Evaluación de la actividad antioxidante y fotoprotectora de metabolitos aislados del liquen Phyllobaeis imbricata y contribución a su posible bioproducción

dc.contributor.advisorValencia Islas, Norma Angélica
dc.contributor.advisorRojas Araque, José Leopoldo
dc.contributor.authorRey Cantor, Diana Catherine
dc.contributor.cvlacRey Cantor, Diana Catherine [0001875179]
dc.contributor.orcidRey Cantor, Diana Catherine [0000000271355808]
dc.contributor.researchgroupGrupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianos
dc.coverage.countryColombia
dc.coverage.regionPáramo del Sumapaz
dc.date.accessioned2025-09-09T17:53:06Z
dc.date.available2025-09-09T17:53:06Z
dc.date.issued2025
dc.descriptionilustraciones (principalmente a color), diagramas, fotografíasspa
dc.description.abstractEl CaPiel (cáncer de piel) es un problema de salud pública dada su alta incidencia en la población cuya etiología se asocia con la exposición de la piel a la radiación UV, la cual es mutagénica y genera estrés oxidativo en ella. Por ello, se recomienda protegerla mediante el uso de agentes fotoprotectores y antioxidantes tópicos. Dadas las limitaciones de estabilidad, eficacia y seguridad que presentan algunos de estos agentes de uso corriente, existe la necesidad de encontrar sustancias alternativas. En este sentido, los líquenes del páramo de Sumapaz son una fuente interesante para el suministro de estas sustancias pues además de estar constituidos por compuestos únicos, presentan las propiedades biológicas deseadas. En este trabajo se sometió a estudio a Phyllobaeis imbricata, un liquen del páramo de Sumapaz, Colombia. A partir de su extracto acetónico (EPi) se purificó al ácido norstíctico (AN) como metabolito secundario mayoritario, mismo que se caracterizó por técnicas espectroscópicas (IR, RMN). Acto seguido, se determinó la actividad antioxidante tanto de EPi como de AN evaluando su capacidad captadora de radicales libres mediante la técnica del radical DPPH•, su poder reductor férrico y su poder inhibidor de la peroxidación lipídica. Así como su capacidad fotoprotectora UVB a través de la determinación del factor de protección solar y UVA a través de la determinación de la longitud de onda crítica y la relación UVA/UVB. Asimismo, se determinó su fototoxicidad in vitro mediante el ensayo de captación del rojo neutro en fibroblastos de embrión murino BALB/3T3 y su posible inmunotoxicidad, citotoxicidad, mutagenicidad y ecotoxicidad in silico utilizando ProTox 3.0. Parámetros fisicoquímicos indicativos de la permeación dérmica (energía libre de Gibbs de transferencia y coeficiente de permeabilidad en la piel) y posible uso de AN como agente dermatológico tópico (coeficiente de reparto, peso molecular, área superficial polar topológica y número de anillos aromáticos) se determinaron in silico en la plataforma SwissADME©. Finalmente, se llevó a cabo la técnica biotecnológica de inmovilización del talo de P. imbricata en caolín adicionando bajo flujo continuo el precursor biosintético acetato de sodio (0.1, 1.0 y 10 mM) para obtener AN de manera potencialmente sostenible. AN resultó ser un agente dual con actividad antioxidante mayor que EPi, capaz de captar radicales libres con una cinética lenta, presentando poder reductor férrico moderado y capacidad para inhibir la peroxidación de lípidos de una manera más eficiente que el ácido gálico. Asimismo, tiene capacidad fotoprotectora UVB y UVA “media” y no presenta fototoxicidad ni es potencialmente inmunotóxico ni citotóxico. De manera adicional, AN posee propiedades fisicoquímicas favorables para ser entregado al estrato córneo de la piel para ejercer su efecto tópico con una limitada absorción a través de ésta, convirtiéndose en un agente prometedor para su desarrollo como ingrediente de protectores solares. La inmovilización celular del liquen P. imbricata empleando caolín como matriz de inmovilización y flujo continuo de acetato de sodio 1.0 mM como precursor biosintético permitió la bioproducción de AN con el mayor rendimiento frente a las otras concentraciones evaluadas del precursor. (Texto tomado de la fuente)spa
dc.description.abstractCutaneous cancer is a major public‑health concern due to its high incidence, whose etiology is closely linked to skin exposure to UV radiation—a mutagenic stimulus that also triggers oxidative stress. Consequently, topical photoprotective and antioxidant agents are recommended. Given the stability, efficacy and safety limitations of several current actives, alternative substances are required. The páramo lichens of Sumapaz represent a promising source, because they biosynthesise unique compounds with the desired biological properties. In the present work Phyllobaeis imbricata, collected in the Sumapaz páramo (Colombia), was investigated. Norstictic acid (NA), its major secondary metabolite, was isolated from the acetone extract (EPi) and structurally characterised by IR and NMR spectroscopy. Antioxidant capacity of both EPi and NA was assessed through DPPH• radical scavenging, ferric‑reducing power and inhibition of lipid peroxidation. UVB photoprotection was evaluated by calculating the Sun Protection Factor (SPF), whereas UVA protection was estimated from the critical wavelength and the UVA/UVB ratio. In vitro phototoxicity was determined by the neutral‑red uptake assay in BALB/3T3 mouse‑embryo fibroblasts, and potential immunotoxicity, cytotoxicity, mutagenicity and ecotoxicity were predicted in silico with ProTox 3.0. Physicochemical descriptors related to dermal permeation (Gibbs free energy of transfer and skin‑permeation coefficient) and topical suitability (log P, topological polar surface area, molecular weight and number of aromatic rings) were calculated using SwissADME©. Finally, a biotechnological approach was implemented: P. imbricata thalli were immobilised in a kaolin matrix and continuously supplied with sodium acetate (0.1, 1.0, 10 mM) as a biosynthetic precursor, aiming at sustainable NA production. NA proved to be a dual‑action agent. Compared with EPi, it exhibited superior antioxidant performance, showing slow‑kinetic radical scavenging, moderate ferric‑reducing power and stronger inhibition of lipid peroxidation than gallic acid. It provided “medium” UVB and UVA photoprotection, displayed no phototoxicity, and was predicted to be neither immuno‑ nor cytotoxic. In silico descriptors indicate favourable delivery to the stratum corneum with limited systemic absorption, supporting its candidacy as a sunscreen ingredient. Cell immobilisation of P. imbricata in kaolin, fed with 1.0 mM sodium acetate, yielded the highest NA bioproduction among the tested precursor concentrations.eng
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Farmacéuticas
dc.description.researchareaObtención de sustancias bioactivas a partir de fuentes naturales
dc.description.sponsorshipMinisterio de Ambiente y Desarrollo Sostenible. Parques Nacionales Naturales de Colombia. Contrato No. 4 Marco de Acceso a Recursos Genéticos y sus Productos Derivados. Contrato No. 121 de 2016
dc.format.extent129 páginas
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/88674
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotá
dc.publisher.facultyFacultad de Ciencias
dc.publisher.placeBogotá, Colombia
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias Farmacéuticas
dc.relation.referencesAl-Sadek, T., & Yusuf, N. (2024). Ultraviolet Radiation Biological and Medical Implications. Current Issues in Molecular Biology, 46(3), 1924–1942. https://doi.org/10.3390/cimb46030126
dc.relation.referencesAmaro-Ortiz, A., Yan, B., & D’Orazio, J. A. (2014). Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules, 19(5), 6202–6219. https://doi.org/10.3390/molecules19056202
dc.relation.referencesAmerican cancer society. (2025). Galería sobre el cáncer de piel. https://www.cancer.org/es/cancer/tipos/cancer-de-piel/galeria-de-imagenes-del-cancer-de-piel.html?filter=Carcinoma de células basales,Melanoma,Carcinoma de células escamosas
dc.relation.referencesAsplund, J., van Zuijlen, K., Roos, R. E., Birkemoe, T., Klanderud, K., Lang, S. I., Wardle, D. A., & Nybakken, L. (2021). Contrasting responses of plant and lichen carbon-based secondary compounds across an elevational gradient. Functional Ecology, 35(2), 330–341. https://doi.org/10.1111/1365-2435.13712
dc.relation.referencesBanerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox-3.0 - Prediction of TOXicity of chemicals. Nucleic Acids Research, 52(W1), 513–520. https://doi.org/10.1093/nar/gkae303
dc.relation.referencesBehl, G., Sharma, M., Sikka, M., Dahiya, S., Chhikara, A., & Chopra, M. (2013). Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: Synthesis, characterization, and antioxidant activity. Journal of Biomaterials Science, Polymer Edition, 24(7), 865–881. https://doi.org/10.1080/09205063.2012.723958
dc.relation.referencesBenzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292
dc.relation.referencesBirben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613
dc.relation.referencesBogo, D., Alcântara, I. M. C., Alcantara, G. B., Micheletti, A. C., Honda, N. K., & Matos, M. de F. C. (2024). Cytotoxicity of norstictic acid derivatives, a depsidone from Ramalina anceps Nyl. Turkish Journal of Chemistry, 48(5), 748–755. https://doi.org/10.55730/1300-0527.3694
dc.relation.referencesBouayed, J., & Bohn, T. (2010). Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, 3(4), 228–237. https://doi.org/10.4161/oxim.3.4.12858
dc.relation.referencesBouwstra, J. A., Nădăban, A., Bras, W., McCabe, C., Bunge, A., & Gooris, G. S. (2023). The skin barrier: An extraordinary interface with an exceptional lipid organization. Progress in Lipid Research, 92. https://doi.org/10.1016/j.plipres.2023.101252
dc.relation.referencesBrancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The Biological Role of Vitamins in Athletes’ Muscle, Heart and Microbiota. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031249
dc.relation.referencesBrand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
dc.relation.referencesBuso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2019). Guidelines for the Development of Herbal-Based Sunscreen. Herbal Medicine.https://doi.org/10.5772/intechopen.72712
dc.relation.referencesCadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical and Photobiological Sciences, 17(12), 1816–1841. https://doi.org/10.1039/c7pp00395a
dc.relation.referencesCalcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/c7cs00431a
dc.relation.referencesCelia, A. J., Pérez de la Lastra, M., Plou, J., Pérez-Lebeña, E., & Reinbothe, J, F. (2021). Molecular Sciences The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(22), 1–21. https://doi.org/10.3390/ijms
dc.relation.referencesChatzigianni, M., Pavlou, P., Siamidi, A., Vlachou, M., Varvaresou, A., & Papageorgiou, S. (2022). Environmental impacts due to the use of sunscreen products: a mini-review. Ecotoxicology, 31(9), 1331–1345. https://doi.org/10.1007/s10646-022-02592-w
dc.relation.referencesChen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009
dc.relation.referencesCiążyńska, M., Olejniczak-Staruch, I., Sobolewska-Sztychny, D., Narbutt, J., Skibińska, M., & Lesiak, A. (2021). Ultraviolet radiation and chronic inflammation-molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life, 11(4). https://doi.org/10.3390/life11040326
dc.relation.referencesCoelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG.
dc.relation.referencesCorinaldesi, C., Marcellini, F., Nepote, E., Damiani, E., & Danovaro, R. (2018). Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Science of the Total Environment, 637–638, 1279–1285. https://doi.org/10.1016/j.scitotenv.2018.05.108
dc.relation.referencesCross, S. E., Innes, B., Roberts, M. S., Tsuzuki, T., Robertson, T. A., & McCormick, P. (2007). Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacology and Physiology, 20(3), 148–154. https://doi.org/10.1159/000098701
dc.relation.referencesCuenta de Alto Costo. (2024, May 22). Día mundial del melanoma 2024. https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2024/
dc.relation.referencesDaina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(March), 1–13. https://doi.org/10.1038/srep42717
dc.relation.referencesDalle Donne, I., Aldini, G., & Carini, M. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–466. https://doi.org/https://doi.org/10.1111/j.1582-4934.2006.tb00407.x
dc.relation.referencesDamiani, E., Carloni, P., Biondi, C., & Greci, L. (2000). Increased oxidative modification of albumin when illuminated in vitro in the presence of a common sunscreen ingredient: Protection by nitroxide radicals. Free Radical Biology and Medicine, 28(2), 193–201. https://doi.org/10.1016/S0891-5849(99)00221-X
dc.relation.referencesde Oliveira Silva, E., & Batista, R. (2017). Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 16(4), 580–616. https://doi.org/10.1111/1541-4337.12266
dc.relation.referencesDeduke, C., Timsina, B., & D., M. (2012). Effect of Environmental Change on Secondary Metabolite Production in Lichen-Forming Fungi. International Perspectives on Global Environmental Change, February. https://doi.org/10.5772/26954
dc.relation.referencesDi Bartolomeo, L., Irrera, N., Campo, G. M., Borgia, F., Motolese, A., Vaccaro, F., Squadrito, F., Altavilla, D., Condorelli, A. G., Motolese, A., & Vaccaro, M. (2022). Drug-Induced Photosensitivity: Clinical Types of Phototoxicity and Photoallergy and Pathogenetic Mechanisms. Frontiers in Allergy, 3(June), 1–8. https://doi.org/10.3389/falgy.2022.876695
dc.relation.referencesDiffey, B., Oliver, R. J., & Farr, P. M. (1984). A portable instrument for quantifying erythema induced by ultraviolet radiation. British Journal of Dermatology, 111, 663–672. g:%5CLibrary%5CReference Manager%5CPapers%5C344. Br. J. Dermatol. 1984, 111, 663-672
dc.relation.referencesDiffey, B. L. (1994). A method for broad spectrum classification of sunscreens. In International Journal of Cosmetic Science (Vol. 16).
dc.relation.referencesDuarte, A., Passarini Zambrano, M. R., Delforno, T. P., Pellizzari, F. M., Cipro Cecchin, C. V., Montone, R. C., Petry, M. V., Putzke, J., Rosa, L. E., & Sette, L. D. (2016). Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antartica. Environmental Microbiology Reports, 8(5), 874–885. https://doi.org/https://doi.org/10.1111/1758-2229.12452
dc.relation.referencesDunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392
dc.relation.referencesEgambaram, O. P., Kesavan Pillai, S., & Ray, S. S. (2020). Materials Science Challenges in Skin UV Protection: A Review. Photochemistry and Photobiology, 96(4), 779–797. https://doi.org/10.1111/php.13208
dc.relation.referencesEisenreich, W., Knispel, N., & Beck, A. (2011). Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochemistry Reviews, 10(3), 445–456. https://doi.org/10.1007/s11101-011-9215-3
dc.relation.referencesEkstein, S. F., & Hylwa, S. (2023). Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis, 34(3), 176–190. https://doi.org/10.1097/DER.0000000000000963
dc.relation.referencesFarris, P. K., & Valacchi, G. (2022). Ultraviolet Light Protection: Is It Really Enough? Antioxidants, 11(8), 1–20. https://doi.org/10.3390/antiox11081484
dc.relation.referencesFerlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2022a). Cancer statistics for the year 2022: An overview melanoma. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
dc.relation.referencesFerlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2022b). Cancer statistics for the year 2022: An overview non melanoma. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
dc.relation.referencesFernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. In Pharmaceutical Biology (Vol. 54, Issue 1, pp. 1–17). Taylor and Francis Ltd. https://doi.org/10.3109/13880209.2014.1003354
dc.relation.referencesFinter, N. B. (1969). Dye Uptake Methods for Assessing Viral Cytopathogenicity and their Application to Interferon Assays. Journal of General Virology, 5(3), 419–427. https://doi.org/10.1099/0022-1317-5-3-419
dc.relation.referencesFlieger, J., Raszewska-Famielec, M., Radzikowska-Büchner, E., & Flieger, W. (2024). Skin Protection by Carotenoid Pigments. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031431
dc.relation.referencesFreitas, J. V., Lopes, N. P., & Gaspar, L. R. (2015). Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. European Journal of Pharmaceutical Sciences,78, 79–89. https://doi.org/10.1016/j.ejps.2015.07.004
dc.relation.referencesFurmanek, Ł., & Seaward, M. R. D. (2023). Anti-yeast potential of lichen-extracted substances – An analytical review. South African Journal of Botany, 161, 720–779. https://doi.org/10.1016/j.sajb.2023.08.018
dc.relation.referencesGalán González, E. F., Salazar Fajardo, L. J., & Devi Nereida, P. J. (2015). Cáncer de Piel: Una enfermedad silenciosas que requiere control. Minsalud Col / Inc Col, 7(1), 1–12.
dc.relation.referencesGarbe, C., Forsea, A. M., Amaral, T., Arenberger, P., Autier, P., Berwick, M., Boonen, B., Bylaite, M., del Marmol, V., Dreno, B., Fargnoli, M. C., Geller, A. C., Green, A. C., Greinert, R., Hauschild, A., Harwood, C. A., Hoorens, I., Kandolf, L., Kaufmann, R., … Brochez, L. (2024). Skin cancers are the most frequent cancers in fair-skinned populations, but we can prevent them. European Journal of Cancer, 204(February). https://doi.org/10.1016/j.ejca.2024.114074
dc.relation.referencesGaroli, D., Pelizzo, M. G., Bernardini, B., Nicolosi, P., & Alaibac, M. (2008). Sunscreen tests: Correspondence between in vitro data and values reported by the manufacturers. Journal of Dermatological Science, 52(3), 193–204. https://doi.org/10.1016/j.jdermsci.2008.06.010
dc.relation.referencesGaya, E., Lücking, R., & Morato-Vasquez, V. (2022). Diversity of fungi of Colombia. In: de Almeida, R. F., Lücking, R., Vasco- Palacios, A. M., Gaya, E. & Diazgranados, M. (eds.). Catalogue of Fungi of Colombia. Kew Publishing, Royal. RESEARCH GATE, October.
dc.relation.referencesGierl & Kalb. (1993). Phyllobaeis imbricata (Hook.) Kalb & Gierl. Herzogia 9(3-4): 610. https://www.gbif.org/species/3439404
dc.relation.referencesGlobal Biodiversity Information Facility. (2024). gbif.org. Https://Www.Gbif.Org/Occurrence/Map?Taxon_key=3439404. https://www.gbif.org/occurrence/map?taxon_key=3439404
dc.relation.referencesGoga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2018). Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential (pp. 1–36). https://doi.org/10.1007/978-3-319-76887-8_57-1
dc.relation.referencesGonzález-Velásquez, N. (2019). Contribución al conocimiento de los constituyentes químicos mayoritarios del liquen Phyllobaeis imbricata colectado en el páramo de Sumapaz. Tesis. Universidad Nacional de Colombia.
dc.relation.referencesGordon, R. (2013). Skin cancer: An overview of epidemiology and risk factors. Seminars in Oncology Nursing, 29(3), 160–169. https://doi.org/10.1016/j.soncn.2013.06.002
dc.relation.referencesGrether-Beck, S., Marini, A., Jaenicke, T., & Krutmann, J. (2015). Effective photoprotection of human skin against infrared a radiation by topically applied antioxidants: Results from a vehicle controlled, double-blind, randomized study. Photochemistry and Photobiology, 91(1), 248–250. https://doi.org/10.1111/php.12375
dc.relation.referencesGrice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130.
dc.relation.referencesHalliwell, B. (2012). Free radicals and antioxidants: Updating a personal view. Nutrition Reviews, 70(5), 257–265. https://doi.org/10.1111/j.1753-4887.2012.00476.x
dc.relation.referencesHennigan, C. (2021). US Diversity and Inclusivity in Beauty Market Report 2021 | Mintel Store. Mintel. https://store.mintel.com/report/us-diversity-and-inclusivity-in-beauty-market-report-2021
dc.relation.referencesHojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International Journal of Pharmaceutics, 408(1–2), 27–38. https://doi.org/10.1016/j.ijpharm.2011.01.040
dc.relation.referencesHook. (1822). Baeomyces imbricatus. NCBI Taxonomy.
dc.relation.referencesHook & Kuntze. (1891). Mycobank Database. https://www.mycobank.org/page/Name details page/field/Mycobank %23/360409
dc.relation.referencesHook & Trevis. (1857). MYCOBANK Database. https://www.mycobank.org/page/Name details page/field/Mycobank %23/360409
dc.relation.referencesHuang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699
dc.relation.referencesHuneck, S., & Yoshimura, I. (1996). Identification of Lichen Substances. In Identification of Lichen Substances. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-85243-5
dc.relation.referencesIghodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001
dc.relation.referencesImamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and Removal of Benzophenone-Type UV Filters from Water Matrices by Advanced Oxidation Processes. Molecules, 27(6). https://doi.org/10.3390/molecules27061874
dc.relation.referencesIngólfsdóttr, K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/S0031-9422(02)00383-7
dc.relation.referencesInternational Agency for Research on Cancer. (1992). IARC Publications Website - Solar and Ultraviolet Radiation. Volume 55. https://doi.org/978-92-832-1255-3
dc.relation.referencesJallad, K. N. (2017). Chemical characterization of sunscreens composition and its related potential adverse health effects. Journal of Cosmetic Dermatology, 16(3), 353–357. https://doi.org/10.1111/jocd.12282
dc.relation.referencesJovanović, B., & Guzmán, H. M. (2014). Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33(6), 1346–1353. https://doi.org/10.1002/etc.2560
dc.relation.referencesJurado, A., Walther, M., & Díaz-Cruz, M. S. (2019). Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Science of the Total Environment, 663, 285–296. https://doi.org/10.1016/j.scitotenv.2019.01.270
dc.relation.referencesKageyama, H., & Waditee-Sirisattha, R. (2019). Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. In Marine Drugs (Vol. 17, Issue 4). MDPI AG. https://doi.org/10.3390/md17040222
dc.relation.referencesKageyama, H., & Waditee-Sirisattha, R. (2023). Distribution, biosynthetic regulation, and bioactivities of mycosporine-2-glycine, a rare UV-protective mycosporine-like amino acid. AIMS Molecular Science, 10(4), 295–310. https://doi.org/10.3934/molsci.2023017
dc.relation.referencesKasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. McGraw-Hill Education LLC, 1 y 2(21), 5471.
dc.relation.referencesKassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045
dc.relation.referencesKaźmierczak-Barańska, J., Boguszewska, K., Adamus-Grabicka, A., & Karwowski, B. T. (2020). Two faces of vitamin c—antioxidative and pro-oxidative agent. Nutrients, 12(5). https://doi.org/10.3390/nu12051501
dc.relation.referencesKijlstra, A., Tian, Y., Kelly, E. R., & Berendschot, T. T. J. M. (2012). Lutein: More than just a filter for blue light. Progress in Retinal and Eye Research, 31(4), 303–315. https://doi.org/10.1016/j.preteyeres.2012.03.002
dc.relation.referencesKim, H., & Giovannucci, E. (2020). Vitamin d status and cancer incidence, survival, and mortality. In Advances in Experimental Medicine and Biology (Vol. 1268). https://doi.org/10.1007/978-3-030-46227-7_3
dc.relation.referencesKono, M., Kon, Y., Ohmura, Y., Satta, Y., & Terai, Y. (2020). In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis _ Enhanced Reader. BMC Genomics, 21(671), 1–16.
dc.relation.referencesKosanić, M., & Ranković, B. (2019). Studies on Antioxidant Properties of Lichen Secondary Metabolites. In Lichen Secondary Metabolites (pp. 129–153). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_4
dc.relation.referencesKosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/s13197-010-0174-2
dc.relation.referencesKuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732. https://doi.org/10.1590/s0101-20612005000400016
dc.relation.referencesLeal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). Natural Product Research Formerly Natural Product Letters New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural Product Research, 32(12), 1375–1382. https://doi.org/10.1080/14786419.2017.1346639
dc.relation.referencesLegaz, M. E., De Armas, R., & Vicente, C. (2011). Bioproduction of Depsidones for Pharmaceutical Purposes. In Drug Development - A Case Study Based Insight into Modern Strategies (p. 654). www.intechopen.com
dc.relation.referencesLiebsch, M., Spielmann, H., & J.W. Pape, W. (2005). UV-induced effects. Alternatives to Laboratory Animals, 33 suppl 1(April 2015), 131–146.
dc.relation.referencesLiga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación - Liga Colombiana contra el Cáncer. Https://Www.Ligacancercolombia.Org/Educacion/Clasificacion-Cancer-de-Piel/. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/
dc.relation.referencesLingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002
dc.relation.referencesLohezic-Le Devehat, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/j.jphotobiol.2013.01.009
dc.relation.referencesLorigo, M., Quintaneiro, C., Breitenfeld, L., & Cairrao, E. (2024). Chemosphere Exposure to UV-B filter octylmethoxycinnamate and human health effects : Focus on endocrine disruptor actions. Chemosphere, 358(358), 1–16.
dc.relation.referencesLoureiro, J. B., Abrantes, M., Oliveira, P. A., & Saraiva, L. (2020). P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(2), 188438. https://doi.org/10.1016/j.bbcan.2020.188438
dc.relation.referencesMansur, J. de S., Rodrigues Breder, M., & Mansur, M. C. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia. http://www.anaisdedermatologia.com.br/detalhe-artigo/421/Determinacao-do-fator-de-protecao-solar-por-espectrofotometria
dc.relation.referencesMarei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., Morrione, A., Giordano, A., & Cenciarelli, C. (2021). P53 Signaling in Cancer Progression and Therapy. Cancer Cell International, 21(1), 1–15. https://doi.org/10.1186/s12935-021-02396-8
dc.relation.referencesMartins, M., Lima, M., & Buril, M. (2017). New Biotechnological Methods for Producing Therapeutic Compounds (Usnic, Stictic and Norstictic Acids) by Cell Immobilization of the Lichen Cladonia substellata New Biotechnological Methods for Producing. In Biotechnol Ind J (Vol. 13, Issue 2). www.tsijournals.com
dc.relation.referencesMasaki, H. (2010). Role of antioxidants in the skin: Anti-aging effects. Journal of Dermatological Science, 58(2), 85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003
dc.relation.referencesMedina, E. S., Díaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 45(174), 122–135. https://doi.org/10.18257/raccefyn.1224
dc.relation.referencesMejia- Giraldo, Juan, Atehortua, L., & Puertas-Mejia, M. A. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatologia Cosmética, Médica y Quirurgica, 12(4), 222–281.
dc.relation.referencesMillot, M., Di Meo, F., Tomasi, S., Boustie, J., & Trouillas, P. (2012). Photoprotective capacities of lichen metabolites: A joint theoretical and experimental study. Journal of Photochemistry and Photobiology B: Biology, 111, 17–26. https://doi.org/10.1016/j.jphotobiol.2012.03.005
dc.relation.referencesMishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH- assay: A critical review and results. Food Chemistry, 130(4), 1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127
dc.relation.referencesMitsuda, H., Kimikazu, I., & Kyoden, Y. (1996). Antioxidative Action of Indole Compounds Acid during the Autoxidation of Linoleic. Eiyo to Syokuryo, 19, 210–214.
dc.relation.referencesMittermeier, V. K., Schmitt, N., Volk, L. P. M., Suárez, J. P., Beck, A., & Eisenreich, W. (2015). Metabolic profiling of alpine and ecuadorian lichens. Molecules, 20(10), 18047–18065. https://doi.org/10.3390/molecules201018047
dc.relation.referencesMohania, D., Shikha, C., Kumar, P., Verma, V., Kumar, D., Tripathi, D., Choudhury, K., Kumar Mitten, S., & Shah, D. (2017). Ultraviolet Radiations: Skin Defense-Damage Mechanism. Advances in Experimental Medicine and Biology, 996, 71–87.
dc.relation.referencesMoncada, B., & Lücking, R. (2021). Introducción a la Biología y Taxonompia de los Líquenes Colombianos Una guia para Reconocer su Biodiversidad e Importancia.
dc.relation.referencesMosley, C. N., Wang, L., Gilley, S., Wang, S., & Yu, H. (2007). Light-induced cytotoxicity and genotoxicity of a sunscreen agent, 2-phenylbenzimidazole in Salmonella typhimurium TA 102 and HaCaT keratinocytes. International Journal of Environmental Research and Public Health, 4(2), 126–131. https://doi.org/10.3390/ijerph2007040006
dc.relation.referencesNagla, dr madhu, Melissa A. Furlong, PhDa, Dana Boyd Barr, PhDb, Mary S. Wolff, PhDc, and Stephanie M. Engel, P., & Cross, Sarah J. Linker, Kay E. Leslie, F. M. (2016). 乳鼠心肌提取 HHS Public Access. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1002/ptr.5551.Norstictic
dc.relation.referencesNash, T. (2008). Lichen Biology. In Cambridge University Press, New York. https://doi.org/10.1146/annurev.micro.58.030603 .123730
dc.relation.referencesNational Academies of Sciences, Engineering, and M. (2022). Review of fate, exposure, and effects of sunscreens in aquatic environments and implications for sunscreen usage and human health. In Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health. National Academies Press. https://doi.org/10.17226/26381
dc.relation.referencesNguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/c3np70064j
dc.relation.referencesNichols, J. A., & Katiyar, S. K. (2011). Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Reviews in Medicinal Chemistry, 11(14), 1200–1215. https://doi.org/10.1007/s00403-009-1001-3.Skin
dc.relation.referencesNohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007). Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 37(3), 251–277. https://doi.org/10.1080/10408440601177780
dc.relation.referencesNomelin-Ballen, L. Y. (2020). Búsqueda de antioxidantes y/o fotoprotectores en un hongoliquenizado del páramo de Sumapaz, Colombia, como posibles agentes preventivos de cáncer de piel. Tesis.Universidad Nacional de Colombia.
dc.relation.referencesNúñez-Arango, L. M. (2012). Estudio Quimico, Actividad antioxidante y Potencial Antienvejecimiento del liquen Flavopunctelia flaventior (Stirt.) Hale. Universidad Nacional de colombia.
dc.relation.referencesNuñez Arango, L. M. (2022). Antioxidantes y/o fotoprotectores de los líquenes del páramo de Sumapaz Thamnolia vermicularis y Cladonia cf. didyma y estudio de su posible producción biotecnológica. Tesis. Universidad Nacional de Colombia.
dc.relation.referencesOdabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/ptr.1488
dc.relation.referencesOECD. (2022). Software to be used with Test Guidelines | OECD. 2.0. https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/software-test-guidelines.html
dc.relation.referencesOECD 432. (2019). Test Guideline No. 432 In Vitro 3T3 NRU Phototoxicity Test. Organisation for Economic Co-Operation and Development, 432, 1–19.
dc.relation.referencesOrange, A., James, P. W. (Peter W., & White, F. J. (2010). Microchemical methods for the identification of lichens (British Lichen Society (ed.); 2nd ed.).
dc.relation.referencesOyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307
dc.relation.referencesÖzdemir Nee Güngör, Ö., Gürkan, P., Sari, M., & Tunç, T. (2015). Synthesis of monosodium salts of N-(5-nitro-salicylidene)-D-amino acid Schiff bases and their iron(III) complexes: Spectral and physical characterizations, antioxidant activities. Journal of Coordination Chemistry, 68(14), 2565–2585. https://doi.org/10.1080/00958972.2015.1043908
dc.relation.referencesPanyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia Sp. Extracts as UV Protecting and Antioxidant Agents in Sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614
dc.relation.referencesParra-Gutierrez, S. (2024). Estudio químico , actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz , Colombia como fuente potencial de compuestos para uso en protección solar. Tesis. Universidad Nacional de Colombia.
dc.relation.referencesPaukov, A., Teptina, A., Morozova, M., Kruglova, E., Favero-Longo, S. E., Bishop, C., & Rajakaruna, N. (2019). The effects of edaphic and climatic factors on secondary lichen chemistry: A case study using saxicolous lichens. Diversity, 11(6), 6–11. https://doi.org/10.3390/D11060094.
dc.relation.referencesPavlou, P., Siamidi, A., Vlachou, M., & Varvaresou, A. (2021). UV Filters and Their Distribution on the Skin through Safe, Non-Penetrating Vehicles. Journal of Cosmetic Science, 72(3), 298–324.
dc.relation.referencesPelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In Vitro Evaluation of Sunscreens: An Update for the Clinicians . ISRN Dermatology, 2012(August 2007), 1–4.https://doi.org/10.5402/2012/352135
dc.relation.referencesPellevoisin, C., Bouez, C., & Cotovio, J. (2017). Cosmetic industry requirements regarding skin models for cosmetic testing. In Skin Tissue Models (pp. 3–37). Elsevier Inc. https://doi.org/10.1016/B978-0-12-810545-0.00001-2
dc.relation.referencesPereira, E. C., Lacerda-Buril, M., Martins, M., & da Silva Falcao, E. (2020). Plant-derived bioactives: Production, properties and therapeutic applications. In Plant-derived Bioactives: Production, Properties and Therapeutic Applications (Issue May). https://doi.org/10.1007/978-981-15-1761-7
dc.relation.referencesPereira, E. C., Martins, M., Falcão, E. P. S., & De Oliveira, H. P. (2020). Bioactive compounds from brazilian lichens and their biotechnological applications. In Plant-derived Bioactives: Production, Properties and Therapeutic Applications (pp. 209–238). Springer Singapore. https://doi.org/10.1007/978-981-15-1761-7_9
dc.relation.referencesPereira, E. C., Nóbrega, N. A., Andrade, L. C., da Silva, N. H., da Silva, E. F., & Vicente, C. (1995). Metabolites Production By Cladonia Salzmannii NYL., Through Cell Immobilization. ResearchGate, 1–6. https://www.researchgate.net/publication/277286804
dc.relation.referencesPereira, E. C., Pereira, I., & Gutiérrez, M. (2017). Production of Secondary Metabolites by Immobilized Cells of Stereocaulon ramulosum (Sw) Rausch (lichen) in Different Design of Bioreactors. Available Online Www.Jocpr.Com Journal of Chemical and Pharmaceutical Research, 2017(5), 104–109. www.jocpr.com
dc.relation.referencesPerico-Franco, L. S. (2011). Antioxidantes de los liquenes Stereocaulon strictum (Stereocaulaceae) y Lobariella pallida (Lobariaceae) y determinacion de su potencial citotoxicidad. Tesis. Universidad Nacional de Colombia.
dc.relation.referencesPerico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant Activity and Protective Effect on Cell and DNA Oxidative Damage of Substances isolated from Lichens of Colombian páramo. Pharmaceutical and Biosciences Journal, 3(4), 09–17. https://doi.org/10.20510/ukjpb/3/i4/89448
dc.relation.referencesPerico-Franco, L. S., Soriano-garcía, M., Cerbón, M. A., González-sánchez, I., & Valencia-islas, N. A. (2015). Secondary metabolites and cytotoxic potential of Lobariella pallida and Stereocaulon strictum var . compressum , two lichens from Colombian páramo region. UK Journal of Pharmaceutical and Biosciences, 3(4), 31–38.
dc.relation.referencesPetruk, G., Giudice, R. Del, Rigano, M. M., & Monti, D. M. (2018). Antioxidants from plants protect against skin photoaging. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/1454936
dc.relation.referencesPietta, P., Simonetti, P., & Mauri, P. (1998). Antioxidant activity of selected medicinal plants. Journal Agric Food Chem, 46, 4487–4490.
dc.relation.referencesPinnell, S. R. (2003). Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 48(1), 1–22. https://doi.org/10.1067/MJD.2003.16
dc.relation.referencesPotts, R., & Guy, R. (1992). Predicting Skin Permeability. Journal of Pharmaceutical Sciences, 83(9), 1315–1334. https://doi.org/10.1002/jps.2600830925
dc.relation.referencesPouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural Antioxidants and their Effects on the Skin. Formulating, Packaging, and Marketing of Natural Cosmetic Products, 239–257. https://doi.org/10.1002/9781118056806.ch13
dc.relation.referencesRaggio, J., Pintado, A., Ascaso, C., De La Torre, R., De Los Rios, A., Wierzchos, J., Horneck, G., & Sancho, L. G. (2011). Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment with Aspicilia fruticulosa. Astrobiology, 11(4), 1–11.
dc.relation.referencesRangel-Churio, J., & Pinto-Zárate, J. H. (2012). Colombian Páramo Vegetation Database (CPVD) – the database on high Andean páramo vegetation in Colombia . Biodiversity & Ecology, 4(May 2014), 275–286. https://doi.org/10.7809/b-e.00084
dc.relation.referencesRanković, B. (2015). Lichen secondary metabolites: Bioactive properties and pharmaceutical potential. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. https://doi.org/10.1007/978-3-319-13374-4
dc.relation.referencesRanković, B., & Kosanić, M. (2019). Lichens as a Potential Source of Bioactive Secondary Metabolites. In Lichen Secondary Metabolites (pp. 1–29). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_1
dc.relation.referencesRanković, B., Kosanić, M., Stanojković, T., Vasiljević, P., & Manojlović, N. (2012). Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. International Journal of Molecular Sciences, 13(11), 14707–14722. https://doi.org/10.3390/ijms131114707
dc.relation.referencesRanković Branislav. (2015). Lichen Secondary Metabolites. In Lichen Secondary Metabolites. https://doi.org/10.1007/978-3-319-13374-4
dc.relation.referencesRao, R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. https://doi.org/10.1016/S0734-9750(02)00007-1
dc.relation.referencesRashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1
dc.relation.referencesRaymond-Lezman, J. R., & Riskin, S. I. (2023). Benefits and Risks of Sun Exposure to Maintain Adequate Vitamin D Levels. Cureus, 15(5), 1–1. https://doi.org/10.7759/cureus.38578
dc.relation.referencesReichrat, J., & Ras, K. (2014). Ultra Cancer Vitamin and in Damage ,in Malignant No Melanoma Repair Update Skin and. Sunlight, Vitamin D and Skin Cancer, Second Edition, 208–233.
dc.relation.referencesRice-Evans, C., Miller, N., & Paganga, G. (1996). Review Article: Review Article. Free Radical Biology & Medicine, 20(7), 933–956. https://doi.org/10.1177/1461444810365020
dc.relation.referencesRojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 3(August 2015), 18–26. https://doi.org/10.20510/ukjpb/3/i4/89454
dc.relation.referencesRünger, T. M., Farahvash, B., Hatvani, Z., & Rees, A. (2012). Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochemical and Photobiological Sciences, 11(1), 207–215. https://doi.org/10.1039/c1pp05232b
dc.relation.referencesRusso, A., Piovano, M., Lombardo, L., Vanella, L., Cardile, V., & Garbarino, J. (2006). Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anti-Cancer Drugs, 17(10), 1163–1169. https://doi.org/10.1097/01.cad.0000236310.66080.ed
dc.relation.referencesSaewan, N., & Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology, 14, 47–63. https://doi.org/10.1021/np200906s.Natural
dc.relation.referencesSample, A., & He, Y. Y. (2018). Mechanisms and prevention of UV-induced melanoma. Photodermatology Photoimmunology and Photomedicine, 34(1), 13–24. https://doi.org/10.1111/phpp.12329
dc.relation.referencesSánchez-Lira, N. M. V., Morales-Miranda, A., García de la Mora, G., León Contreras, J. C., González-Sánchez, I., Valencia, N., Cerbón, M., & Morimoto, S. (2017). Orcinol derivative compound with antioxidant properties protects Langerhans islets against streptozotocin damage. Journal of Pharmacy and Pharmacology, 69(3), 305–313. https://doi.org/10.1111/jphp.12696
dc.relation.referencesSantos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750.
dc.relation.referencesSayre, R., Agin, P. P., Levee, G. J., & Maruiwe, E. (1978). A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochemistry and Photobiology, 29, 559–566.
dc.relation.referencesSchuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 107(September 2016), 110–124. https://doi.org/10.1016/j.freeradbiomed.2017.01.029
dc.relation.referencesSchweiger, A. H., Ullmann, G. M., Nürk, N. M., Triebel, D., Schobert, R., & Rambold, G. (2022). Chemical properties of key metabolites determine the global distribution of lichens. Ecology Letters, 25(2), 416–426. https://doi.org/10.1111/ele.13930
dc.relation.referencesSeminara, A., Fritz, J., Brenner, M. P., & Pringle, A. (2018). A universal growth limit for circular lichens. Journal of the
dc.relation.referencesSharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001
dc.relation.referencesSipman, H., & Aguirre, J. (1982). Contribución al conocimiento de los líquenes de Colombia - I. Clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. In Caldasia (Vol. 13, Issue 64, pp. 603–634).
dc.relation.referencesSoto-Medina, E., Días Escandón, D., & Zuluaga Trochez, A. (2023). Lista de especies de líquenes del Valle del Cauca (Colombia). In Revista de Ciencias (Vol. 26, Issue 1). https://doi.org/10.25100/rc.v26i1.12416
dc.relation.referencesSpribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488–492. https://doi.org/10.1126/science.aaf8287
dc.relation.referencesStocker-Wörgötter, E. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. In Natural Product Reports (Vol. 25, Issue 1, pp. 188–200). https://doi.org/10.1039/b606983p
dc.relation.referencesSuja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free Radical Scavenging Behavior of Antioxidant Compounds of Sesame (Sesamum indicum L.) in DPPH• System. Journal of Agricultural and Food Chemistry, 52(4), 912–915. https://doi.org/10.1021/jf0303621
dc.relation.referencesSung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
dc.relation.referencesSuozzi, K., Turban, J., & Girardi, M. (2020). Cutaneous photoprotection: A review of the current status and evolving strategies. Yale Journal of Biology and Medicine, 93(1), 55–67.
dc.relation.referencesTang, X., Yang, T., Yu, D., Xiong, H., & Zhang, S. (2024). Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environment International, 185(November 2023), 108535. https://doi.org/10.1016/j.envint.2024.108535
dc.relation.referencesTay, T., Türk, A. Ö., Yilmaz, M., Türk, H., & Kivanç, M. (2004). Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Journal of Biosciences, 59(5–6), 384–388. https://doi.org/10.1515/znc-2004-5-617
dc.relation.referencesTorres-Contreras, A. M., Garcia-Baeza, A., Vidal-Limon, H. R., Balderas-Renteria, I., Ramírez-Cabrera, M. A., & Ramirez-Estrada, K. (2022). Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants, 11(2). https://doi.org/10.3390/plants11020220
dc.relation.referencesTripathi, A. H., Mehrotra, S., Kumari, A., Bajpai, R., Joshi, Y., Joshi, P., Tewari, L. M., Rai, R. C., & Upadhyay, S. K. (2022). Lichens as bioremediation agents—A review. In Synergistic Approaches for Bioremediation of Environmental Pollutants : Recent Advances and Challenges (pp. 289–312). Elsevier. https://doi.org/10.1016/B978-0-323-91860-2.00015-4
dc.relation.referencesTripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647
dc.relation.referencesTsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021
dc.relation.referencesTumilaar, S., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. Journal of Chemistry, 2024, 1. https://doi.org/10.1155/2024/5594386
dc.relation.referencesValencia-Islas, N. A., Argüello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, A lichen from the Andean Páramo. Pharmaceutical Sciences, 27(2), 281–290. https://doi.org/10.34172/PS.2020.83
dc.relation.referencesValencia-Islas, N. A., Zambrano, A., & Rojas, J. L. (2007). Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. Journal of Chemical Ecology, 33(8), 1619–1634. https://doi.org/10.1007/s10886-007-9330-1
dc.relation.referencesVarol, M., Tay, T., Candan, M., Türk, A., & Koparal, A. T. (2015). Evaluation of the sunscreen lichen substances usnic acid and atranorin. Biocell, 39, 25–31.
dc.relation.referencesVechtomova, Y. L., Telegina, T. A., Buglak, A. A., & Kritsky, M. S. (2021). Uv radiation in dna damage and repair involving dna-photolyases and cryptochromes. Biomedicines, 9(11), 1–13. https://doi.org/10.3390/biomedicines9111564
dc.relation.referencesVerheugen, G. (2006). European Commission Recommendation on The Efficacy of Sunscreen Products and The Claims Made Relating Thereto. Official Journal of the European Union, 39–43. https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32006H0647&from=EN
dc.relation.referencesVerma, A., Zanoletti, A., Kareem, K. Y., Adelodun, B., Kumar, P., Ajibade, F. O., Silva, L. F. O., Phillips, A. J., Kartheeswaran, T., Bontempi, E., & Dwivedi, A. (2024). Skin protection from solar ultraviolet radiation using natural compounds: a review. Environmental Chemistry Letters, 22(1), 273–295. https://doi.org/10.1007/s10311-023-01649-4
dc.relation.referencesVerma, N., & Behera, B. C. (2015). In vitro culture of lichen partners: Need and implications. In Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2 (pp. 147–160). Springer India. https://doi.org/10.1007/978-81-322-2235-4_8
dc.relation.referencesVerma, N., & Behera, B. C. (2019). Future Directions in the Study of Pharmaceutical Potential of Lichens. In Lichen Secondary Metabolites (pp. 237–260). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_9
dc.relation.referencesVicente, C., Fontaniella, B., Millanes, A. M., Sebastián, B., & Legaz, M. E. (2003). Enzymatic production of atranorin: A component of the oak moss absolute by immobilized lichen cells. International Journal of Cosmetic Science, 25(1–2), 25–29. https://doi.org/10.1046/j.1467-2494.2003.00169.x
dc.relation.referencesVicente, C., Martins, M., Lima, M., Santiago, R., Buril, M., Pereira, E. C., Legaz, M., & Vicente, C. (2017). New Biotechnological Methods for Producing Therapeutic Compounds (Usnic, Stictic and Norstictic Acids) by Cell Immobilization of the Lichen Cladonia substellata Vainio. Article in BioTechnology: An Indian Journal, 13(2), 1–13. www.tsijournals.com
dc.relation.referencesWang, S., Balagula, Y., & Osterwalder, U. (2010). Photoprotection: A review of the current and future technologies. Dermatologic Therapy, 23(1), 31–47. https://doi.org/https://doi.org/10.1111/j.1529-8019.2009.01289.x
dc.relation.referencesWang, X., Hou, X., Hu, Y., Zhou, Q., Liao, C., & Jiang, G. (2018). Synthetic Phenolic Antioxidants and Their Metabolites in Mollusks from the Chinese Bohai Sea: Occurrence, Temporal Trend, and Human Exposure. Environmental Science and Technology, 52(17), 10124–10133. https://doi.org/10.1021/acs.est.8b03322
dc.relation.referencesWang, Y., Wei, X., Bian, Z., Wei, J., & Xu, J. R. (2020). Coregulation of dimorphism and symbiosis by cyclic AMP signaling in the lichenized fungus Umbilicaria muhlenbergii. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23847–23858. https://doi.org/10.1073/pnas.2005109117
dc.relation.referencesWhite, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. In Molecules (Vol. 19, Issue 9, pp. 14496–14527). MDPI AG. https://doi.org/10.3390/molecules190914496
dc.relation.referencesWinslow, T. (2008). Skin With Melanocyte Anatomy. National Cancer Institute. https://visualsonline.cancer.gov/details.cfm?imageid=7279
dc.relation.referencesXu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., Martínez, M., Anadón, A., & Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353(March). https://doi.org/10.1016/j.foodchem.2021.129488
dc.relation.referencesYang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/j.scitotenv.2018.06.213
dc.relation.referencesYoshimura, I., Yamamoto, Y., & Finnie, J. (2002). Isolation and Culture of lichen Photobionts and Mycobionts.
dc.relation.referencesZayed, M. A., & Manojlović, N. T. (2020). Isolation, identification, thermal analysis, DFT calculations and antioxidant activity studies of lichen metabolites norstictic acid and evernic acid. Egyptian Journal of Chemistry, 63(11), 4589–4605. https://doi.org/10.21608/EJCHEM.2020.28473.2611
dc.relation.referencesZerres, S., & Stahl, W. (2020). Carotenoids in human skin. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(11), 158588. https://doi.org/10.1016/j.bbalip.2019.158588
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.agrovocLíquenspa
dc.subject.bneProtectores solares -- Investigaciónspa
dc.subject.bneSunscreens (Cosmetics) -- Researcheng
dc.subject.bneEstrés oxidativospa
dc.subject.bneOxidative stress and diseaseeng
dc.subject.bneRadicales libres (Química)spa
dc.subject.bneFree radicals (Chemistry)eng
dc.subject.bneBiotecnología farmacéuticaspa
dc.subject.bnePharmaceutical biotechnologyeng
dc.subject.ddc610 - Medicina y salud::615 - Farmacología y terapéutica
dc.subject.decsLíquenes -- Químicaspa
dc.subject.decsLichens -- Chemistryeng
dc.subject.decsLíquenes -- Efectos de la radiaciónspa
dc.subject.decsLichens -- Radiation effectseng
dc.subject.decsCianobacterias -- Químicaspa
dc.subject.decsCyanobacteria -- Chemistryeng
dc.subject.decsMelanoma -- Prevención & controlspa
dc.subject.decsMelanoma -- Prevention & controleng
dc.subject.decsAgentes de inmovilización de enzimasspa
dc.subject.decsEnzyme immobilizing agentseng
dc.subject.decsNeoplasias cutáneas -- Tratamiento farmacológicospa
dc.subject.decsSkin neoplasms -- Drug therapyeng
dc.subject.proposalPhyllobaeis imbricataspa
dc.subject.proposalÁcido norstícticospa
dc.subject.proposalAntioxidantespa
dc.subject.proposalFotoprotectorspa
dc.subject.proposalBioproducciónspa
dc.subject.proposalInmovilización celularspa
dc.subject.proposalPhyllobaeis imbricataeng
dc.subject.proposalNorstictic acideng
dc.subject.proposalAntioxidanteng
dc.subject.proposalPhotoprotectiveeng
dc.subject.proposalBioproductioneng
dc.subject.proposalCell inmobilizationeng
dc.subject.unamAgentes dermatológicosspa
dc.subject.unamDermatologic agentseng
dc.subject.unamFarmacología dermatológicaspa
dc.subject.unamDermatopharmacologyeng
dc.titleEvaluación de la actividad antioxidante y fotoprotectora de metabolitos aislados del liquen Phyllobaeis imbricata y contribución a su posible bioproducciónspa
dc.title.translatedEvaluation of the antioxidant and photoprotective activity of metabolites isolated from the Lichen Phyllobaeis imbricata and contribution to their potential bioproductioneng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentEstudiantes
dcterms.audience.professionaldevelopmentInvestigadores
dcterms.audience.professionaldevelopmentMaestros
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2
oaire.awardtitleBioprospección de líquenes del Páramo de Sumapaz, Colombia como fuente original de sustancias duales con actividad antioxidante y fotoprotectora para la prevención de problemas dérmicos asociados a la radiación solar. Código HERMES: 35978, Convocatoria Nacional de Proyectos 2016-2018
oaire.fundernameUniversidad Nacional de Colombia

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1015403693 Evaluacion de la actividad antioxidante y fotoprotectora de Phylloabeis imbricata y contribución a su posible bioproduccion DCRC 2025.pdf
Tamaño:
5.53 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: