant Diseases and Protection Sonderheft XVIII, 597-605 | spa |
dc.relation.references | Ortega, S. Á., Ochoa, D. L., Hernández, J., & Palemón, F. A. (2019). Morphological and genetic characterization of Corynespora cassiicola isolates obtained from roselle and associated weeds. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 38(1), 1–17. https://doi.org/10.18781/r.mex.fit.1909-2 | spa |
dc.relation.references | Osorio, J. A., Martínez Lemus, E. P., Hio, J. C., Aguirre, J. E., Vergara, J. A., Luque, N. Y., Rojas, E. D., & Cruz, G. N. (2020). Caracterización sanitaria de los cultivos de granadilla, gulupa y maracuyá en Colombia, con especial referencia a la secadera causada por Fusarium solani f. sp. passiflorae. Corporación Colombiana de Investigación Agropecuaria | spa |
dc.relation.references | Pacheco, T. G., Lopes, A. de S., Welter, J. F., Yotoko, K. S. C., Otoni, W. C., Vieira, L. do N., Guerra, M. P., Nodari, R. O., Balsanelli, E., Pedrosa, F. de O., de Souza, E. M., & Rogalski, M. (2020). Plastome sequences of the subgenus Passiflora reveal highly divergent genes and specific evolutionary features. Plant Molecular Biology, 104(1–2), 21–37. https://doi.org/10.1007/s11103-020-01020-z | spa |
dc.relation.references | Paiva, C. L., Viana, A. P., Santos, E. A., Freitas, J. C. D. O., Silva, R. N. O., & Oliveira, E. J. D. (2014). Genetic variability assessment in the genus Passiflora by SSR markers. Chilean Journal of Agricultural Research, 74(3), 355–360. https://doi.org/10.4067/S0718-58392014000300015 | spa |
dc.relation.references | Palmer, W. A., & Haseler, W. H. (1992). The Host Specificity and Biology of Trirhabda bacharidis (Weber) (Coleoptera: Chrysomelidae), a Species Introduced into Australia for the Biological Control of Baccharis halimifolia L. The Coleopterists Bulletin, 46(1), 61–66. http://www.jstor.org/stable/4008937 | spa |
dc.relation.references | Parisi, J. J., Fischer, I. H., Medina, P. F., Firmino, A. C., & Meletti, L. M. (2018). Pathogenicity and transmission of fungi detected on Passiflora alata seeds. Arquivos Do Instituto Biológico, 85(0), 1–8. https://doi.org/10.1590/1808-1657000702017 | spa |
dc.relation.references | Parry, J. N., Davis, R. I., & Thomas, J. E. (2004). Passiflora virus Y, a novel virus infecting Passiflora spp. in Australia and the Indonesian Province of Papua. Australasian Plant Pathology, 33(3), 423–427. https://doi.org/10.1071/AP04042 | spa |
dc.relation.references | Parry, J. N., Davis, R. I., & Thomas, J. E. (2004). Passiflora virus Y, a novel virus infecting Passiflora spp. in Australia and the Indonesian Province of Papua. Australasian Plant Pathology, 33(3), 423–427. https://doi.org/10.1071/AP04042 | spa |
dc.relation.references | Perdomo, H., García, D., Gené, J., Cano, J., Sutton, D. D., Summerbell, R., & Guarro, J. (2013). Phialemoniopsis, a new genus of Sordariomycetes, and new species of Phialemonium and Lecythophora. Mycologia, 105(2), 398–421. https://doi.org/10.3852/12-137 | spa |
dc.relation.references | Pereira, J. M., Barreto, R. W., Ellison, C. A., & Maffia, L. A. (2003). Corynespora cassiicola f. sp. lantanae: A potential biocontrol agent from Brazil for Lantana camara. Biological Control, 26(1), 21–31. https://doi.org/10.1016/S1049-9644(02)00112-3 | spa |
dc.relation.references | Pereira, O. L., & Barreto, R. W. (2005). The mycobiota of the weed Mitracarpus hirtus in Minas Gerais (Brazil), with particular reference to fungal pathogens for biological control. Australasian Plant Pathology, 34(1), 41–50. https://doi.org/10.1071/AP04083 | spa |
dc.relation.references | Perrone, G., Susca, A., Cozzi, G., Ehrlich, K., Varga, J., Frisvad, J. C., Meijer, M., Noonim, P., Mahakarnchanakul, W., & Samson, R. A. (2007). Biodiversity of Aspergillus species in some important agricultural products. Studies in Mycology, 59, 53–66. https://doi.org/10.3114/sim.2007.59.07 | spa |
dc.relation.references | Pesole, G., Bozzetti, M. P., Lanave, C., Preparata, G., & Saccone, C. (1991). Glutamine synthetase gene evolution: a good molecular clock. Proceedings of the National Academy of Sciences, 88(2), 522-526. https://doi.org/10.1073/pnas.88.2.52 | spa |
dc.relation.references | Petersen, L. M., Hoeck, C., Frisvad, J. C., Gotfredsen, C. H., & Larsen, T. O. (2014). Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules, 19(8), 10898–10921. https://doi.org/10.3390/molecules190810898 | spa |
dc.relation.references | Picos-Muñoz, P. A., García-Estrada, R. S., León-Félix, J., Sañudo-Barajas, A., & Allende Molar, R. (2015). Lasiodiplodia theobromae en cultivos agrícolas de México: Taxonomía, Hospedantes, Diversidad y Control. Revista Mexicana de Fitopatología, 33(1), 54–74 | spa |
dc.relation.references | Polat, Z., Gültekin, M. A., Palacıoğlu, G., & Bayraktar, H. (2022). First report of Botryosphaeria dothidea causing stem canker of hazelnut in Turkey. Journal of Plant Pathology, 104(1), 467-467. https://doi.org/10.1007/s42161-021-01002-0 | spa |
dc.relation.references | Pornsuriya, C., Ito, S. ichi, & Sunpapao, A. (2018). First report of leaf spot on lettuce caused by Curvularia aeria. Journal of General Plant Pathology, 84(4), 296–299. https://doi.org/10.1007/s10327-018-0782-7 | spa |
dc.relation.references | Prasannath, K., Galea, V. J., & Akinsanmi, O. A. (2020). Characterisation of leaf spots caused by Neopestalotiopsis clavispora and Colletotrichum siamense in macadamia in Australia. European Journal of Plant Pathology, 156(4), 1219–1225. https://doi.org/10.1007/s10658-020-01962-6 | spa |
dc.relation.references | Prasannath, Kandeeparoopan, Shivas, R. G., Galea, V. J., & Akinsanmi, O. A. (2021). Neopestalotiopsis species associated with flower diseases of Macadamia integrifolia in Australia. Journal of Fungi, 7(9), 771. https://doi.org/10.3390/jof7090771 | spa |
dc.relation.references | Preece, N., Harvey, K., Hempel, C., & Woinarski, J. C. Z. (2010). Uneven distribution of weeds along extensive transects in Australia’s Northern Territory points to management solutions. Ecological Management and Restoration, 11(2), 127–134. https://doi.org/10.1111/j.1442-8903.2010.00530.x | spa |
dc.relation.references | Prevéy, J. S., & Seastedt, T. R. (2015). Increased winter precipitation benefits the native plant pathogen Ustilago bullata that infects an invasive grass. Biological Invasions, 17(10), 3041–3047. https://doi.org/10.1007/s10530-015-0934-z | spa |
dc.relation.references | Puia, J. D., Hoshino, A. T., Klein, E. M., Almeida, E. D. De, Vigo, S. C., & Canteri, M. G. (2021). Morphological characterization of Corynespora cassiicola Isolates in culture media. Journal of Agricultural Science, 13(11), 74. https://doi.org/10.5539/jas.v13n11p74 | spa |
dc.relation.references | Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., & Vilà, M. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: The interaction of impact measures, invading species’ traits and environment. Global Change Biology, 18(5), 1725–1737. https://doi.org/10.1111/j.1365-2486.2011.02636.x | spa |
dc.relation.references | Qiu, F., Li, X., Xie, C. P., Li, J., & Zheng, F. Q. (2021). Identification of Colletotrichum brevisporum causing fruit rot in yellow passion fruit (Passiflora edulis f. flavicarpa) in China. Australasian Plant Pathology, 50(2), 229–232. https://doi.org/10.1007/s13313-020-00766-w | spa |
dc.relation.references | Rabah, S. O., Shrestha, B., Hajrah, N. H., Sabir, M. J., Alharby, H. F., Sabir, M. J., Alhebshi, A. M., Sabir, J. S. M., Gilbert, L. E., Ruhlman, T. A., & Jansen, R. K. (2019). Passiflora plastome sequencing reveals widespread genomic rearrangements. Journal of Systematics and Evolution, 57(1), 1–14. https://doi.org/10.1111/jse.12425 | spa |
dc.relation.references | Rabinovich, J. E., Costa, A. A., Muñoz, I. J., Schilman, P. E., & Fountain-Jones, N. M. (2021). Machine-learning model led design to experimentally test species thermal limits: The case of kissing bugs (triatominae). PLoS Neglected Tropical Diseases, 15(3), 1–15. https://doi.org/10.1371/journal.pntd.0008822 | spa |
dc.relation.references | Radhakrishnan, R., Alqarawi, A. A., & Abd_Allah, E. F. (2018). Bioherbicides: Current knowledge on weed control mechanism. Ecotoxicology and Environmental Safety, 158, 131–138. https://doi.org/10.1016/j.ecoenv.2018.04.018 | spa |
dc.relation.references | Ramaiya, S. D., Bujang, J. S., & Zakaria, M. H. (2014). Genetic diversity in Passiflora species assessed by morphological and ITS sequence analysis. Scientific World Journal, 2014. https://doi.org/10.1155/2014/598313 | spa |
dc.relation.references | Ramírez, G. H., Anderson, F. E., & Bianchinotti, M. V. (2019). Induction of sporulation of cercosporoid pathogens of moth vine (Araujia hortorum). New Zealand Journal of Botany, 57(3), 179–187. https://doi.org/10.1080/0028825X.2019.1578244 | spa |
dc.relation.references | Rathnayake, G. R. N., Kumar, N. S., Jayasinghe, L., Araya, H., & Fujimoto, Y. (2018). Chemical investigation of metabolites produced by an endophytic fungi Phialemonium curvatum from the leaves of Passiflora edulis. Natural Product Research, 32(20), 2483–2486. https://doi.org/10.1080/14786419.2017.1416373 | spa |
dc.relation.references | Richardson, D. M., & Van Wilgen, B. W. (2004). Invasive alien plants in South Africa: how well do we understand the ecological impacts?: working for water. South African Journal of Science, 100(1), 45-52 | spa |
dc.relation.references | Riska, Nakamura, M., & Iwai, H. (2020). Effects of coinfection with East Asian Passiflora virus and East Asian Passiflora distortion virus on Passiflora foetida. Journal of General Plant Pathology, 86(3), 211–218. https://doi.org/10.1007/s10327-020-00913-7 | spa |
dc.relation.references | Rizwan, H. M., Zhimin, L., Harsonowati, W., Waheed, A., Qiang, Y., Yousef, A. F., Munir, N., Wei, X., Scholz, S. S., Reichelt, M., Oelmuller, R., & Chen, F. (2021). Identification of fungal pathogens to control postharvest passion fruit (Passiflora edulis) decays and multi-omics comparative pathway analysis reveals purple is more resistant to pathogens than a yellow cultivar. Journal of Fungi, 7(10), 879. https://doi.org/10.3390/jof7100879 | spa |
dc.relation.references | Robertson, M. P., Kriticos, D. J., & Zachariades, C. (2008). Climate matching techniques to narrow the search for biological control agents. Biological Control, 46(3), 442–452. https://doi.org/10.1016/j.biocontrol.2008.04.002 | spa |
dc.relation.references | Rodríguez-Gálvez, E., Guerrero, P., Barradas, C., Crous, P. W., & Alves, A. (2017). Phylogeny and pathogenicity of Lasiodiplodia species associated with dieback of mango in Peru. Fungal Biology, 121(4), 452–465. https://doi.org/10.1016/j.funbio.2016.06.004 | spa |
dc.relation.references | Rodríguez-Rey, M., Consuegra, S., Börger, L., & de Leaniz, C. G. (2019). Improving species distribution modelling of freshwater invasive species for management applications. PLoS ONE, 14(6), 1–14. https://doi.org/10.1371/journal.pone.0217896 | spa |
dc.relation.references | Roger, E., Duursma, D. E., Downey, P. O., Gallagher, R. V., Hughes, L., Steel, J., Johnson, S. B., & Leishman, M. R. (2015). A tool to assess potential for alien plant establishment and expansion under climate change. Journal of Environmental Management, 159, 121–127. https://doi.org/10.1016/j.jenvman.2015.05.039 | spa |
dc.relation.references | Sax, D., & Brown, J. (2000). The paradox of invasion. Global Ecology & Biogeography, 363–371. https://doi.org/10.3905/JOI.2010.19.1.032 | spa |
dc.relation.references | Shahin, E. A., & Shepard, J. F. (1979). An efficient technique for inducing profuse sporulation of Alternaria species. Phytopathology, 69, 618–620 | spa |
dc.relation.references | Shea, K., & Chesson, P. (2002). Community ecology theory as a framework for biological invasions. Ecology & Evolution, 17(4), 170–176. https://doi.org/10.1016/s0169-5347(02)02495-3 | spa |
dc.relation.references | Shi, G. Y., Zeng, Q., Wei, Y. W., Hu, C. J., Ye, X. L., & Jiao, C. (2021). First report of anthracnose caused by Colletotrichum brasiliense on violet passion fruit in China. Plant Disease, 106(2), 769. https://doi.org/https://doi.org/10.1094/PDIS-11-20-2485-PDN | spa |
dc.relation.references | Shishkoff, N., & Bruckart, W. L. (1996). Water Stress and Damage Caused by Puccinia jaceaeon Two Centaurea Species. Biological Control, 6(1), 57-63. https://doi.org/10.1006/bcon.1996.0008 | spa |
dc.relation.references | Shrestha, B., Weng, M. L., Theriot, E. C., Gilbert, L. E., Ruhlman, T. A., Krosnick, S. E., & Jansen, R. K. (2019). Highly accelerated rates of genomic rearrangements and nucleotide substitutions in plastid genomes of Passiflora subgenus Decaloba. Molecular Phylogenetics and Evolution, 138, 53–64. https://doi.org/10.1016/j.ympev.2019.05.030 | spa |
dc.relation.references | Shrestha, S. K., Lamour, K., & Young-Kelly, H. (2017). Genome sequences and SNP analyses of Corynespora cassiicola from cotton and soybean in the southeastern United States reveal limited diversity. PLoS ONE, 12(9), 6–14. https://doi.org/10.1371/journal.pone.0184908 | spa |
dc.relation.references | Silva, D. M., Batista, L. R., Rezende, E. F., Fungaro, M. H. P., Sartori, D., & Alves, E. (2011). Identification of fungi of the genus Aspergillus section nigri using polyphasic taxonomy. Brazilian Journal of Microbiology, 42(2), 761–773. https://doi.org/10.1590/S1517-83822011000200044 | spa |
dc.relation.references | Silva, G. S., & Souza, M. M. (2020). Origin of the cultivated passion fruit Passiflora edulis f. flavicarpa and genomic relationships among species of the subgenera Decaloba and Passiflora. Plant Biology, 22(3), 533–540. https://doi.org/10.1111/plb.13100 | spa |
dc.relation.references | Silva, J. L., Silva, W. F. D. S., Lopes, L. E. M., Silva, M. J. D. S., Silva-Cabral, J. R. A., Costa, J. F. D. O., Lima, G. S. A., & Assunção, I. P. (2021). First report of Colletotrichum tropicale causing anthracnose on Passiflora edulis in Brazil. Plant Disease, 105(11). https://doi.org/https://doi.org/10.1094/PDIS-07-20-1440-PDN | spa |
dc.relation.references | Silva, W. P. K., Deverall, B. J., & Lyon, B. R. (1998). Molecular, physiological and pathological characterization of Corynespora leaf spot fungi from rubber plantations in Sri Lanka. Plant Pathology, 47(3), 267–277. https://doi.org/10.1046/j.1365-3059.1998.00245.x | spa |
dc.relation.references | Simberloff, D., Martin, J. L., Genovesi, P., Maris, V., Wardle, D. A., Aronson, J., Courchamp, F., Galil, B., García-Berthou, E., Pascal, M., Pyšek, P., Sousa, R., Tabacchi, E., & Vilà, M. (2013). Impacts of biological invasions: What’s what and the way forward. Trends in Ecology and Evolution, 28(1), 58–66. https://doi.org/10.1016/j.tree.2012.07.013 | spa |
dc.relation.references | Singh, B. P., & Gupta, V. K. (2017). Molecular markers in mycology. Springer International Publishing Switzerland. | spa |
dc.relation.references | Smith, L., Datnoff, L., Pernezny, K., & Schlub, R. (2009). Phylogenetic and pathogenic characterization of Corynespora cassiicola isolates. Acta Horticulturae, 808, 51–56. 10.17660/ActaHortic.2009.808.6 | spa |
dc.relation.references | Soares, A. C. F., Sousa, C. D. S., Garrido, M. D. S., Perez, J. O., & De Almeida, N. S. (2006). Soil streptomycetes with in vitro activity against the yam pathogens Curvularia eragrostides and Colletotrichum gloeosporioides. Brazilian Journal of Microbiology, 37(4), 456–461. https://doi.org/10.1590/S1517-83822006000400010 | spa |
dc.relation.references | Solarte, F., Muñoz, C. G., Maharachchikumbura, S. S. N., & Álvarez, E. (2018). Diversity of Neopestalotiopsis and Pestalotiopsis spp., causal agents of guava scab in Colombia. Plant Disease, 102(1), 49–59. https://doi.org/10.1094/PDIS-01-17-0068-RE | spa |
dc.relation.references | Stoetzel, H. J., Leseberg, N. P., Murphy, S. A., Andrew, M. E., Plant, K. J., Harrington, G. N., & Watson, J. E. M. (2020). Modelling the habitat of the endangered Carpentarian Grasswren (Amytornis dorotheae): The importance of spatio-temporal habitat availability in a fire prone landscape. Global Ecology and Conservation, 24, e01341. https://doi.org/10.1016/j.gecco.2020.e01341 | spa |
dc.relation.references | Su, L., Deng, H., & Niu, Y. C. (2016). Phialemoniopsis endophytica sp. nov., a new species of endophytic fungi from Luffa cylindrica in Henan, China. Mycological Progress, 15(5). https://doi.org/10.1007/s11557-016-1189-5 | spa |
dc.relation.references | Su, Y. Y., Qi, Y. L., & Cai, L. (2012). Induction of sporulation in plant pathogenic fungi. Mycology, 3(3), 195–200. https://doi.org/10.1080/21501203.2012.719042 | spa |
dc.relation.references | Sumabat, L. G., Kemerait, R. C., Kim, D. K., Mehta, Y. R., & Brewer, M. T. (2018). Clonality and geographic structure of host-specialized populations of Corynespora cassiicolacausing emerging target spot epidemics in the southeastern United States. PLoS ONE, 13(10), 1–19. https://doi.org/10.1371/journal.pone.0205849 | spa |
dc.relation.references | Sun, W., Huang, S., Xia, J., Zhang, X., & Li, Z. (2021). Morphological and molecular identification of Diaporthe species in south-western China, with description of eight new species. MycoKeys, 77, 65–95. https://doi.org/10.3897/MYCOKEYS.77.59852 | spa |
dc.relation.references | Swarbreck, S. M., Defoin-Platel, M., Hindle, M., Saqi, M., & Habash, D. Z. (2011). New perspectives on glutamine synthetase in grasses. Journal of Experimental Botany, 62(4), 1511–1522. https://doi.org/10.1093/jxb/erq356 | spa |
dc.relation.references | Taguiam, J. D., Evallo, E., Bengoa, J., Maghirang, R., & Balendres, M. A. (2020). Pathogenicity of Epicoccum sorghinum towards dragon fruits (Hylocereus species) and in vitro evaluation of chemicals with antifungal activity. Journal of Phytopathology, 168(6), 303–310. https://doi.org/10.1111/jph.12893 | spa |
dc.relation.references | Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G+C-content biases. Molecular Biology and Evolution, 9(4), 678–687. https://doi.org/10.1093/oxfordjournals.molbev.a040752 | spa |
dc.relation.references | Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution, 10(3), 512–526. https://doi.org/10.1093/oxfordjournals.molbev.a040023 | spa |
dc.relation.references | Tan, Y. P., Crous, P. W., & Shivas, R. G. (2018). Cryptic species of Curvularia in the culture collection of the Queensland Plant Pathology Herbarium. MycoKeys, 35, 1–25. https://doi.org/10.3897/mycokeys.35.25665 | spa |
dc.relation.references | Taylor, J. W. (2011). One Fungus = One Name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus, 2(2), 113–120. https://doi.org/10.5598/imafungus.2011.02.02.01 | spa |
dc.relation.references | Te Beest, D. O., Yang, X. B., & Cisar, C. R. (1992). The status of biological control of weeds with fungal pathogens. Annual Review of Phytopathology, 30, 637–657. https://doi.org/10.1146/annurev.py.30.090192.003225 | spa |
dc.relation.references | Tennakoon, D. S., Kuo, C. H., Maharachchikumbura, S. S. N., Thambugala, K. M., Gentekaki, E., Phillips, A. J. L., Bhat, D. J., Wanasinghe, D. N., de Silva, N., Promputtha, I., & Hyde, K. D. (2021). Taxonomic and phylogenetic contributions to Celtis formosana, Ficus ampelas, F. septica, Macaranga tanarius and Morus australis leaf litter inhabiting microfungi. Fungal Diversity, 108(1), 1-215. https://doi.org/10.1007/s13225-021-00474-w | spa |
dc.relation.references | Torres, A. G. (2019). Fungos fitopatogênicos associados a Passiflora foetida no brasil e o seu potencial para uso em controle biológico. Universidade Federal de Viçosa | spa |
dc.relation.references | Tran, D. M., Clément-Demange, A., Déon, M., Garcia, D., Le Guen, V., Clément-Vidal, A., Soumahoro, M., Masson, A., Label, P., Le, M. T., & Pujade-Renaud, V. (2016). Genetic determinism of sensitivity to Corynespora cassiicola exudates in rubber tree(Hevea brasiliensis). PLoS ONE, 11(10), 1–25. https://doi.org/10.1371/journal.pone.0162807 | spa |
dc.relation.references | Triest, D., Piérard, D., De Cremer, K., & Hendrickx, M. (2016). Fusarium musae infected banana fruits as potential source of human fusariosis: May occur more frequently than we might think and hypotheses about infection. Communicative and Integrative Biology, 9(2), 1–5. https://doi.org/10.1080/19420889.2016.1162934 | spa |
dc.relation.references | Trujillo, E. E., & Obrero, F. P. (1978). Cephalosporium wilt of Cassia surattensis in Hawaii. Proceedings of the IV International Symposium on Biological Control of Weeds, August 30–September 2, 1976. Center Env. Prog., Inst. Food Agric. Sci., Univ. Florida, Gainesville, FL, 217–220 | spa |
dc.relation.references | Valverde, E., Bianchini, A., Herr, J. R., Rose, D. J., Wegulo, S. N., & Hallen-Adams, H. E. (2020). Recent population changes of Fusarium head blight pathogens: drivers and implications. Canadian Journal of Plant Pathology, 42(3), 315–329. https://doi.org/10.1080/07060661.2019.1680442 | spa |
dc.relation.references | Van Hove, F., Waalwijk, C., Logrieco, A., Munaut, F., & Moretti, A. (2011). Gibberella musae (Fusarium musae) sp. nov., a recently discovered species from banana is sister to F. verticillioides. Mycologia, 103(3), 570–585. https://doi.org/10.3852/10-038 | spa |
dc.relation.references | Vanderplank, J. (2013). A revision of Passiflora section Dysosmia. Curtis’s Botanical Magazine, 30(4), 318–387. https://doi.org/10.1111/curt.12050 | spa |
dc.relation.references | Vicente, J. R., Fernandes, R. F., Randin, C. F., Broennimann, O., Gonçalves, J., Marcos, B., Pôças, I., Alves, P., Guisan, A., & Honrado, J. P. (2013). Will climate change drive alien invasive plants into areas of high protection value? An improved model-based regional assessment to prioritise the management of invasions. Journal of Environmental Management, 131, 185–195. https://doi.org/10.1016/j.jenvman.2013.09.032 | spa |
dc.relation.references | Vieira, B. S., Dias, L. V. S. A., Langoni, V. D., & Lopes, E. A. (2018). Liquid fermentation of Colletotrichum truncatum UFU 280, a potential mycoherbicide for beggartick. Australasian Plant Pathology, 47(3), 277–283. https://doi.org/10.1007/s13313-018-0555-y | spa |
dc.relation.references | Villani, A., Moretti, A., De Saeger, S., Han, Z., Di Mavungu, J. D., Soares, C. M. G., Proctor, R. H., Venâncio, A., Lima, N., Stea, G., Paciolla, C., Logrieco, A. F. R., & Susca, A. (2016). A polyphasic approach for characterization of a collection of cereal isolates of the Fusarium incarnatum-equiseti species complex. International Journal of Food Microbiology, 234, 24–35. https://doi.org/10.1016/j.ijfoodmicro.2016.06.023 | spa |
dc.relation.references | Voglmayr, H., & Jaklitsch, W. M. (2017). Corynespora, Exosporium and Helminthosporium revisited – New species and generic reclassification. Studies in Mycology, 87, 43–76. https://doi.org/10.1016/j.simyco.2017.05.001 | spa |
dc.relation.references | Volcy, C. (2008). Génesis y evolución de los postulados de Koch y su relación con la fitopatología. Una revisión. Agronomía Colombiana, 26(1), 107–115 | spa |
dc.relation.references | Wan, J. Z., & Wang, C. J. (2018). Expansion risk of invasive plants in regions of high plant diversity: A global assessment using 36 species. Ecological Informatics, 46, 8–18. https://doi.org/10.1016/j.ecoinf.2018.04.004 | spa |
dc.relation.references | Wang, J., Wang, X., Yuan, B., & Qiang, S. (2013). Differential gene expression for Curvularia eragrostidis Pathogenic Incidence in Crabgrass (Digitaria sanguinalis) Revealed by cDNA-AFLP Analysis. PLoS ONE, 8(10), 6–11. https://doi.org/10.1371/journal.pone.0075430 | spa |
dc.relation.references | Wang, L., Nysetvold, E., & Zhou, X. G. (2021). Culture media promoting sporulation of rice kernel smut fungus Tilletia barclayana. European Journal of Plant Pathology, 161(3), 629–635. https://doi.org/10.1007/s10658-021-02348-y | spa |
dc.relation.references | Wang, N., Chi, F., Ji, Z., Zhou, Z., & Zhang, J. (2021). First report of passion fruit anthracnose caused by Colletotrichum constrictum. Plant Disease, 105(12), 4158 https://doi.org/https://doi.org/10.1094/PDIS-04-21-0754-PDN | spa |
dc.relation.references | Webber, B. L., Yeoh, P. B., & Scott, J. K. (2014). Invasive Passiflora foetida in the Kimberley and Pilbara: understanding the threat and exploring solutions. CSIRO | spa |
dc.relation.references | White, T. J., Bruns, T., Lee, S. J. W. T., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications, 18(1), 315-322. https://doi.org/10.1016/b978-0-12-372180-8.50042-1 | spa |
dc.relation.references | Whiteside, J. O. (1966). A revised list of plant diseases in Rhodesia. Kirkia, 5(2), 87–196. http://www.jstor.org/stable/23501041 | spa |
dc.relation.references | Witt, A., & Luke, Q. (2017). Guide to the naturalized and invasive plants of Eastern Africa. CAB International. https://doi.org/10.1079/9781786392152.0000 | spa |
dc.relation.references | Wong, Mélanie, J., Puchooa, D., Bahorun, T., & Jeewon, R. (2021). Molecular characterization of marine fungi associated with Haliclona sp. (sponge) and Turbinaria conoides and Sargassum portierianum (brown algae). Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 91(3), 643–656. https://doi.org/10.1007/s40011-021-01229-y | spa |
dc.relation.references | Wonglom, P., Ito, S., & Sunpapao, A. (2018). First report of Curvularia lunata causing leaf spot of Brassica rapa subsp. pekinensis in Thailand . New Disease Reports, 38(1), 15–15. https://doi.org/10.5197/j.2044-0588.2018.038.015 | spa |
dc.relation.references | WSSA. (2016). Do you have a weed, noxious weed, invasive weed or “superweed”? Simple distinctions make all the difference, 1 | spa |
dc.relation.references | Xi, K., Shan, L., Yang, Y., Zhang, G., Zhang, J., & Guo, W. (2021). Species diversity and chemotypes of Fusarium species associated with maize stalk rot in Yunnan province of southwest China. Frontiers in Microbiology, 12, 652062. https://doi.org/10.3389/fmicb.2021.652062 | spa |
dc.relation.references | Xie, X., Huang, Y., Shi, Y., CHAI, A. L., Li, L., & Li, B. (2021). First Report of Cladosporium tenuissimum causing leaf spots on carnation in China. Plant Disease, 2–5. https://doi.org/10.1094/pdis-07-21-1437-pdn | spa |
dc.relation.references | Xie, Y., Han, S., Li, X., Amombo, E., & Fu, J. (2017). Amelioration of salt stress on bermudagrass by the fungus Aspergillus aculeatus. Molecular Plant-Microbe Interactions, 30(3), 245–254. https://doi.org/10.1094/MPMI-12-16-0263-R | spa |
dc.relation.references | Yockteng, R., Coppens, G., Souza-chies, T. T., & Leo, P. C. De. (2011). Wild crop relatives: genomic and breeding resources. Wild Crop Relatives: Genomic and Breeding Resources. https://doi.org/10.1007/978-3-642-20447-0 | spa |
dc.relation.references | Yockteng, R., & Nadot, S. (2004). Phylogenetic relationships among Passiflora species based on the glutamine synthetase nuclear gene expressed in chloroplast (ncpGS). Molecular Phylogenetics and Evolution, 31(1), 379–396. https://doi.org/10.1016/S1055-7903(03)00277-X | spa |
dc.relation.references | Yodsing, N., Lekphrom, R., Sangsopha, W., Aimi, T., & Boonlue, S. (2018). Secondary metabolites and their biological activity from Aspergillus aculeatus KKU-CT2. Current Microbiology, 75(5), 513–518. https://doi.org/10.1007/s00284-017-1411-y | spa |
dc.relation.references | Zhang, Q., Yang, Z. F., Cheng, W., Wijayawardene, N. N., Hyde, K. D., Chen, Z., & Wang, Y. (2020). Diseases of Cymbopogon citratus (Poaceae) in China: Curvularia nanningensis sp. Nov. MycoKeys, 63, 49–67. https://doi.org/10.3897/mycokeys.63.49264 | spa |
dc.relation.references | Zhang, W., Niu, X., & Yang, J. (2021). Lasiodiplodia mediterranea sp. nov. de vid, encina y naranjo dulce y Lasiodiplodia exigua. Plant Disease, 105(4) | spa |
dc.relation.references | Zhao, Q., Shi, Y., Wang, Y., Xie, X., Li, L., Guo, L., Chai, A., & Li, B. (2021). Quantifying airborne dispersal route of Corynespora cassiicola in greenhouses. Frontiers in Microbiology, 12, 716758. https://doi.org/10.3389/fmicb.2021.716758 | spa |
dc.relation.references | Zheng, C., Liu, Z.-H., Tang, S.-S., Lu, D., & Huang, X.-Y. (2014). First report of leaf spot caused by Cladosporium oxysporum on greenhouse eggplant in China. Plant Disease, 98(4), 566-566. https://doi.org/10.1094/PDIS-06-13-0606-PDN | spa |
dc.relation.references | Zhu, J. Z., Chen, J., Wang, Y., Li, C. X., Zhang, C. J., He, A. G., & Zhong, J. (2020). Leaf spot of Hydrangea macrophylla caused by Corynespora cassiicola in China. Canadian Journal of Plant Pathology, 42(1), 125–132. https://doi.org/10.1080/07060661.2019.1632934 | spa |
dc.relation.references | Zozaya-Hinchliffe, M., Potenza, C., Ortega, J. L., & Sengupta-Gopalan, C. (2005). Nitrogen and metabolic regulation of the expression of plastidic glutamine synthetase in alfalfa (Medicago sativa). Plant Science, 168(4), 1041–1052. https://doi.org/10.1016/j.plantsci.2004.12.001 | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | spa |
dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::632 - Lesiones, enfermedades, plagas vegetales | spa |
dc.subject.lemb | Plantas invasivas | |
dc.subject.lemb | Control biológico de hongos | |
dc.subject.proposal | Passiflora foetida | spa |
dc.subject.proposal | Fitopatógeno | spa |
dc.subject.proposal | Control biológico | spa |
dc.subject.proposal | Phytopathogen | eng |
dc.subject.proposal | Biological control | eng |
dc.subject.wikidata | Passiflora foetida | |
dc.title | Análisis molecular, distribución e identificación de hongos fitopatógenos asociados a Passiflora foetida L. en Colombia | spa |
dc.title.translated | Molecular analysis, distribution and identification of phytopathogenic fungi associated with Passiflora foetida L. in Colombia | eng |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
oaire.awardtitle | Control biológico de Conyza bonariensis y Passiflora foetida con hongos fitopatógenos en Colombia | spa |
oaire.fundername | CSIRO | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1037623168.2021.pdf
- Tamaño:
- 7.08 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Agrarias
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: