Estudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia)

dc.contributor.advisorOsorio Roa, Coralia
dc.contributor.advisorFranco Ospina, Luis Alberto
dc.contributor.authorCorrea Lozano, Camilo Andrés
dc.contributor.orcid0009-0008-1226-4835spa
dc.contributor.researchgroupEspecies Vegetales como Fuente de Aroma, Pigmentos y Compuestos Bioactivosspa
dc.date.accessioned2023-11-02T19:22:30Z
dc.date.available2023-11-02T19:22:30Z
dc.date.issued2023-11-01
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractSe analizó el fruto de uva caimarona (Pourouma cecropiifolia) con miras a identificar los compuestos con actividad citotóxica frente a diferentes líneas células tumorales humanas. Para tal fin, se analizaron por separado el epicarpio, mesocarpio y semillas de la fruta, las cuales se liofilizaron y los residuos correspondientes se extrajeron con una mezcla de acetona-agua (7:3, v/v). Los extractos de cada parte de la fruta se sometieron partición con solventes de polaridad creciente: pentano, diclorometano, acetato de etilo, butanol y agua, para obtener cinco subfracciones en cada caso. En un ensayo preliminar empleado el método MTT (modificado) sobre la línea A549, se identificó que las fracciones de acetato de etilo del epicarpio (AcOEtEpi), acetato de etilo del mesocarpio (AcOEtPulp), aceto de etilo de la semilla (AcOEtCot) y butanol de la pulpa (ButPulp), como las fracciones con mayor reducción de la población celular. Por lo que, se decidió caracterizar la composición química de estas fracciones mediante análisis no direccionado utilizando la técnica UPLC-ESI/MS, identificando los compuestos principales en base a sus principales fragmentos y comparación con estándares. De esta manera, se identificaron varios flavonoides, proantocianidinas y triterpenos pentacíclicos, entre otros compuestos. A partir de dicha caracterización, se evaluó la actividad citotóxica de estas fracciones y ocho compuestos puros frente a las líneas de carcinomas colorrectales, HT-29 y RKO y carcinoma de pulmón A549, obteniendo una leve actividad de AcOEtEpi sobre HT-29 (IC50: 96.43±4.18 µg/ml) y una moderada de AcOEtCot frente a RKO (IC50: 43,10±2,79 µg/ml). Por otra parte, se identificó citotoxicidad moderada (IC50: 155-50 µM) de tres triterpenoides identificados en AcOEtEpi contra en HT-29, RKO y A549. Se destaca que las dos fracciones activas, expusieron selectividad sistémica contra fibroblastos de pulmón humano (MRC-5) y riñón de hámster (BHK-21), mientras que los triterpenoides mostraron baja selectividad (o negativa) sistémica al reducir en mayor proporción la viabilidad celular de dichos fibroblastos que la de las células cancerosas probadas. Los resultados acá presentados, muestran que la semilla del fruto de uva caimarona (Pourouma cecropiifolia Mart), subproducto de la comercialización de esta fruta, es una fuente promisoria de compuestos con actividad citotóxica frente a líneas celulares de tumores humanos. (Texto tomado de la fuente)spa
dc.description.abstractPolar extracts of epicarp, mesocarp and cotyledon of Pourouma cecropiifolia fruit were obtained in an acetone:water (7:3, v/v) and fractionated with solvents of increasing polarity (pentane, dichloromethane, ethyl acetate and butanol), in order to identify compounds with cytotoxic activity against carcinoma cells. Extracts from each part of the fruit were partitioned with solvents of increasing polarity: pentane, dichloromethane, ethyl acetate, butanol and water; to obtain five different fractions. In a preliminary test using the MTT method (modified) on line A549, the fractions of ethyl acetate from the epicarp (EtOACEpi), ethyl acetate from the mesocarp (EtOAcPulp), ethyl acetate from the seed (EtOAcCot) and butanol from the pulp (ButPulp) were identified as the fractions with the greatest reduction in cell population. Therefore, the chemical composition of these fractions was characterized by untargeted analysis using the UPLC ESI/MS technique, identifying the present compounds based on their main fragments and by comparison with standards. Pointing out that these fractions are mainly composed of several flavonoids, proanthocyanidins and pentacyclic triterpenes, among other compounds. Based on the previous, the cytotoxic activity of these compounds, and some pure compounds present on them, was evaluated on colorectal carcinoma lines, HT-29 and RKO and lung carcinoma A549, obtaining a slight activity of EtOAcEpi on HT-29 (IC50: 96.43±4.18 µg/ml) and a moderate activity of EtOAcCot against RKO (IC50: 43.10±2.79 µg/ml). On the other hand, moderate cytotoxicity (IC50: 155-50 µM) of three triterpenoids present in EtOAcEpi against HT-29, RKO and A549 was identified. The two active fractions exhibited systemic selectivity over human lung (MRC-5) and hamster kidney (BHK-21) fibroblasts, while the triterpenoids showed low systemic (or negative) selectivity by reducing the cell viability of these fibroblasts to a greater extent than that of the cancer cells tested. The results reported show that the seed of uva caimarona (Pourouma cecropiifolia Mart), as a subproduct of the commercialization of this fruit, is a promising source of compounds with cytotoxic activity against human tumor cell lines.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.description.methodsSe obtuvo un extracto de epicarpio, mesocarpio y semilla de uva caimarona (Pourouma cecropiifolia) en acetona:agua (7:3), el cual se fraccionó mediante partición con solventes de polaridad creciente: Pentano, Diclorometano, Acetato de Etilo, Butanol y Agua; los cuales se ensayaron sobre la línea de carcinoma de pulmón humano (A549) en el ensayo antiproliferativo MTT. Las fracciones con actividad citotóxica promisoria se caracterizaron mediante análisis no direccionado mediante cromatografía UPLC, con fuente de ionización por electrospray (ESI), con analizador de tiempo de vuelo (TOF), acoplado a espectrometría de masas elevada (MSE). Posteriormente, a estas fracciones y compuestos puros presentes en estas se les determinó su concentración inhibitoria 50 (IC50) sobre las líneas de carcinoma A549, HT29 y RKO; además, se estableció su índice de selectividad (SI) sobre las líneas de fibroblastos MRC-5 y BHK-21.spa
dc.description.researchareaProductos Naturalesspa
dc.description.sponsorshipEl Centro Universitario de Baviera para América Latina (BAYLAT) es una organización del Ministerio de Ciencias y Artes del Estado Libre de Baviera (StMWK), que fomenta la relación entre Instituciones de Enseñanza Superior de Baviera y América Latina, promociona a Baviera como centro de tecnología e innovación productiva en los países latinoamericanos y promueve la cooperación científica con América Latina. BAYLAT tiene su sede en la Universidad Friedrich-Alexander de Erlangen-Nürnberg (FAU). BAYLAT es responsable de los siguientes países: Argentina, Bolivia, Brasil, Chile, Colombia, Costa Rica, Cuba, Ecuador, El Salvador, Guatemala, Honduras, México, Nicaragua, Panamá, Paraguay, Perú, Puerto Rico, República Dominicana, Uruguay y Venezuela. Los objetivos de BAYLAT están directamente vinculados con la estrategia de internacionalización universitaria del Estado Libre de Baviera. A fin de cumplir con dichos objetivos, BAYLAT planifica y lleva a cabo sus actividades en el marco del concepto de la diplomacia científica, académica y de cooperación.spa
dc.format.extent126 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84865
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesMinCiencias, Propuestas de la Misión Internacional de Sabios, Vicepresidencia de la República de Colombia, Ministerio de Ciencia, Tecnología e Innovación, Bogotá D. C., 2019. Disponible: https://www.minciencias.gov.co/sala_de_prensa/libro-virtual-la-mision-internacional-sabios-disponible-para-todos. Consultado Julio 2023spa
dc.relation.referencesY. Beltrán Barreiro, Árboles alimentarios en la Amazonía colombiana, Ministerio de Medioambiente. 19 Mayo 2021. Disponible: https://visionamazonia.minambiente.gov.co/news/arboles-alimentarios-en-la-amazonia-colombiana/. Consultado Julio 2023spa
dc.relation.referencesB. Giraldo Benavides, G. Vargas Avila, M. Zubieta Vega y M. W. Coy Torres, Construcción participatica de sistemas productivos sostenibles para la Amazonía norte colombiana, Revista Colombia Amazónica, vol. 1, nº 1, pp. 51-70. ISBN 978-958-8317-76-2, 2004spa
dc.relation.referencesJ. Barrios, C. P. Cordero, F. Aristizabal, F. J. Heredia, A. L. Morales y C. Osorio, Chemical analysis and screening as anticancer agent of anthocyanin-rich extract from uva caimarona (Pourouma cecropiifolia Mart.) fruit, J. Agric. Food Chem., vol. 58, Nn° 4, pp. 2100-2110. DOI: 10.1021/jf9041497, 2010spa
dc.relation.referencesInformación de Cáncer en Colombia, 2021. Disponible: https://www.infocancer.co/portal/#!/filtro_mortalidad/. Consultado Julio 2023spa
dc.relation.referencesL-Sh. Wang y G. D. Stoner, Anthocyanins and their role in cancer prevention, Cancer Lett., vol. 269, n° 2, pp. 281-290. DOI: 10.1016/j.canlet.2008.05.020, 2008spa
dc.relation.referencesCancillería de Colombia, Siete países suscriben el Pacto de Leticia por la Amazonía, Leticia, Amazonas, 2019. Disponible: https://www.cancilleria.gov.co/siete-paises-suscriben-pacto-leticia-amazonia. Consultado Julio 2023spa
dc.relation.referencesC. Berg y M. Celis, Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, 2015. Disponible: http://catalogoplantasdecolombia.unal.edu.co/en/resultados/especie/Pourouma%20cecropiifolia/. Consultado Julio 2023spa
dc.relation.referencesC. Escobar, J. Zuluaga, D. Criollo y L. Montealegre, Uva Caimarona (Pourouma cecropiifolia) Fruta exótica de la Amazonía, de Árboles de Uso Múltiple, Caquetá, Gráficas Florencia, 2001, pp. 1-5spa
dc.relation.referencesT. K. Lim, Pourouma cecropiifolia, Edible Medicinal and Non-Medicinal Plants, vol. 6, pp. 446-449. DOI: 10.1007/978-94-007-5628-1, 2013spa
dc.relation.referencesD. Lopes-Lutz, J. Dettmann, C. Nimalaratne y A. Schieber, Characterization and quantification of polyphenols in Amazon grape (Pourouma cecropiifolia Martius), Molecules, vol. 15, no 12, pp. 8543-8552. DOI: 10.3390/molecules15128543, 2010spa
dc.relation.referencesJ. M. Velasco-España, Evaluación de algunos parámetros mitocondriales en astrocitos T-98G frente al estímulo con extractos ricos en antocianinas derivados de Pourouma cecropiifolia (uva caimarona) y Bactris guineensis (Corozo), Tesis de pregrado en Nutrición, Bogotá D. C.: Pontificia Universidad Javeriana, 2017spa
dc.relation.referencesJ. Ferlay, M. Colombet, I. Soerjomataram, D. M. Parkin, M. Piñeros, A. Znaor y F. Bray, Cancer statistics for the year 2020: An overview, Int. J. Cancer., vol 149, no 4, pp 778-789. DOI: 10.1002/ijc.33588, 2021spa
dc.relation.referencesWHO, Global Health Estimates: Life expectancy and leading causes of death and disability, Global Health Observatory, 2020. Disponible: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates. Consultado Julio 2023spa
dc.relation.referencesZ. Bakouny, J. E. Hawley, T. K. Choueiri, S. Peters, B. I. Rini, J. L. Warner y C. A. Painter, COVID-19 and Cancer: Current Challenges and Perspectives, Cancer Cell., vol. 38, nº 5, pp. 629-646. DOI: 10.1016/j.ccell.2020.09.018, 2020spa
dc.relation.referencesL. Allahqoli, A. Mazidimoradi, H. Salehiniya y I. Alkatout, Impact of COVID-19 on cancer screening: a global perspective, Curr. Opin. Support Palliat. Care, vol. 16, nº 3, p. 102–109. DOI: 10.1097/SPC.0000000000000602, 2022spa
dc.relation.referencesT. Malagón, J. H. E. Yong, P. Tope, W. H. Miller-Jr y E. L. Franco, Predicted long-term impact of COVID-19 pandemic-related care delays on cancer mortality in Canada, Int. J. Cancer, vol. 150, nº 8, pp. 1244-1254. DOI: 10.1002/ijc.33884, 2020spa
dc.relation.referencesT. P. Hanna, W. D. King, S. Thibodeau, M. Jalink, G. A. Paulin, E. Harvey-Jones, D. E. O'Sullivan, C. M. Booth, R. Sullivan y A. Aggarwal, Mortality due to cancer treatment delay: systematic review and meta-analysis, BMJ, vol. 371, pp m4087. DOI: 10.1136/bmj.m4087, 2020spa
dc.relation.referencesMinSalud, Incidencia del cáncer se redujo en los últimos 3 años, 4 Febrero 2021. Disponible en: https://www.minsalud.gov.co/Paginas/Incidencia-del-cancer-se-redujo-en-los-ultimos-3-anos.aspx. Consultado Julio 2023spa
dc.relation.referencesWorld Health Organization, Estimated number of new cases in 2021, Colombia, both sexes, all ages, International Agency for Research on Cancer. Disponible en: https:// gco.iarc.fr/today/data/factsheets/populations/170-colombia-fact-sheets. Consultado Julio 2023spa
dc.relation.referencesWorld Health Organization, GLOBOCAN 2020, Estimated age-standardized incidence rates (World) in 2020, World, both sexes, all ages (excl. NMSC). Disponible en: https://gco.iarc.fr/today/online-analysis-multi-bars?v=2020&mode=cancer&mode_population=countries&population=900&populations=900&key=asr&sex=0&cancer=39&type=0&statistic=5&prevalence=0&population_group=0&ages_group%5B%5D=0&ages_group%5B%5D=17&nb_items=10& Consultado Julio 2023spa
dc.relation.referencesPanAmerican Health Organization y Institutional Repository fro Information Sharing. Américas, Informe de la evaluación rápida de la prestación de servicios para enfermedades no transmisibles durante la pandemia de COVID-19 en las Américas, 2020. Disponible en: https://iris.paho.org/handle/10665.2/52283. Consultado Julio 2023spa
dc.relation.referencesF. Naja y R. Hamadeh, Nutrition amid the COVID-19 pandemic: a multi-level framework for action, Eur. J. Clin. Nutr., Vol. 74, pp 1117-1121. DOI: 10.1038/s41430-020-0634-3, 2020spa
dc.relation.referencesM. Narici, G. De Vito, M. Franchi, A. Paoli, T. Moro, G. Marcolin, B. Grassi, G. Baldassarre, L. Zuccarelli, G. Biolo, F. G. Di Girolamo, N. Fiotti, F. Dela, P. Greenhaff y C. Maganaris, Impact of sedentarism due to the COVID-19 home confinement on neuromuscular, cardiovascular and metabolic health: Physiological and pathophysiological implications and recommendations for physical and nutritional countermeasures, Eur. J. Sport Sci., vol. 21, n. 4, pp 614-635. DOI: 10.1080/17461391.2020.1761076, pp. 1-22, 2020spa
dc.relation.referencesM. Demasi, COVID-19 and metabolic syndrome: could diet be the key?, BMJ Evid. Based Med., Vol. 26, n 1, pp 1-2. DOI: 10.1136/bmjebm-2020-111451, 2020. http://dx.doi.org/10.1136/bmjebm-2020-111451spa
dc.relation.referencesCh. Sforza, COVID-19 Lockdown, sedentarism, metabolic alterations, obesity: Can we reverse the domino effect in children? Children, vol. 9, nº 6, p. 851. DOI: 10.3390/children9060851, 2022spa
dc.relation.referencesT. Stocks, M. Van Hemelrijck, J. Manjer, T. Bjorge, H. Ulmer, G. Hallmans, B. Lindkvist, R. Selmer, G. Nagel, S. Tretli, H. Concin, A. Engeland, H. Jonsson y P. Stattin, Blood pressure and risk of cancer incidence and mortality in the metabolic syndrome and cancer project, Hypertension, vol. 59, nº 4, pp. 802-810. DOI: 10.1161/HYPERTENSIONAHA.111.189258, 2012spa
dc.relation.referencesA. Russo, M. Autelitano y L. Bisanti, Metabolic syndrome and cancer risk, Eur. J. Cancer, vol. 44, nº 2, pp. 293-297. DOI: 10.1016/j.ejca.2007.11.005, 2008spa
dc.relation.referencesS. Braun, K. Bitton-Worms y D. LeRoith, The link between the metabolic syndrome and cancer, Int. J. Biol. Sci., vol. 7, nº 7, pp. 1003–1015. DOI: 10.7150/ijbs.7.1003, 2011spa
dc.relation.referencesM. F. Gregor y G. S. Hotamisligil, Inflammatory mechanisms in obesity, Annu. Rev. Immunol., Vol. 29, pp. 415-445. DOI: 10.1146/annurev-immunol-031210-101322, 2011spa
dc.relation.referencesZ. M. Diaconeasa, A. D. Frond, I. Stirbu, D. Ruginda y C. Socaciu, Anthocyanins-smart molecules for cancer prevention, Br. J. Pharmacol., vol. 174, n° 11, pp. 75-94. DOI: 10.1111/bph.13627, 2017spa
dc.relation.referencesJ. N. Lu, R. Panchanathan, W. S. Lee, H. J. Kim, D. H. Kim, Y. H. Choi, G. S. Kim, S. C. Shin y S. C. Hong, Anthocyanins from the fruit of Vitis coignetiae pulliat inhibit tnf-augmented cancer proliferation, migration, and invasion in A549 cells, Asian Pac. J. Cancer Prev., Vol. 18, n° 11, pp. 2919-2923. DOI: 10.22034/APJCP.2017.18.11.2919, 2017spa
dc.relation.referencesA. Farrukh, J. Jeyaprakash, K. Hina, M. Radha, S. Inderpal, y G. Ramesh. Lung cancer inhibitory activity of dietary berries and berry polyphenolics. J. Berry Res., vol. 6, n° 2, pp.105–114. DOI: 10.3233/JBR-160120, 2016spa
dc.relation.referencesP-N. Chen, S-Ch. Chu, H-L. Chiou, W-H. Kuo, Ch-L. Chiang, y Y-Sh. Hsieh. Mulberry anthocyanins, cyanidin 3-rutinoside and cyanidin 3-glucoside, exhibited an inhibitory effect on the migration and invasion of a human lung cancer cell line. Cancer Lett., vol. 235, n° 2, pp. 248–259. DOI: 10.1016/j.canlet.2005.04.033, 2006spa
dc.relation.referencesH. Kausar, J. Jeyabalan, F. Aqil, D. Chabba, J. Sidana, I. P. Singh, y R. C. Gupta. Berry anthocyanidins synergistically suppress growth and invasive potential of human non-small-cell lung cancer cells. Cancer Lett., vol. 325, n° 1, pp. 54–62. DOI:10.1016/j.canlet.2012.05.029, 2012spa
dc.relation.referencesL. G. Maciel, M. A. V. do Carmo, L. Azevedo, H. Daguer, L. Molognoni, M. M. de Almeida, D. Granato y N. D. Rosso. Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food Chem. Toxicol., vol. 113, n° 113, pp. 187–197. DOI: 10.1016/j.fct.2018.01.053, 2018spa
dc.relation.referencesB. Gauliard, D. Grieve, R. Wilson, A. Crozier, C. Jenkins, W. D. Mullen, y M. Lean. The effects of dietary phenolic compounds on cytokine and antioxidant production by A549 cells. J. Med. Food, vol. 11, n° 2, pp. 382–384. DOI:10.1089/jmf.2007.593, 2008spa
dc.relation.referencesH. Eguchi, H. Matsunaga, S. Onuma, Y. Yoshino, T. Matsunaga, y A. Ikari. Down-regulation of claudin-2 expression by cyanidin-3-glucoside enhances sensitivity to anticancer drugs in the spheroid of human lung adenocarcinoma A549 cells. Int. J. Mol. Sci., vol. 22, n° 2, pp. 499-514. DOI:10.3390/ijms22020499, 2021spa
dc.relation.referencesD. K. Sun, L. Wang, y P. Zhang. Antitumor effects of chrysanthemin in pc-3 human prostate cancer cells are mediated via apoptosis induction, caspase signalling pathway and loss of mitochondrial membrane potential. Afr. J. Tradit. Complement. Altern. Med., vol. 14, n° 4, pp. 54–61. DOI: 10.21010/ajtcam.v14i4.7, 2017spa
dc.relation.referencesK. Jongsomchai, V. Leardkamolkarn, y S. Mahatheeranont. A rice bran phytochemical, cyanidin 3-glucoside, inhibits the progression of PC3 prostate cancer cell. Anat. Cell Biol., vol. 53, n° 4, pp. 481-492. DOI: 10.5115/acb.20.085, 2020spa
dc.relation.referencesW. Yi, J. Fischer, y C. C. Akoh. Study of anticancer activities of Muscadine grape phenolics in vitro. J. Agric. Food Chem., vol. 53, n° 22, pp. 8804–8812. DOI: 10.1021/jf0515328, 2005spa
dc.relation.referencesJ. W. Yun, W. S. Lee, M. J. Kim, J. N. Lu, M. H. Kang, H. G. Kim, D. C. Kim, E. J. Choi, J. Y. Choi, H. G. Kim, Y. K. Lee, C. H. Ryu, G. S. Kim, Y. H. Choi, O. J. Park, y S. C. Shin. Characterization of a profile of the anthocyanins isolated from Vitis coignetiae Pulliat and their anti-invasive activity on HT-29 human colon cancer cells. Food Chem. Toxicol., vol. 48, n° 3, pp. 903–909. DOI:10.1016/j.fct.2009.12.031, 2010spa
dc.relation.referencesA. Akim, L. C. Ling, A. Rahmat, y Z. A. Zakaria. Antioxidant and anti-proliferative activities of Roselle juice on Caov-3, MCF-7, MDA-MB-231 and HeLa cancer cell lines. Afr. J. Pharm. Pharmacol., vol. 5, n° 7, pp. 957-965. DOI: 10.5897/AJPP11.207, 2011spa
dc.relation.referencesL. Li, L. S. Adams, S. Chen, C. Killian, A. Ahmed, y N. P. Seeram. Eugenia jambolana Lam. Berry extract inhibits growth and induces apoptosis of human breast cancer but not non-tumorigenic breast cells. J. Agric. Food Chem., vol. 57, n° 3, pp. 826–831. DOI:10.1021/jf803407q, 2009spa
dc.relation.referencesJ. M. Aswathy, L. Bosco, G. S. Manoj, y K. Murugan. Anti-proliferative potentiality of purified anthocyanin from in vitro culture of Clerodendron infortunatum L. against human cervical cancer cells (HeLa). Asian J. Pharm. Health Sci., vol. 8, n°1, pp. 1812-1819. 2018spa
dc.relation.referencesCh-P. Hsu, Y-H. Lin, Sh-P. Zhou, Y-Ch. Chung, C. C. Lin, y S. C. Wang. Longan flower extract inhibits the growth of colorectal carcinoma. Nutr. Cancer, vol. 62, n° 2, pp. 229–236. DOI: 10.1080/01635580903305367, 2010spa
dc.relation.referencesC. Neto, C. G. Krueger, T. L. Lamoureaux, M. Kondo, A. J. Vaisberg, R. A. R. Hurta, S. Curtis, M. D. Matchett, H. Yeung, M. Sweeney y J. D. Reed. MALDI-TOF MS characterization of proanthocyanidins from cranberry fruit (Vaccinium macrocarpon) that inhibit tumor cell growth and matrix metalloproteinase expression in vitro. J. Sci. Food Agric., vol. 86, n° 1, pp. 18–25. DOI: 10.1002/jsfa.2347, 2005spa
dc.relation.referencesS. F. Huang, Ch-T. Horng, Y-S. Hsieh, Y-H. Hsieh, S-C. Chu, P-N. Chen. Epicatechin-3-gallate reverses TGF-β1-induced epithelial-to-mesenchymal transition and inhibits cell invasion and protease activities in human lung cancer cells. Food Chem. Toxicol., vol. 94, pp. 1–10. DOI: 10.1016/j.fct.2016.05.009, 2016spa
dc.relation.referencesS. Akhtar, S. M. Meeran, N. Katiyar, y S. K. Katiyar. Grape seed proanthocyanidins inhibit the growth of human non-small cell lung cancer xenografts by targeting insulin-like growth factor binding protein-3, tumor cell proliferation, and angiogenic factors. Clin. Cancer Res., vol. 15, n° 3, pp. 821–831. DOI: 10.1158/1078-0432.ccr-08-1901, 2009spa
dc.relation.referencesV. Kaplum, A. C. Ramos, M. E. L. Consolaro, M. A. Fernández, T. Ueda-Nakamura, B. P. Dias-Filho, S. de Oliveira Silva, J. C. P. De Mello y C. V. Nakamura. Proanthocyanidin polymer-rich fraction of Stryphnodendron adstringens promotes in vitro and in vivo cancer cell death via oxidative stress. Front. Pharmacol, vol. 9, pp. 694-712. DOI: 10.3389/fphar.2018.00694, 2018spa
dc.relation.referencesX. X. Chen, G. P-H. Leung, Z-J. Zhang, J-B. Xiao, L-X. Lao, F. Feng, J. Ch-W. Mak, Y. Wang, S. Cho-W. Sze y K. Y. B. Zhang. Proanthocyanidins from Uncaria rhynchophylla induced apoptosis in MDA-MB-231 breast cancer cells while enhancing cytotoxic effects of 5-fluorouracil. Food Chem. Toxicol., vol. 107, Pt. A., pp. 248–260. DOI: 10.1016/j.fct.2017.07.012, 2017spa
dc.relation.referencesX. Shen, Y. Wang, y F. Wang. Characterisation and biological activities of proanthocyanidins from the barks of Pinus massonian and Acacia mearnsii. Nat. Prod. Res., vol. 24, n° 6, pp. 590–598. DOI:10.1080/14786410903194472, 2010spa
dc.relation.referencesY. Q. Tang, I. B. Jaganath, y S. D. Sekaran. Phyllanthus spp. induces selective growth inhibition of PC-3 and MeWo human cancer cells through modulation of cell cycle and induction of apoptosis. PLoS ONE, vol. 5, n° 9, pp. e12644. DOI: 10.1371/journal.pone.0012644, 2010spa
dc.relation.referencesS-I. Kawahara, C. Ishihara, K. Matsumoto, S. Senga, K. Kawaguchi, A. Yamamoto, J. Suwannachot, Y. Hamauzu, H. Makabe, y H. Fujii. Identification and characterization of oligomeric proanthocyanidins with significant anti-cancer activity in adzuki beans (Vigna angularis). Heliyon, vol. 5, n° 10, pp. e02610. DOI: 10.1016/j.heliyon.2019.e02610, 2019spa
dc.relation.referencesD. Marko, N. Puppel, Z. Tjaden, S. Jakobs y G. Pahlke, The substitution pattern of anthocyanidins affects different cellular signaling cascades regulating cell proliferation, Mol. Nutr. Food Res., vol. 48, n° 4, pp. 318-325. DOI: 10.1002/mnfr.200400034, 2004spa
dc.relation.referencesP. Jing, J. A. Bomser, S. J. Schwartz, J. He, B. A. Magnunson y M. M. Giusti, Structure-function relationships of anthocyanins from various anthocyanin-rich extracts on the inhibition of colon cancer cell growth, J. Agric. Food Chem., vol. 56, n° 20, pp. 9391-9398. DOI: 10.1021/jf8005917, 2008spa
dc.relation.referencesG. D. Stoner, L-S. Wang y T. Chen, Chemoprevention of esophageal squamous cell carcinoma, Toxicol. Appl. Pharmacol., vol. 224, n° 3, pp. 337-349. DOI: 10.1016/j.taap.2007.01.030, 2007spa
dc.relation.referencesS. Rajendran, S. Marappan, P. Suganyadevi, M. Rajalakshmi y M. F. Poffe, Antiproliferative properties of anthocyanin from Indian cassava (Manihot Esculenta, Crantz) on Hep-2 And Mcf-7 cell lines, Am. J. Pharm. Tech. Res., vol. 5, n° 3, pp. 467-479, 2015spa
dc.relation.referencesW. Liu, J. Xu, Y. Liu, X. Yu, X. Tang, Z. Wang y X. Li, Anthocyanins potentiate the activity of trastuzumab in human epidermal growth factor receptor 2-positive breast cancer cells in vitro and in vivo, Mol. Med. Rep., vol. 10, n° 4, pp. 1921-1926. DOI: 10.3892/mmr.2014.2414, 2014spa
dc.relation.referencesA. Bunea, D. Rugina, Z. Sconta, R. M. Pop, A. Pintea, C. Socaciu, F. Tabaran, Ch. Grootaert, K. Struijs, y J. VanCamp, Anthocyanin determination in blueberry extracts from various cultivars and their antiproliferative and apoptotic properties in B16-F10 metastatic murine melanoma cells, Phytochemistry, vol. 95, pp. 436-444. DOI: 10.1016/j.phytochem.2013.06.018, 2013spa
dc.relation.referencesP. Skehan, R. Storeng, D. Scudiero, A. Monks, J. McMahon y D. Vistica, New colorimetric cytotoxicity assay for anticancer-drug screening, J Natl Cancer Inst, vol. 82, nº 13, pp. 1107-1112. DOI: 10.1093/jnci/82.13.1107, 1990spa
dc.relation.referencesInstituto Colombiano de Normas Técnicas, NTC 440:2015. Productos alimenticios. Métodos de ensayo,» 19 Octubre 2022. Disponible en: https://tienda.icontec.org/gp-productos-alimenticios-metodos-de-ensayo-ntc440-2015.html. Consultada Julio 2023spa
dc.relation.referencesJ. H. Isaza, H. Ito y T. Yoshida, Oligomeric hidrolizable tannins from Monochaetum multiflorum, Phytochemistry, vol. 65, nº 3, pp.359-367. DOI: 10.1016/j.phytochem.2003.11.017, 2004spa
dc.relation.referencesT. Mosmann, Rapid colorimetric assay for cellular growth and survival - Application to proliferation and cytotoxicity assays, J. Immunol. Methods, vol 65, nº 1-2, pp. 55-63. DOI: 10.1016/0022-1759(83)90303-4, 1983spa
dc.relation.referencesD. Caro, D. Rivera, Y. Ocampo, K. Müller y F. L. A., A promising naphthoquinone [8-hydroxy-2-(2-thienylcarbonyl)naphtho[2,3-b]thiophene-4,9-dione] exerts anti-colorectal cancer activity through ferroptosis and inhibition of MAPK signaling pathway based on RNA sequencing, Open Chem., vol. 18, nº 1, pp. 1242–1255. DOI: 10.1515/chem-2020-0170, 2020spa
dc.relation.referencesJ. Manosroi, M. Sainakham, W. Manosroi y A. Manosroi, Anti-proliferative and apoptosis induction activities of extracts from Thai medicinal plant recipes selected from MANOSROI II database, J. Ethnopharmacol., vol. 141, nº 1, pp. 451-459. DOI: 10.1016/j.jep.2012.03.010, 2012spa
dc.relation.referencesJ. López Montoya, Determinación de los requerimientos nutricionales de la Piña variedad MD-2 en suelos ácidos del municipio de Santander de Quilichao, Tesis Magister en Ciencias Agrarias, Universidad Nacional de Colombia. Facultad de Ciencias Agropecuarias. Sede Palmira, 2016spa
dc.relation.referencesE. L. Acero Duarte, Principales plantas útiles de la Amazonía Colombiana. Unidad Forestal del Proyecto Radargravimétrico del Amazonas, 1979. IDEAM. Disponible: http://koha.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=4653476&shelfbrowse_itemnumber=6058961#shelfbrowse. Consultado Julio 2023spa
dc.relation.referencesISO. Biological evaluation of medical devices — Part 5: Tests for in vitro cytotoxicity. Ed. 3, 2009, pp. 1-34. Disponible: https://www.iso.org/standard/36406.html. Consultado Julio 2022spa
dc.relation.referencesA. Martínez M., Metabolitos Scundarios Aromáticos. Flavonoides, en: Química de Productos Naturales, Medellín, Universidad de Antioquia, pp. 116-118, 2020spa
dc.relation.referencesJ. James y I. Dubery, Identification and quantification of triterpenoid centelloids in Centella asiatica (L.) urban by densitometric TLC, JPC-J. Planar Chromat., vol. 24, nº 1, pp. 82-87, 2011spa
dc.relation.referencesJ.-R. Du, F.-Y. Long y C. Chen, Research progress on natural triterpenoid saponins in the chemoprevention and chemotherapy of cancer, Enzymes, vol. 36, pp. 95-30. Doi: 10.1016/B978-0-12-802215-3.00006-9, 2014spa
dc.relation.referencesJ. A. Gomes de Brito, L. da Silva Pinto, C. F. Chaves, A. J. R. da Silva, M. F. das Gracas Fernandes da Silva y F. Cotinguiba, Chemophenetic ssignificance of Anomalocalyx uleanus metabolites are revealed by dereplication using molecular networking tools, Molecules, vol. 26, nº 4, pp. 925-947. https://doi.org/10.3390/molecules26040925, 2021spa
dc.relation.referencesK. F. Amaral, M. M. Rogero, R. A. Fock, P. Borelli y G. Gavini, Cytotoxicity analysis of EDTA and citric acid applied on murine resident macrophages culture, Int. Endod. J., vol. 40, nº 5, pp. 338-343. DOI: 10.1111/j.1365-2591.2007.01220.x, 2007spa
dc.relation.referencesJ. Soares-Roter, L. Moura-Sassone, S. Rivera-Fidel y D. Araki-Ribeiro, In vitro genotoxicity and cytotoxicity in murine fibroblasts exposed to EDTA, NaOCl, MTAD and citric acid, Braz. Dent. J, vol. 23, nº 5, pp. 527-533. DOI: 10.1590/s0103-64402012000500010, 2012spa
dc.relation.referencesL. Luciano Giardino, L. Generali, P. Savadori, M. Cesar Barros, L. Lobo de Melo Sima, J. Pytko-Polonczyk, W. Wilkonsk, V. Ballal y F. Bombarda de Andrade, Can the concentration of citric acid affect its cytotoxicity and antimicrobial activity?, Dent. J. (Basel), vol. 10, nº 148, pp. 1-13. DOI: 10.3390/dj10080148, 2022.spa
dc.relation.referencesS. C. Forester y A. L. Waterhouse, Gut metabolites of anthocyanins, gallic acid, 3-O-methylgallic acid, and 2,4,6-trihydroxybenzaldehyde, inhibit cell proliferation of Caco-2 cells, J. Agric. Food Chem., vol. 58, nº 9, pp. 5320-5327. DOI: 10.1021/jf9040172, 2010spa
dc.relation.referencesK. W. Lee, H. J. Hur, H. J. Lee y C. Y. Lee, Antiproliferative effects of dietary phenolic substances and hydrogen peroxide,» J. Agric. Food Chem., vol. 53, p. 1990−1995. DOI: 10.1021/jf0486040, 2005spa
dc.relation.referencesC. L. Hsu, S. L. Huang y G. C. Yen, Inhibitory effect of phenolic acids on the proliferation of 3T3-L1 preadipocytes in relation to their antioxidant activity, J. Agric. Food Chem., vol. 54, p. 4191−4197. DOI: 10.1021/jf0609882, 2006spa
dc.relation.referencesS. Klenow y M. Glei, New insight into the influence of carob extract and gallic acid on hemin induced modulation of HT29 cell growth parameters, Toxicol. In Vitro, vol. 23, nº 6 p. 1055–1061. DOI: 10.1016/j.tiv.2009.06.006, 2009spa
dc.relation.referencesFadilah, A. Yanuar, A. Arsianti, R. Andrajati y R. I. Paramita, In silico study, synthesis, and cytotoxic activity of esterification of eugenol and gallic acidagainst HT-29 cell line, Orient. J. Chem., vol. 33, nº 6, pp. 3009-3014. DOI: http://dx.doi.org/10.13005/ojc/330638, 2017spa
dc.relation.referencesZ. H. Liu, S. Y. Zhang, Y. Y. Yu y G. Q. Su, (-)-4-O-(4-O-b-D-Glucopyranosylcaffeoyl)quinic acid presents antitumor activity in HT-29 human colon cancer in vitro and in vivo, Mol. Cell Toxicol., vol. 11, pp. 457-463. DOI: 10.1007/s11095-018-2459-5, 2015spa
dc.relation.referencesM. D. Rush, E. A. Rue, A. Wong, P. Kowalski, J. A. Glinski y R. B. van Breemen, Rapid determination of procyanidins using MALDI-ToF/ToF mass spectrometry, J. Agric. Food Chem., vol. 66, nº 43, pp. 11355-11361. DOI: 10.1021/acs.jafc.8b04258, 2018spa
dc.relation.referencesD. Desdiani, I. Rengganis, S. Djauzi, A. Setiyono, M. Sadikin, S.-W. A. Jusman, N. C. Siregar, Suradi, P. C. Eyanoer y F. Fadilah, In Vitro assay and study interaction of Uncaria gambir (Hunter) Roxb. as anti-fibrotic activity against A549 cell line, Pharmacogn J., vol. 12, nº 6, pp. 1232-1240. DOI: 10.5530/PJ.2020.12.172, 2020spa
dc.relation.referencesJ. T. Mao, B. Xue, J. Smoake, Q.-Y. Lu, H. Park, S. M. Henning, W. Burns, A. Bernabei, D. Elashoff, K. J. Serio y L. Massie. MicroRNA-19a/b mediates grape seed procyanidin extract-induced anti-neoplastic effects against lung cancer. J. Nutr. Biochem., vol. 34, p. 118–125. DOI: 10.1016/j.jnutbio.2016.05.003, 2016spa
dc.relation.referencesM. Orabi, O. Alqahtani, B. Alyami, A. Al Awadh, E.-S. Abdel-Sattar, K. Matsunami, D. Hamdan y M. Abouelela. Human Lung Cancer (A549) Cell Line Cytotoxicity and Anti-Leishmania major Activity of Carissa macrocarpa Leaves: A Study Supported by UPLC-ESI-MS/MS Metabolites Profiling and Molecular Docking. Pharmaceuticals, vol. 15, pp. 1561-1576. DOI: 10.3390/ph15121561, 2022spa
dc.relation.referencesI. Hernández-Balmaseda, I. R. Guerra, K. Declerck, J. A. Herrera Isidrón, C. Pérez-Novo, G. Van Camp, O. De Wever, K. González, M. Labrada, A. Carr, G. Dantas-Cassali, D. C. dos Reis, L. Delgado-Roche, R. R. Núñez, Delgado y W. Vanden Berghe. Marine Seagrass Extract of Thalassia testudinum Suppresses Colorectal Tumor Growth, Motility and Angiogenesis by Autophagic Stress and Immunogenic Cell Death Pathways. Mar. Drugs, vol. 19, nº 2, p. 52. DOI: 10.3390/md19020052, 2021spa
dc.relation.referencesA. Faria, C. Calhau, V. de Freitas y N. Mateus. Procyanidins as Antioxidants and Tumor Cell Growth Modulators. J. Agric. Food Chem., vol. 54, nº 6, p. 2392–2397. DOI: 10.1021/jf0526487, 2006spa
dc.relation.referencesD. Esposito, A. Chen, M. H. Grace, S. Komarnytsky y M. A. Lila. Inhibitory Effects of Wild Blueberry Anthocyanins and Other Flavonoids on Biomarkers of Acute and Chronic Inflammation in Vitro. J. Agric. Food Chem., vol. 62, nº 29, pp. 7022-7028. DOI: 10.1021/jf4051599, 2014spa
dc.relation.referencesS. Wei, Y. Sun, L. Wang, ZhangT., W. Hu, W. Bao, L. Mao, J. Chen, H. Li, Y. Wen y Z. Chen. Hyperoside suppresses BMP-7-dependent PI3K/AKT pathway in human hepatocellular carcinoma cells. Ann. Transl. Med., vol. 9, nº 15, p. 1233. DOI: 10.21037/atm-21-2980, 2021spa
dc.relation.referencesT. Fu, L. Wang, X. Jin, H. Sui, Z. Liu y Y. Jin. Hyperoside induces both autophagy and apoptosis in non-small cell lung cancer cells in vitro. Acta Pharmacol. Sin., vol. 37, p. 505–518. DOI: 10.1038/aps.2015.148, 2016spa
dc.relation.referencesY. Yang, J. Tantai, Y. Sun, C. Zhong y Z. Li. Effect of hyperoside on the apoptosis of A549 human non small cell lung cancer cells and the underlying mechanism. Mol. Med. Rep., vol. 16, nº 5, pp. 6483-6488. DOI: 10.3892/mmr.2017.7453, 2017spa
dc.relation.referencesS. Puangpraphant, M. A. Berhow y E. de Mejía. Yerba Mate (Ilex Paraguariensis St. Hilaire) Saponins Inhibit Human Colon Cancer Cell Proliferation. de Hispanic Foods: Chemistry and Bioactive Compounds, Washington, American Chemical Society, pp. 307-321. DOI:10.1021/bk-2012-1109.ch018, 2012spa
dc.relation.referencesP. Ferreira-Santos, H. Badim, Â. Salvador, A. Silvestre, S. Santos, S. Rocha, A. Sousa, M. Pereira, C. Wilson, C. Rocha, J. A. Teixeira y C. M. Botelho. Chemical Characterization of Sambucus nigra L. Flowers Aqueous Extract and Its Biological Implications. Biomolecules, vol. 11, n°8, pp. 1222-1244. DOI: 10.3390/biom1108122, 2021spa
dc.relation.referencesH.-J. Kim, S.-K. Kim, B.-S. Kim, S.-H. Lee, Y.-S. Park, B.-K. Park, S.-J. Kim, J. Kim, C. Choi, J.-S. Kim, S.-D. Cho, J.-W. Jung, K.-H. Roh, K.-S. Kang y J.-Y. Jung. Apoptotic Effect of Quercetin on HT-29 Colon Cancer Cells via the AMPK Signaling Pathway. J. Agric. Food Chem., vol. 58, nº 15, p. 8643–8650. DOI: 10.1021/jf101510z, 2010spa
dc.relation.referencesS. Lin, J. Heb, F. Wu, H. Wang, D. Wu, J. Sun, D. Zhang, H. Qu y B. Yang.Production of nigragillin and dihydrophaseic acid by biotransformation of litchi pericarp with Aspergillus awamori and their antioxidant activities. J. Funct. Foods, vol. 7, pp. 278-286. DOI:10.1016/j.jff.2014.02.001, 2014spa
dc.relation.referencesY. Zhou, H. Chen, B. Wang, H. Liang, Y. Zhao y Q. Zhang, Sesquiterpenoid and phenolic glucoside gallates from Lagerstroemia balansae. Planta Med., vol. 77, nº 17, pp. 1944-1946. DOI: 10.1055/s-0031-1280093, 2017spa
dc.relation.referencesH. J. Kim, C. B. Jin, M. J. Son, Y. S. Lee, C. S. Yook y J. Y. Lee. Aster Glehni extracts, fractions or compounds isolated therefrom for the treatment or prevention of hyperuricemia or gout. United States Patente US 2015/0337001 A1, 20 Mayo 2015spa
dc.relation.referencesI. Jae-Kyung, K. Jin-Kyu, O. Joa-Sub y S. Dong-Wan. 5-Caffeoylquinic acid inhibits invasion of non-small cell lung cancer cells through the inactivation of p70S6K and Akt activity: Involvement of p53 in differential regulation of signaling pathways. Int. J. Oncol., vol. 48, pp. 1907-1912. DOI: 10.3892/ijo.2016.3436¸ 2016spa
dc.relation.referencesK. L. Ooi, T. S. T. Muhammad, M. L. Tan y S. F. Sulaiman.Cytotoxic, apoptotic and anti--glucosidase activities of 3,4-di-O-caffeoyl quinic acid, an antioxidant isolated from the polyphenolic-rich extract of Elephantopus mollis Kunth. J. Ethnopharmacol., vol. 135, nº 3, p. 685–695. DOI: 10.1016/j.jep.2011.04.001, 2011spa
dc.relation.referencesA. Trendafilova, V. Ivanova, M. Rangelov, M. Todorova, O. G. S. Yur, T. Ozek, Aneva¸I., R. Veleva, V. Moskova-Doumanova, J. Doumanov y T. Topouzova-Hristova. Caffeoylquinic Acids, Cytotoxic, Antioxidant, Acetylcholinesterase and Tyrosinase Enzyme Inhibitory Activities of Six Inula Species from Bulgaria. Chem. Biodiversity, vol. 17, 1-12, e200051. DOI: 10.1002/cbdv.202000051, 2020spa
dc.relation.referencesY. J. Yang, X. Liu, H. R. Wu, X. F. He, Y. R. Bi, Y. Zhu y Z. L. Liu. Radical scavenging activity and cytotoxicity of active quinic acid derivatives from Scorzonera divaricata roots. Food Chem., vol. 138, nº 2, pp. 2057-2063. DOI: 10.1016/j.foodchem.2012.10.122, 2013spa
dc.relation.referencesH. Villota, M. Moreno-Ceballos, G. A. Santa-González, D. Uribe, I. C. Henao Castañeda, L. M. Preciado y J. Pedroza-Díaz. Biological Impact of Phenolic Compounds from Coffee on Colorectal Cancer. Pharmaceuticals, vol. 14, nº 8, p. 761. DOI: 10.3390/ph14080761, 2021spa
dc.relation.referencesM. Bunse, P. Lorenz, F. C. Stintzing y D. R. Kammerer. Insight into the Secondary Metabolites of Geum urbanum L. and Geum rivale L. Seeds (Rosaceae). Plants, vol. 10, pp. 1219-1236. DOI: 10.3390/plants10061219, 2021spa
dc.relation.referencesT. Akiyama, O. Takana y S. Shibata. Chemical Studies on the Oriental Plant Drugs. Sapogenins of the Roots of Platycodon grandiflorum A. de Candolle. Structure of Platycodigenin. Chem. Pharm. Bull., vol. 20, nº 9, pp. 1952-1956. DOI: 10.1248/cpb.14.1150, 1972spa
dc.relation.referencesQ. Wei, B. Zhang, P. Li, X. Wen y J. Yang. Maslinic acid inhibits colon tumorigenesis by AMPK-mTOR signaling pathway. J. Agric. Food Chem., vol. 67, pp. 4259-4272. DOI: 10.1021/acs.jafc.9b00170, 2019spa
dc.relation.referencesA. Parra, S. Martin-Fonseca, F. Rivas, F. J. Reyes-Zurita, M. Medina-O’Donnell, E. E. Rufino-Palomares, A. Martínez, A. García-Granados, J. A. Lupiañez y F. Albericio. Solid-Phase Library Synthesis of Bi-Functional Derivatives of Oleanolic and Maslinic Acids and Their Cytotoxicity on Three Cancer Cell Lines. ACS Comb. Sci., vol. 16, nº 8, pp. 428-447. DOI: 10.1021/co500051z, 2014spa
dc.relation.referencesS. Zhang, D. Ding, X. Zhang, L. Shan y Z. Liu, Maslinic acid induced apoptosis in bladder cancer cells through activating p38 MAPK signaling pathway. Mol. Cell. Biochem., vol. 392, nº 1, p. 281–287. DOI: 10.1007/s11010-014-2038-y, 2014spa
dc.relation.referencesX. Bai, Y. Zhang, H. Jiang, P. Yang, H. Li, Y. Zhang y P. He. Effects of maslinic acid on the proliferation and apoptosis of A549 lung cancer cells. Mol. Med. Rep., vol. 13, nº 1, pp. 117-122. DOI: 10.3892/mmr.2015.4552, 2016spa
dc.relation.referencesP. K. K. A. H. Bunpo, H. Nakayama, T. Kuwahara, U. Vinitketkumnuen y Y. Ohnishi. Inhibitory effects of asiatic acid and CPT-11 on growth of HT-29 cells. J. Med. Invest., vol. 52, nº 1, pp. 65-73. DOI: 10.2152/jmi.52.65, 2005spa
dc.relation.referencesT. Wua, J. Geng, W. Guo y J. Z. Z. Gao. Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm. Sin. B., vol. 7, nº 1, pp. 65-72. DOI: 10.1016/j.apsb.2016.04.003, 2017spa
dc.relation.referencesC. W. Cho, D. S. Choi, M. H. Cardone, C. W. Kim, A. J. Sinskey y C. Rha, Glioblastoma cell death induced by asiatic acid. Cell Biol. Toxicol., vol. 22, pp. 393-408. DOI: 10.1007/s10565-006-0104-2, 2006spa
dc.relation.referencesX. Tian, S. Guo, S. Zhang, P. Li, T. Wang, C. Ho, M. H. Pna y N. Bai. Chemical characterization of main bioactive constituents in Paeonia ostii seed meal and GC‐MS analysis of seed oil. J. Food Biochem., vol. 44, n°1, e13088. DOI: 10.1111/jfbc.13088, 2019spa
dc.relation.referencesZ. Chen, K.-Y. Huang, Y. Ling, M. Goto, H.-Q. Duan, X.-H. Tong, Y.-L. Liu, Y.-Y. Cheng, S. Morris-Natschke, P.-C. Yang, S.-L. Yang y K.-H. Lee. Discovery of an Oleanolic Acid/Hederagenin–Nitric Oxide Donor Hybrid as an EGFR Tyrosine Kinase Inhibitor for Non-Small-Cell Lung Cancer. J. Nat. Prod., vol. 82, nº 11, p. 3065–3073. DOI: 10.1021/acs.jnatprod.9b00659, 2019spa
dc.relation.referencesC. Gauthier, J. Legault, K. Girard-Lalancette, V. Mshvildadze y A. Pichette. Haemolytic activity, cytotoxicity and membrane cell permeabilization of semi-synthetic and natural lupane- and oleanane-type saponins. Bioorg. Med. Chem., vol. 17, nº 5, p. 2002–2008. DOI: 10.1016/j.bmc.2009.01.022, 2009spa
dc.relation.referencesW. Cong, E. Tello, C. T. Simons y D. G. Peterson. Identification of Non-Volatile Compounds That Impact Flavor Disliking of Whole Wheat Bread Made with Aged Flours. Molecules, vol. 27, pp. 1331-1346. DOI: 10.3390/molecules27041331, 2022spa
dc.relation.referencesM. Yuce, C. Gumuskaptan, A. H. Con y F. Yazici. Conjugated linoleic acid strengthens the apoptotic effect of cisplatin in A549 cells. Prostaglandins Other Lipid Mediat., vol. 166, p. 106731. DOI: 10.1016/j.prostaglandins.2023.106731, 2023spa
dc.relation.referencesH. Li, Q. Yao, L. Min, S. Huang, H. Wu, H. Yang, L. Fan, J. Wang y N. Zheng. The combination of two bioactive constituents, lactoferrin and linolenic acid, inhibits mouse xenograft esophageal tumor growth by downregulating lithocholyltaurine and inhibiting the JAK2/STAT3-related pathway. ACS Omega, vol. 5, nº 33, pp. 20755-20764. DOI: 10.1021/acsomega.0c01132, 2020spa
dc.relation.referencesM. B. Bahadori, S. Vandghanooni, L. Dinparast, M. Eskandani, S. A. Ayatollahi, A. Ata y H. Nazemiyeh. Triterpenoid corosolic acid attenuates HIF-1 stabilization upon cobalt (II) chloride-induced hypoxia in A549 human lung epithelial cancer cells. Fitoter., vol. 134, pp. 493-500. DOI: 10.1016/j.fitote.2019.03.013, 2019spa
dc.relation.referencesK. H. Yoo, J.-H. Park, D. Y. Lee, J. Hwang-Bo, N. I. Baek y I. S. Chung. Corosolic Acid Exhibits Anti-angiogenic and Anti-lymphangiogenic Effects onIn Vitro Endothelial Cells and on anIn Vivo CT-26 Colon Carcinoma Animal Model. Phytother. Res., vol. 29, nº 5, pp. 714-723. DOI: 10.1002/ptr.5306, 2015spa
dc.relation.referencesK. Okuno, R. Garg, Y.-C. Yuan, M. Tokunaga, Y. Kinugasa y A. Goel. Berberine and Oligomeric Proanthocyanidins Exhibit Synergistic Efficacy Through Regulation of PI3K-Akt Signaling Pathway in Colorectal Cancer. Front. Oncol., vol. 12, nº DOI: 10.3389/fonc.2022.952180, p. PMC9278059. DOI: 10.3389/fonc.2022.952180, 2022spa
dc.relation.referencesZ.-H. Shao, T.-L. Vanden Hoek, C. Q. Li, P. T. Schumacker, L. B. Becker, K. C. Chan, Y. Qin, J. J. Yin y C. S. Yuan. Synergistic Effect of Scutellaria baicalensis and Grape Seed Proanthocyanidins on Scavenging Reactive Oxygen Species in Vitro. Am. J. Chinese Med., vol. 32, nº 1, pp. 89-95. DOI: 10.3389/fonc.2022.952180, 2004spa
dc.relation.referencesJ. Wang, W. Zhang, C. Tang, J. Xiao, B. Xie y Z. Sun. Synergistic effect of B-type oligomeric procyanidins from lotus seedpod in combination with water-soluble Poria cocos polysaccharides against E. coli and mechanism. J. Funct. Foods, vol. 48, pp. 134-143. DOI: 10.1016/j.jff.2018.07.015, 2018spa
dc.relation.referencesA. T. C. C. ATCC,. HTB-38. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/htb-38#detailed-product-information. Consultado Junio 2023spa
dc.relation.referencesA. T. C. C. ATCC, CRL-2577. Human Cells. Cell Products. American Type Culture Collection. Disponible: https://www.atcc.org/products/crl-2577#detailed-product-information. Consultado Junio 2023spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.agrovocUva
dc.subject.agrovocGrapes
dc.subject.ddc540 - Química y ciencias afines::547 - Química orgánicaspa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.ddc540 - Química y ciencias afines::543 - Química analíticaspa
dc.subject.decsCytotoxinseng
dc.subject.decsNeoplasiasspa
dc.subject.decsNeoplasmseng
dc.subject.lembCitotoxinasspa
dc.subject.proposalPourouma cecropiifoliaspa
dc.subject.proposalAnálisis no direcionadospa
dc.subject.proposalUPLC-ESI-TOF-MSEspa
dc.subject.proposalActividad antiproliferativaspa
dc.subject.proposalcaracterización químicaspa
dc.subject.proposalPourouma cecropiifoliaeng
dc.subject.proposalUntargeted analysiseng
dc.subject.proposalUPLC-ESI-TOF-MSEeng
dc.subject.proposalAntiproliferative activityeng
dc.subject.proposalChemical characterizationeng
dc.titleEstudio químico de los compuestos con actividad citotóxica presentes en la fruta de uva caimarona (Pourouma cecropiifolia)spa
dc.title.translatedChemical study of compounds with cytotoxic activity in uva caimarona (Pourouma cecropiifolia)eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBAYLAT - Becas destinadas a estudiantes de universidades latinoamericanas para realizar una estadía de investigación en una universidad asociada en Baviera (Para el semestre de invierno de 2022/2023 o para el semestre de verano de 2023)spa
oaire.fundernameCentro Universitario de Baviera para América Latinaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis Maestría en Química Camilo Andrés Correa Lozano.pdf
Tamaño:
4.41 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: