Evaluación de la actividad antioxidante y fotoprotectora de metabolitos aislados del liquen Phyllobaeis imbricata y contribución a su posible bioproducción
dc.contributor.advisor | Valencia Islas, Norma Angélica | |
dc.contributor.advisor | Rojas Araque, José Leopoldo | |
dc.contributor.author | Rey Cantor, Diana Catherine | |
dc.contributor.cvlac | Rey Cantor, Diana Catherine [0001875179] | |
dc.contributor.orcid | Rey Cantor, Diana Catherine [0000000271355808] | |
dc.contributor.researchgroup | Grupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianos | |
dc.coverage.country | Colombia | |
dc.coverage.region | Páramo del Sumapaz | |
dc.date.accessioned | 2025-09-09T17:53:06Z | |
dc.date.available | 2025-09-09T17:53:06Z | |
dc.date.issued | 2025 | |
dc.description | ilustraciones (principalmente a color), diagramas, fotografías | spa |
dc.description.abstract | El CaPiel (cáncer de piel) es un problema de salud pública dada su alta incidencia en la población cuya etiología se asocia con la exposición de la piel a la radiación UV, la cual es mutagénica y genera estrés oxidativo en ella. Por ello, se recomienda protegerla mediante el uso de agentes fotoprotectores y antioxidantes tópicos. Dadas las limitaciones de estabilidad, eficacia y seguridad que presentan algunos de estos agentes de uso corriente, existe la necesidad de encontrar sustancias alternativas. En este sentido, los líquenes del páramo de Sumapaz son una fuente interesante para el suministro de estas sustancias pues además de estar constituidos por compuestos únicos, presentan las propiedades biológicas deseadas. En este trabajo se sometió a estudio a Phyllobaeis imbricata, un liquen del páramo de Sumapaz, Colombia. A partir de su extracto acetónico (EPi) se purificó al ácido norstíctico (AN) como metabolito secundario mayoritario, mismo que se caracterizó por técnicas espectroscópicas (IR, RMN). Acto seguido, se determinó la actividad antioxidante tanto de EPi como de AN evaluando su capacidad captadora de radicales libres mediante la técnica del radical DPPH•, su poder reductor férrico y su poder inhibidor de la peroxidación lipídica. Así como su capacidad fotoprotectora UVB a través de la determinación del factor de protección solar y UVA a través de la determinación de la longitud de onda crítica y la relación UVA/UVB. Asimismo, se determinó su fototoxicidad in vitro mediante el ensayo de captación del rojo neutro en fibroblastos de embrión murino BALB/3T3 y su posible inmunotoxicidad, citotoxicidad, mutagenicidad y ecotoxicidad in silico utilizando ProTox 3.0. Parámetros fisicoquímicos indicativos de la permeación dérmica (energía libre de Gibbs de transferencia y coeficiente de permeabilidad en la piel) y posible uso de AN como agente dermatológico tópico (coeficiente de reparto, peso molecular, área superficial polar topológica y número de anillos aromáticos) se determinaron in silico en la plataforma SwissADME©. Finalmente, se llevó a cabo la técnica biotecnológica de inmovilización del talo de P. imbricata en caolín adicionando bajo flujo continuo el precursor biosintético acetato de sodio (0.1, 1.0 y 10 mM) para obtener AN de manera potencialmente sostenible. AN resultó ser un agente dual con actividad antioxidante mayor que EPi, capaz de captar radicales libres con una cinética lenta, presentando poder reductor férrico moderado y capacidad para inhibir la peroxidación de lípidos de una manera más eficiente que el ácido gálico. Asimismo, tiene capacidad fotoprotectora UVB y UVA “media” y no presenta fototoxicidad ni es potencialmente inmunotóxico ni citotóxico. De manera adicional, AN posee propiedades fisicoquímicas favorables para ser entregado al estrato córneo de la piel para ejercer su efecto tópico con una limitada absorción a través de ésta, convirtiéndose en un agente prometedor para su desarrollo como ingrediente de protectores solares. La inmovilización celular del liquen P. imbricata empleando caolín como matriz de inmovilización y flujo continuo de acetato de sodio 1.0 mM como precursor biosintético permitió la bioproducción de AN con el mayor rendimiento frente a las otras concentraciones evaluadas del precursor. (Texto tomado de la fuente) | spa |
dc.description.abstract | Cutaneous cancer is a major public‑health concern due to its high incidence, whose etiology is closely linked to skin exposure to UV radiation—a mutagenic stimulus that also triggers oxidative stress. Consequently, topical photoprotective and antioxidant agents are recommended. Given the stability, efficacy and safety limitations of several current actives, alternative substances are required. The páramo lichens of Sumapaz represent a promising source, because they biosynthesise unique compounds with the desired biological properties. In the present work Phyllobaeis imbricata, collected in the Sumapaz páramo (Colombia), was investigated. Norstictic acid (NA), its major secondary metabolite, was isolated from the acetone extract (EPi) and structurally characterised by IR and NMR spectroscopy. Antioxidant capacity of both EPi and NA was assessed through DPPH• radical scavenging, ferric‑reducing power and inhibition of lipid peroxidation. UVB photoprotection was evaluated by calculating the Sun Protection Factor (SPF), whereas UVA protection was estimated from the critical wavelength and the UVA/UVB ratio. In vitro phototoxicity was determined by the neutral‑red uptake assay in BALB/3T3 mouse‑embryo fibroblasts, and potential immunotoxicity, cytotoxicity, mutagenicity and ecotoxicity were predicted in silico with ProTox 3.0. Physicochemical descriptors related to dermal permeation (Gibbs free energy of transfer and skin‑permeation coefficient) and topical suitability (log P, topological polar surface area, molecular weight and number of aromatic rings) were calculated using SwissADME©. Finally, a biotechnological approach was implemented: P. imbricata thalli were immobilised in a kaolin matrix and continuously supplied with sodium acetate (0.1, 1.0, 10 mM) as a biosynthetic precursor, aiming at sustainable NA production. NA proved to be a dual‑action agent. Compared with EPi, it exhibited superior antioxidant performance, showing slow‑kinetic radical scavenging, moderate ferric‑reducing power and stronger inhibition of lipid peroxidation than gallic acid. It provided “medium” UVB and UVA photoprotection, displayed no phototoxicity, and was predicted to be neither immuno‑ nor cytotoxic. In silico descriptors indicate favourable delivery to the stratum corneum with limited systemic absorption, supporting its candidacy as a sunscreen ingredient. Cell immobilisation of P. imbricata in kaolin, fed with 1.0 mM sodium acetate, yielded the highest NA bioproduction among the tested precursor concentrations. | eng |
dc.description.degreelevel | Maestría | |
dc.description.degreename | Magíster en Ciencias Farmacéuticas | |
dc.description.researcharea | Obtención de sustancias bioactivas a partir de fuentes naturales | |
dc.description.sponsorship | Ministerio de Ambiente y Desarrollo Sostenible. Parques Nacionales Naturales de Colombia. Contrato No. 4 Marco de Acceso a Recursos Genéticos y sus Productos Derivados. Contrato No. 121 de 2016 | |
dc.format.extent | 129 páginas | |
dc.format.mimetype | application/pdf | |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/88674 | |
dc.language.iso | spa | |
dc.publisher | Universidad Nacional de Colombia | |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | |
dc.publisher.faculty | Facultad de Ciencias | |
dc.publisher.place | Bogotá, Colombia | |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias Farmacéuticas | |
dc.relation.references | Al-Sadek, T., & Yusuf, N. (2024). Ultraviolet Radiation Biological and Medical Implications. Current Issues in Molecular Biology, 46(3), 1924–1942. https://doi.org/10.3390/cimb46030126 | |
dc.relation.references | Amaro-Ortiz, A., Yan, B., & D’Orazio, J. A. (2014). Ultraviolet radiation, aging and the skin: Prevention of damage by topical cAMP manipulation. Molecules, 19(5), 6202–6219. https://doi.org/10.3390/molecules19056202 | |
dc.relation.references | American cancer society. (2025). Galería sobre el cáncer de piel. https://www.cancer.org/es/cancer/tipos/cancer-de-piel/galeria-de-imagenes-del-cancer-de-piel.html?filter=Carcinoma de células basales,Melanoma,Carcinoma de células escamosas | |
dc.relation.references | Asplund, J., van Zuijlen, K., Roos, R. E., Birkemoe, T., Klanderud, K., Lang, S. I., Wardle, D. A., & Nybakken, L. (2021). Contrasting responses of plant and lichen carbon-based secondary compounds across an elevational gradient. Functional Ecology, 35(2), 330–341. https://doi.org/10.1111/1365-2435.13712 | |
dc.relation.references | Banerjee, P., Kemmler, E., Dunkel, M., & Preissner, R. (2024). ProTox-3.0 - Prediction of TOXicity of chemicals. Nucleic Acids Research, 52(W1), 513–520. https://doi.org/10.1093/nar/gkae303 | |
dc.relation.references | Behl, G., Sharma, M., Sikka, M., Dahiya, S., Chhikara, A., & Chopra, M. (2013). Gallic acid loaded disulfide cross-linked biocompatible polymeric nanogels as controlled release system: Synthesis, characterization, and antioxidant activity. Journal of Biomaterials Science, Polymer Edition, 24(7), 865–881. https://doi.org/10.1080/09205063.2012.723958 | |
dc.relation.references | Benzie, I. F. F., & Strain, J. J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Analytical Biochemistry, 239(1), 70–76. https://doi.org/10.1006/abio.1996.0292 | |
dc.relation.references | Birben, E., Sahiner, U. M., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization Journal, 5(1), 9–19. https://doi.org/10.1097/WOX.0b013e3182439613 | |
dc.relation.references | Bogo, D., Alcântara, I. M. C., Alcantara, G. B., Micheletti, A. C., Honda, N. K., & Matos, M. de F. C. (2024). Cytotoxicity of norstictic acid derivatives, a depsidone from Ramalina anceps Nyl. Turkish Journal of Chemistry, 48(5), 748–755. https://doi.org/10.55730/1300-0527.3694 | |
dc.relation.references | Bouayed, J., & Bohn, T. (2010). Exogenous antioxidants - Double-edged swords in cellular redox state: Health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Medicine and Cellular Longevity, 3(4), 228–237. https://doi.org/10.4161/oxim.3.4.12858 | |
dc.relation.references | Bouwstra, J. A., Nădăban, A., Bras, W., McCabe, C., Bunge, A., & Gooris, G. S. (2023). The skin barrier: An extraordinary interface with an exceptional lipid organization. Progress in Lipid Research, 92. https://doi.org/10.1016/j.plipres.2023.101252 | |
dc.relation.references | Brancaccio, M., Mennitti, C., Cesaro, A., Fimiani, F., Vano, M., Gargiulo, B., Caiazza, M., Amodio, F., Coto, I., D’alicandro, G., Mazzaccara, C., Lombardo, B., Pero, R., Terracciano, D., Limongelli, G., Calabrò, P., D’argenio, V., Frisso, G., & Scudiero, O. (2022). The Biological Role of Vitamins in Athletes’ Muscle, Heart and Microbiota. International Journal of Environmental Research and Public Health, 19(3). https://doi.org/10.3390/ijerph19031249 | |
dc.relation.references | Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5 | |
dc.relation.references | Buso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2019). Guidelines for the Development of Herbal-Based Sunscreen. Herbal Medicine.https://doi.org/10.5772/intechopen.72712 | |
dc.relation.references | Cadet, J., & Douki, T. (2018). Formation of UV-induced DNA damage contributing to skin cancer development. Photochemical and Photobiological Sciences, 17(12), 1816–1841. https://doi.org/10.1039/c7pp00395a | |
dc.relation.references | Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A., & Owen, J. G. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730–1760. https://doi.org/10.1039/c7cs00431a | |
dc.relation.references | Celia, A. J., Pérez de la Lastra, M., Plou, J., Pérez-Lebeña, E., & Reinbothe, J, F. (2021). Molecular Sciences The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. International Journal of Molecular Sciences, 22(22), 1–21. https://doi.org/10.3390/ijms | |
dc.relation.references | Chatzigianni, M., Pavlou, P., Siamidi, A., Vlachou, M., Varvaresou, A., & Papageorgiou, S. (2022). Environmental impacts due to the use of sunscreen products: a mini-review. Ecotoxicology, 31(9), 1331–1345. https://doi.org/10.1007/s10646-022-02592-w | |
dc.relation.references | Chen, L., Hu, J. Y., & Wang, S. Q. (2012). The role of antioxidants in photoprotection: A critical review. Journal of the American Academy of Dermatology, 67(5), 1013–1024. https://doi.org/10.1016/J.JAAD.2012.02.009 | |
dc.relation.references | Ciążyńska, M., Olejniczak-Staruch, I., Sobolewska-Sztychny, D., Narbutt, J., Skibińska, M., & Lesiak, A. (2021). Ultraviolet radiation and chronic inflammation-molecules and mechanisms involved in skin carcinogenesis: A narrative review. Life, 11(4). https://doi.org/10.3390/life11040326 | |
dc.relation.references | Coelho de Assis, T. (2014). Identificação de metabólitos secundários e estudo de bioatividades de interesse agroquímico e farmacológico de plantas e líquen da Serra do Brigadeiro – MG. | |
dc.relation.references | Corinaldesi, C., Marcellini, F., Nepote, E., Damiani, E., & Danovaro, R. (2018). Impact of inorganic UV filters contained in sunscreen products on tropical stony corals (Acropora spp.). Science of the Total Environment, 637–638, 1279–1285. https://doi.org/10.1016/j.scitotenv.2018.05.108 | |
dc.relation.references | Cross, S. E., Innes, B., Roberts, M. S., Tsuzuki, T., Robertson, T. A., & McCormick, P. (2007). Human skin penetration of sunscreen nanoparticles: In-vitro assessment of a novel micronized zinc oxide formulation. Skin Pharmacology and Physiology, 20(3), 148–154. https://doi.org/10.1159/000098701 | |
dc.relation.references | Cuenta de Alto Costo. (2024, May 22). Día mundial del melanoma 2024. https://cuentadealtocosto.org/cancer/dia-mundial-del-melanoma-2024/ | |
dc.relation.references | Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(March), 1–13. https://doi.org/10.1038/srep42717 | |
dc.relation.references | Dalle Donne, I., Aldini, G., & Carini, M. (2006). Protein carbonylation, cellular dysfunction, and disease progression. Journal of Cellular and Molecular Medicine, 10(2), 389–466. https://doi.org/https://doi.org/10.1111/j.1582-4934.2006.tb00407.x | |
dc.relation.references | Damiani, E., Carloni, P., Biondi, C., & Greci, L. (2000). Increased oxidative modification of albumin when illuminated in vitro in the presence of a common sunscreen ingredient: Protection by nitroxide radicals. Free Radical Biology and Medicine, 28(2), 193–201. https://doi.org/10.1016/S0891-5849(99)00221-X | |
dc.relation.references | de Oliveira Silva, E., & Batista, R. (2017). Ferulic Acid and Naturally Occurring Compounds Bearing a Feruloyl Moiety: A Review on Their Structures, Occurrence, and Potential Health Benefits. Comprehensive Reviews in Food Science and Food Safety, 16(4), 580–616. https://doi.org/10.1111/1541-4337.12266 | |
dc.relation.references | Deduke, C., Timsina, B., & D., M. (2012). Effect of Environmental Change on Secondary Metabolite Production in Lichen-Forming Fungi. International Perspectives on Global Environmental Change, February. https://doi.org/10.5772/26954 | |
dc.relation.references | Di Bartolomeo, L., Irrera, N., Campo, G. M., Borgia, F., Motolese, A., Vaccaro, F., Squadrito, F., Altavilla, D., Condorelli, A. G., Motolese, A., & Vaccaro, M. (2022). Drug-Induced Photosensitivity: Clinical Types of Phototoxicity and Photoallergy and Pathogenetic Mechanisms. Frontiers in Allergy, 3(June), 1–8. https://doi.org/10.3389/falgy.2022.876695 | |
dc.relation.references | Diffey, B., Oliver, R. J., & Farr, P. M. (1984). A portable instrument for quantifying erythema induced by ultraviolet radiation. British Journal of Dermatology, 111, 663–672. g:%5CLibrary%5CReference Manager%5CPapers%5C344. Br. J. Dermatol. 1984, 111, 663-672 | |
dc.relation.references | Diffey, B. L. (1994). A method for broad spectrum classification of sunscreens. In International Journal of Cosmetic Science (Vol. 16). | |
dc.relation.references | Duarte, A., Passarini Zambrano, M. R., Delforno, T. P., Pellizzari, F. M., Cipro Cecchin, C. V., Montone, R. C., Petry, M. V., Putzke, J., Rosa, L. E., & Sette, L. D. (2016). Yeasts from macroalgae and lichens that inhabit the South Shetland Islands, Antartica. Environmental Microbiology Reports, 8(5), 874–885. https://doi.org/https://doi.org/10.1111/1758-2229.12452 | |
dc.relation.references | Dunaway, S., Odin, R., Zhou, L., Ji, L., Zhang, Y., & Kadekaro, A. L. (2018). Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Frontiers in Pharmacology, 9(APR). https://doi.org/10.3389/fphar.2018.00392 | |
dc.relation.references | Egambaram, O. P., Kesavan Pillai, S., & Ray, S. S. (2020). Materials Science Challenges in Skin UV Protection: A Review. Photochemistry and Photobiology, 96(4), 779–797. https://doi.org/10.1111/php.13208 | |
dc.relation.references | Eisenreich, W., Knispel, N., & Beck, A. (2011). Advanced methods for the study of the chemistry and the metabolism of lichens. Phytochemistry Reviews, 10(3), 445–456. https://doi.org/10.1007/s11101-011-9215-3 | |
dc.relation.references | Ekstein, S. F., & Hylwa, S. (2023). Sunscreens: A Review of UV Filters and Their Allergic Potential. Dermatitis, 34(3), 176–190. https://doi.org/10.1097/DER.0000000000000963 | |
dc.relation.references | Farris, P. K., & Valacchi, G. (2022). Ultraviolet Light Protection: Is It Really Enough? Antioxidants, 11(8), 1–20. https://doi.org/10.3390/antiox11081484 | |
dc.relation.references | Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2022a). Cancer statistics for the year 2022: An overview melanoma. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588 | |
dc.relation.references | Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2022b). Cancer statistics for the year 2022: An overview non melanoma. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588 | |
dc.relation.references | Fernández-Moriano, C., Gómez-Serranillos, M. P., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. In Pharmaceutical Biology (Vol. 54, Issue 1, pp. 1–17). Taylor and Francis Ltd. https://doi.org/10.3109/13880209.2014.1003354 | |
dc.relation.references | Finter, N. B. (1969). Dye Uptake Methods for Assessing Viral Cytopathogenicity and their Application to Interferon Assays. Journal of General Virology, 5(3), 419–427. https://doi.org/10.1099/0022-1317-5-3-419 | |
dc.relation.references | Flieger, J., Raszewska-Famielec, M., Radzikowska-Büchner, E., & Flieger, W. (2024). Skin Protection by Carotenoid Pigments. International Journal of Molecular Sciences, 25(3). https://doi.org/10.3390/ijms25031431 | |
dc.relation.references | Freitas, J. V., Lopes, N. P., & Gaspar, L. R. (2015). Photostability evaluation of five UV-filters, trans-resveratrol and beta-carotene in sunscreens. European Journal of Pharmaceutical Sciences,78, 79–89. https://doi.org/10.1016/j.ejps.2015.07.004 | |
dc.relation.references | Furmanek, Ł., & Seaward, M. R. D. (2023). Anti-yeast potential of lichen-extracted substances – An analytical review. South African Journal of Botany, 161, 720–779. https://doi.org/10.1016/j.sajb.2023.08.018 | |
dc.relation.references | Galán González, E. F., Salazar Fajardo, L. J., & Devi Nereida, P. J. (2015). Cáncer de Piel: Una enfermedad silenciosas que requiere control. Minsalud Col / Inc Col, 7(1), 1–12. | |
dc.relation.references | Garbe, C., Forsea, A. M., Amaral, T., Arenberger, P., Autier, P., Berwick, M., Boonen, B., Bylaite, M., del Marmol, V., Dreno, B., Fargnoli, M. C., Geller, A. C., Green, A. C., Greinert, R., Hauschild, A., Harwood, C. A., Hoorens, I., Kandolf, L., Kaufmann, R., … Brochez, L. (2024). Skin cancers are the most frequent cancers in fair-skinned populations, but we can prevent them. European Journal of Cancer, 204(February). https://doi.org/10.1016/j.ejca.2024.114074 | |
dc.relation.references | Garoli, D., Pelizzo, M. G., Bernardini, B., Nicolosi, P., & Alaibac, M. (2008). Sunscreen tests: Correspondence between in vitro data and values reported by the manufacturers. Journal of Dermatological Science, 52(3), 193–204. https://doi.org/10.1016/j.jdermsci.2008.06.010 | |
dc.relation.references | Gaya, E., Lücking, R., & Morato-Vasquez, V. (2022). Diversity of fungi of Colombia. In: de Almeida, R. F., Lücking, R., Vasco- Palacios, A. M., Gaya, E. & Diazgranados, M. (eds.). Catalogue of Fungi of Colombia. Kew Publishing, Royal. RESEARCH GATE, October. | |
dc.relation.references | Gierl & Kalb. (1993). Phyllobaeis imbricata (Hook.) Kalb & Gierl. Herzogia 9(3-4): 610. https://www.gbif.org/species/3439404 | |
dc.relation.references | Global Biodiversity Information Facility. (2024). gbif.org. Https://Www.Gbif.Org/Occurrence/Map?Taxon_key=3439404. https://www.gbif.org/occurrence/map?taxon_key=3439404 | |
dc.relation.references | Goga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2018). Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential. In Lichen Metabolites: An Overview of Some Secondary Metabolites and Their Biological Potential (pp. 1–36). https://doi.org/10.1007/978-3-319-76887-8_57-1 | |
dc.relation.references | González-Velásquez, N. (2019). Contribución al conocimiento de los constituyentes químicos mayoritarios del liquen Phyllobaeis imbricata colectado en el páramo de Sumapaz. Tesis. Universidad Nacional de Colombia. | |
dc.relation.references | Gordon, R. (2013). Skin cancer: An overview of epidemiology and risk factors. Seminars in Oncology Nursing, 29(3), 160–169. https://doi.org/10.1016/j.soncn.2013.06.002 | |
dc.relation.references | Grether-Beck, S., Marini, A., Jaenicke, T., & Krutmann, J. (2015). Effective photoprotection of human skin against infrared a radiation by topically applied antioxidants: Results from a vehicle controlled, double-blind, randomized study. Photochemistry and Photobiology, 91(1), 248–250. https://doi.org/10.1111/php.12375 | |
dc.relation.references | Grice, H. (1986). Safety evaluation of butylated hydroxytoluene (BHT) in the liver, lung and gastrointestinal tract. Food Chem. Toxicol, 24, 1127–1130. | |
dc.relation.references | Halliwell, B. (2012). Free radicals and antioxidants: Updating a personal view. Nutrition Reviews, 70(5), 257–265. https://doi.org/10.1111/j.1753-4887.2012.00476.x | |
dc.relation.references | Hennigan, C. (2021). US Diversity and Inclusivity in Beauty Market Report 2021 | Mintel Store. Mintel. https://store.mintel.com/report/us-diversity-and-inclusivity-in-beauty-market-report-2021 | |
dc.relation.references | Hojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International Journal of Pharmaceutics, 408(1–2), 27–38. https://doi.org/10.1016/j.ijpharm.2011.01.040 | |
dc.relation.references | Hook. (1822). Baeomyces imbricatus. NCBI Taxonomy. | |
dc.relation.references | Hook & Kuntze. (1891). Mycobank Database. https://www.mycobank.org/page/Name details page/field/Mycobank %23/360409 | |
dc.relation.references | Hook & Trevis. (1857). MYCOBANK Database. https://www.mycobank.org/page/Name details page/field/Mycobank %23/360409 | |
dc.relation.references | Huang, R., Chen, H., Liang, J., Li, Y., Yang, J., Luo, C., Tang, Y., Ding, Y., Liu, X., Yuan, Q., Yu, H., Ye, Y., Xu, W., & Xie, X. (2021). Dual Role of Reactive Oxygen Species and their Application in Cancer Therapy. Journal of Cancer, 12(18), 5543. https://doi.org/10.7150/JCA.54699 | |
dc.relation.references | Huneck, S., & Yoshimura, I. (1996). Identification of Lichen Substances. In Identification of Lichen Substances. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-85243-5 | |
dc.relation.references | Ighodaro, O. M., & Akinloye, O. A. (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4), 287–293. https://doi.org/10.1016/j.ajme.2017.09.001 | |
dc.relation.references | Imamović, B., Trebše, P., Omeragić, E., Bečić, E., Pečet, A., & Dedić, M. (2022). Stability and Removal of Benzophenone-Type UV Filters from Water Matrices by Advanced Oxidation Processes. Molecules, 27(6). https://doi.org/10.3390/molecules27061874 | |
dc.relation.references | Ingólfsdóttr, K. (2002). Usnic acid. Phytochemistry, 61(7), 729–736. https://doi.org/10.1016/S0031-9422(02)00383-7 | |
dc.relation.references | International Agency for Research on Cancer. (1992). IARC Publications Website - Solar and Ultraviolet Radiation. Volume 55. https://doi.org/978-92-832-1255-3 | |
dc.relation.references | Jallad, K. N. (2017). Chemical characterization of sunscreens composition and its related potential adverse health effects. Journal of Cosmetic Dermatology, 16(3), 353–357. https://doi.org/10.1111/jocd.12282 | |
dc.relation.references | Jovanović, B., & Guzmán, H. M. (2014). Effects of titanium dioxide (TiO2) nanoparticles on caribbean reef-building coral (Montastraea faveolata). Environmental Toxicology and Chemistry, 33(6), 1346–1353. https://doi.org/10.1002/etc.2560 | |
dc.relation.references | Jurado, A., Walther, M., & Díaz-Cruz, M. S. (2019). Occurrence, fate and environmental risk assessment of the organic microcontaminants included in the Watch Lists set by EU Decisions 2015/495 and 2018/840 in the groundwater of Spain. Science of the Total Environment, 663, 285–296. https://doi.org/10.1016/j.scitotenv.2019.01.270 | |
dc.relation.references | Kageyama, H., & Waditee-Sirisattha, R. (2019). Antioxidative, anti-inflammatory, and anti-aging properties of mycosporine-like amino acids: Molecular and cellular mechanisms in the protection of skin-aging. In Marine Drugs (Vol. 17, Issue 4). MDPI AG. https://doi.org/10.3390/md17040222 | |
dc.relation.references | Kageyama, H., & Waditee-Sirisattha, R. (2023). Distribution, biosynthetic regulation, and bioactivities of mycosporine-2-glycine, a rare UV-protective mycosporine-like amino acid. AIMS Molecular Science, 10(4), 295–310. https://doi.org/10.3934/molsci.2023017 | |
dc.relation.references | Kasper, D. L., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., & Loscalzo, J. (2020). Manual de Medicina. McGraw-Hill Education LLC, 1 y 2(21), 5471. | |
dc.relation.references | Kassim, N. K., Lim, P. C., Ismail, A., & Awang, K. (2019). Isolation of antioxidative compounds from Micromelum minutum guided by preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography method. Food Chemistry, 272, 185–191. https://doi.org/10.1016/J.FOODCHEM.2018.08.045 | |
dc.relation.references | Kaźmierczak-Barańska, J., Boguszewska, K., Adamus-Grabicka, A., & Karwowski, B. T. (2020). Two faces of vitamin c—antioxidative and pro-oxidative agent. Nutrients, 12(5). https://doi.org/10.3390/nu12051501 | |
dc.relation.references | Kijlstra, A., Tian, Y., Kelly, E. R., & Berendschot, T. T. J. M. (2012). Lutein: More than just a filter for blue light. Progress in Retinal and Eye Research, 31(4), 303–315. https://doi.org/10.1016/j.preteyeres.2012.03.002 | |
dc.relation.references | Kim, H., & Giovannucci, E. (2020). Vitamin d status and cancer incidence, survival, and mortality. In Advances in Experimental Medicine and Biology (Vol. 1268). https://doi.org/10.1007/978-3-030-46227-7_3 | |
dc.relation.references | Kono, M., Kon, Y., Ohmura, Y., Satta, Y., & Terai, Y. (2020). In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis _ Enhanced Reader. BMC Genomics, 21(671), 1–16. | |
dc.relation.references | Kosanić, M., & Ranković, B. (2019). Studies on Antioxidant Properties of Lichen Secondary Metabolites. In Lichen Secondary Metabolites (pp. 129–153). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_4 | |
dc.relation.references | Kosanić, M., Ranković, B., & Vukojević, J. (2011). Antioxidant properties of some lichen species. Journal of Food Science and Technology, 48(5), 584–590. https://doi.org/10.1007/s13197-010-0174-2 | |
dc.relation.references | Kuskoski, E. M., Asuero, A. G., Troncoso, A. M., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Ciência e Tecnologia de Alimentos, 25(4), 726–732. https://doi.org/10.1590/s0101-20612005000400016 | |
dc.relation.references | Leal, A., Rojas, J. L., Valencia-Islas, N. A., & Castellanos, L. (2018). Natural Product Research Formerly Natural Product Letters New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural Product Research, 32(12), 1375–1382. https://doi.org/10.1080/14786419.2017.1346639 | |
dc.relation.references | Legaz, M. E., De Armas, R., & Vicente, C. (2011). Bioproduction of Depsidones for Pharmaceutical Purposes. In Drug Development - A Case Study Based Insight into Modern Strategies (p. 654). www.intechopen.com | |
dc.relation.references | Liebsch, M., Spielmann, H., & J.W. Pape, W. (2005). UV-induced effects. Alternatives to Laboratory Animals, 33 suppl 1(April 2015), 131–146. | |
dc.relation.references | Liga Colombiana contra el Cáncer. (2022). Cáncer de piel y su clasificación - Liga Colombiana contra el Cáncer. Https://Www.Ligacancercolombia.Org/Educacion/Clasificacion-Cancer-de-Piel/. https://www.ligacancercolombia.org/educacion/clasificacion-cancer-de-piel/ | |
dc.relation.references | Lingappan, K. (2018). NF-κB in oxidative stress. Current Opinion in Toxicology, 7, 81–86. https://doi.org/10.1016/j.cotox.2017.11.002 | |
dc.relation.references | Lohezic-Le Devehat, F., Legouin, B., Couteau, C., Boustie, J., & Coiffard, L. (2013). Lichenic extracts and metabolites as UV filters. Journal of Photochemistry and Photobiology B: Biology, 120, 17–28. https://doi.org/10.1016/j.jphotobiol.2013.01.009 | |
dc.relation.references | Lorigo, M., Quintaneiro, C., Breitenfeld, L., & Cairrao, E. (2024). Chemosphere Exposure to UV-B filter octylmethoxycinnamate and human health effects : Focus on endocrine disruptor actions. Chemosphere, 358(358), 1–16. | |
dc.relation.references | Loureiro, J. B., Abrantes, M., Oliveira, P. A., & Saraiva, L. (2020). P53 in skin cancer: From a master player to a privileged target for prevention and therapy. Biochimica et Biophysica Acta - Reviews on Cancer, 1874(2), 188438. https://doi.org/10.1016/j.bbcan.2020.188438 | |
dc.relation.references | Mansur, J. de S., Rodrigues Breder, M., & Mansur, M. C. (1986). Determinação do fator de proteção solar por espectrofotometria. Anais Brasileiros de Dermatologia. http://www.anaisdedermatologia.com.br/detalhe-artigo/421/Determinacao-do-fator-de-protecao-solar-por-espectrofotometria | |
dc.relation.references | Marei, H. E., Althani, A., Afifi, N., Hasan, A., Caceci, T., Pozzoli, G., Morrione, A., Giordano, A., & Cenciarelli, C. (2021). P53 Signaling in Cancer Progression and Therapy. Cancer Cell International, 21(1), 1–15. https://doi.org/10.1186/s12935-021-02396-8 | |
dc.relation.references | Martins, M., Lima, M., & Buril, M. (2017). New Biotechnological Methods for Producing Therapeutic Compounds (Usnic, Stictic and Norstictic Acids) by Cell Immobilization of the Lichen Cladonia substellata New Biotechnological Methods for Producing. In Biotechnol Ind J (Vol. 13, Issue 2). www.tsijournals.com | |
dc.relation.references | Masaki, H. (2010). Role of antioxidants in the skin: Anti-aging effects. Journal of Dermatological Science, 58(2), 85–90. https://doi.org/10.1016/j.jdermsci.2010.03.003 | |
dc.relation.references | Medina, E. S., Díaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de La Academia Colombiana de Ciencias Exactas, Fisicas y Naturales, 45(174), 122–135. https://doi.org/10.18257/raccefyn.1224 | |
dc.relation.references | Mejia- Giraldo, Juan, Atehortua, L., & Puertas-Mejia, M. A. (2014). Foto-protección: mecanismos bioquímicos, punto de partida hacia mejores filtros solares. Dermatologia Cosmética, Médica y Quirurgica, 12(4), 222–281. | |
dc.relation.references | Millot, M., Di Meo, F., Tomasi, S., Boustie, J., & Trouillas, P. (2012). Photoprotective capacities of lichen metabolites: A joint theoretical and experimental study. Journal of Photochemistry and Photobiology B: Biology, 111, 17–26. https://doi.org/10.1016/j.jphotobiol.2012.03.005 | |
dc.relation.references | Mishra, K., Ojha, H., & Chaudhury, N. K. (2012). Estimation of antiradical properties of antioxidants using DPPH- assay: A critical review and results. Food Chemistry, 130(4), 1036–1043. https://doi.org/10.1016/j.foodchem.2011.07.127 | |
dc.relation.references | Mitsuda, H., Kimikazu, I., & Kyoden, Y. (1996). Antioxidative Action of Indole Compounds Acid during the Autoxidation of Linoleic. Eiyo to Syokuryo, 19, 210–214. | |
dc.relation.references | Mittermeier, V. K., Schmitt, N., Volk, L. P. M., Suárez, J. P., Beck, A., & Eisenreich, W. (2015). Metabolic profiling of alpine and ecuadorian lichens. Molecules, 20(10), 18047–18065. https://doi.org/10.3390/molecules201018047 | |
dc.relation.references | Mohania, D., Shikha, C., Kumar, P., Verma, V., Kumar, D., Tripathi, D., Choudhury, K., Kumar Mitten, S., & Shah, D. (2017). Ultraviolet Radiations: Skin Defense-Damage Mechanism. Advances in Experimental Medicine and Biology, 996, 71–87. | |
dc.relation.references | Moncada, B., & Lücking, R. (2021). Introducción a la Biología y Taxonompia de los Líquenes Colombianos Una guia para Reconocer su Biodiversidad e Importancia. | |
dc.relation.references | Mosley, C. N., Wang, L., Gilley, S., Wang, S., & Yu, H. (2007). Light-induced cytotoxicity and genotoxicity of a sunscreen agent, 2-phenylbenzimidazole in Salmonella typhimurium TA 102 and HaCaT keratinocytes. International Journal of Environmental Research and Public Health, 4(2), 126–131. https://doi.org/10.3390/ijerph2007040006 | |
dc.relation.references | Nagla, dr madhu, Melissa A. Furlong, PhDa, Dana Boyd Barr, PhDb, Mary S. Wolff, PhDc, and Stephanie M. Engel, P., & Cross, Sarah J. Linker, Kay E. Leslie, F. M. (2016). 乳鼠心肌提取 HHS Public Access. Physiology & Behavior, 176(1), 100–106. https://doi.org/10.1002/ptr.5551.Norstictic | |
dc.relation.references | Nash, T. (2008). Lichen Biology. In Cambridge University Press, New York. https://doi.org/10.1146/annurev.micro.58.030603 .123730 | |
dc.relation.references | National Academies of Sciences, Engineering, and M. (2022). Review of fate, exposure, and effects of sunscreens in aquatic environments and implications for sunscreen usage and human health. In Review of Fate, Exposure, and Effects of Sunscreens in Aquatic Environments and Implications for Sunscreen Usage and Human Health. National Academies Press. https://doi.org/10.17226/26381 | |
dc.relation.references | Nguyen, K. H., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural Product Reports, 30(12), 1490–1508. https://doi.org/10.1039/c3np70064j | |
dc.relation.references | Nichols, J. A., & Katiyar, S. K. (2011). Polyphenols: skin photoprotection and inhibition of photocarcinogenesis. Mini Reviews in Medicinal Chemistry, 11(14), 1200–1215. https://doi.org/10.1007/s00403-009-1001-3.Skin | |
dc.relation.references | Nohynek, G. J., Lademann, J., Ribaud, C., & Roberts, M. S. (2007). Grey Goo on the skin? Nanotechnology, cosmetic and sunscreen safety. Critical Reviews in Toxicology, 37(3), 251–277. https://doi.org/10.1080/10408440601177780 | |
dc.relation.references | Nomelin-Ballen, L. Y. (2020). Búsqueda de antioxidantes y/o fotoprotectores en un hongoliquenizado del páramo de Sumapaz, Colombia, como posibles agentes preventivos de cáncer de piel. Tesis.Universidad Nacional de Colombia. | |
dc.relation.references | Núñez-Arango, L. M. (2012). Estudio Quimico, Actividad antioxidante y Potencial Antienvejecimiento del liquen Flavopunctelia flaventior (Stirt.) Hale. Universidad Nacional de colombia. | |
dc.relation.references | Nuñez Arango, L. M. (2022). Antioxidantes y/o fotoprotectores de los líquenes del páramo de Sumapaz Thamnolia vermicularis y Cladonia cf. didyma y estudio de su posible producción biotecnológica. Tesis. Universidad Nacional de Colombia. | |
dc.relation.references | Odabasoglu, F., Aslan, A., Cakir, A., Suleyman, H., Karagoz, Y., Halici, M., & Bayir, Y. (2004). Comparison of antioxidant activity and phenolic content of three lichen species. Phytotherapy Research, 18(11), 938–941. https://doi.org/10.1002/ptr.1488 | |
dc.relation.references | OECD. (2022). Software to be used with Test Guidelines | OECD. 2.0. https://www.oecd.org/en/topics/sub-issues/testing-of-chemicals/software-test-guidelines.html | |
dc.relation.references | OECD 432. (2019). Test Guideline No. 432 In Vitro 3T3 NRU Phototoxicity Test. Organisation for Economic Co-Operation and Development, 432, 1–19. | |
dc.relation.references | Orange, A., James, P. W. (Peter W., & White, F. J. (2010). Microchemical methods for the identification of lichens (British Lichen Society (ed.); 2nd ed.). | |
dc.relation.references | Oyaizu, M. (1986). Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese Journal of Nutrition and Dietetics, 44(6), 307–315. https://doi.org/10.5264/eiyogakuzashi.44.307 | |
dc.relation.references | Özdemir Nee Güngör, Ö., Gürkan, P., Sari, M., & Tunç, T. (2015). Synthesis of monosodium salts of N-(5-nitro-salicylidene)-D-amino acid Schiff bases and their iron(III) complexes: Spectral and physical characterizations, antioxidant activities. Journal of Coordination Chemistry, 68(14), 2565–2585. https://doi.org/10.1080/00958972.2015.1043908 | |
dc.relation.references | Panyakaew, J., Chalom, S., Sookkhee, S., Saiai, A., Chandet, N., Meepowpan, P., Thavornyutikarn, P., & Mungkornasawakul, P. (2021). Kaempferia Sp. Extracts as UV Protecting and Antioxidant Agents in Sunscreen. Journal of Herbs, Spices and Medicinal Plants, 27(1), 37–56. https://doi.org/10.1080/10496475.2020.1777614 | |
dc.relation.references | Parra-Gutierrez, S. (2024). Estudio químico , actividad antioxidante y fotoprotectora de un hongo liquenizado del páramo de Sumapaz , Colombia como fuente potencial de compuestos para uso en protección solar. Tesis. Universidad Nacional de Colombia. | |
dc.relation.references | Paukov, A., Teptina, A., Morozova, M., Kruglova, E., Favero-Longo, S. E., Bishop, C., & Rajakaruna, N. (2019). The effects of edaphic and climatic factors on secondary lichen chemistry: A case study using saxicolous lichens. Diversity, 11(6), 6–11. https://doi.org/10.3390/D11060094. | |
dc.relation.references | Pavlou, P., Siamidi, A., Vlachou, M., & Varvaresou, A. (2021). UV Filters and Their Distribution on the Skin through Safe, Non-Penetrating Vehicles. Journal of Cosmetic Science, 72(3), 298–324. | |
dc.relation.references | Pelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In Vitro Evaluation of Sunscreens: An Update for the Clinicians . ISRN Dermatology, 2012(August 2007), 1–4.https://doi.org/10.5402/2012/352135 | |
dc.relation.references | Pellevoisin, C., Bouez, C., & Cotovio, J. (2017). Cosmetic industry requirements regarding skin models for cosmetic testing. In Skin Tissue Models (pp. 3–37). Elsevier Inc. https://doi.org/10.1016/B978-0-12-810545-0.00001-2 | |
dc.relation.references | Pereira, E. C., Lacerda-Buril, M., Martins, M., & da Silva Falcao, E. (2020). Plant-derived bioactives: Production, properties and therapeutic applications. In Plant-derived Bioactives: Production, Properties and Therapeutic Applications (Issue May). https://doi.org/10.1007/978-981-15-1761-7 | |
dc.relation.references | Pereira, E. C., Martins, M., Falcão, E. P. S., & De Oliveira, H. P. (2020). Bioactive compounds from brazilian lichens and their biotechnological applications. In Plant-derived Bioactives: Production, Properties and Therapeutic Applications (pp. 209–238). Springer Singapore. https://doi.org/10.1007/978-981-15-1761-7_9 | |
dc.relation.references | Pereira, E. C., Nóbrega, N. A., Andrade, L. C., da Silva, N. H., da Silva, E. F., & Vicente, C. (1995). Metabolites Production By Cladonia Salzmannii NYL., Through Cell Immobilization. ResearchGate, 1–6. https://www.researchgate.net/publication/277286804 | |
dc.relation.references | Pereira, E. C., Pereira, I., & Gutiérrez, M. (2017). Production of Secondary Metabolites by Immobilized Cells of Stereocaulon ramulosum (Sw) Rausch (lichen) in Different Design of Bioreactors. Available Online Www.Jocpr.Com Journal of Chemical and Pharmaceutical Research, 2017(5), 104–109. www.jocpr.com | |
dc.relation.references | Perico-Franco, L. S. (2011). Antioxidantes de los liquenes Stereocaulon strictum (Stereocaulaceae) y Lobariella pallida (Lobariaceae) y determinacion de su potencial citotoxicidad. Tesis. Universidad Nacional de Colombia. | |
dc.relation.references | Perico-Franco, L. S., Rojas, J. L., Cerbón, M. A., González-Sánchez, I., & Valencia-Islas, N. A. (2015). Antioxidant Activity and Protective Effect on Cell and DNA Oxidative Damage of Substances isolated from Lichens of Colombian páramo. Pharmaceutical and Biosciences Journal, 3(4), 09–17. https://doi.org/10.20510/ukjpb/3/i4/89448 | |
dc.relation.references | Perico-Franco, L. S., Soriano-garcía, M., Cerbón, M. A., González-sánchez, I., & Valencia-islas, N. A. (2015). Secondary metabolites and cytotoxic potential of Lobariella pallida and Stereocaulon strictum var . compressum , two lichens from Colombian páramo region. UK Journal of Pharmaceutical and Biosciences, 3(4), 31–38. | |
dc.relation.references | Petruk, G., Giudice, R. Del, Rigano, M. M., & Monti, D. M. (2018). Antioxidants from plants protect against skin photoaging. Oxidative Medicine and Cellular Longevity, 2018. https://doi.org/10.1155/2018/1454936 | |
dc.relation.references | Pietta, P., Simonetti, P., & Mauri, P. (1998). Antioxidant activity of selected medicinal plants. Journal Agric Food Chem, 46, 4487–4490. | |
dc.relation.references | Pinnell, S. R. (2003). Cutaneous photodamage, oxidative stress, and topical antioxidant protection. Journal of the American Academy of Dermatology, 48(1), 1–22. https://doi.org/10.1067/MJD.2003.16 | |
dc.relation.references | Potts, R., & Guy, R. (1992). Predicting Skin Permeability. Journal of Pharmaceutical Sciences, 83(9), 1315–1334. https://doi.org/10.1002/jps.2600830925 | |
dc.relation.references | Pouillot, A., Polla, L. L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural Antioxidants and their Effects on the Skin. Formulating, Packaging, and Marketing of Natural Cosmetic Products, 239–257. https://doi.org/10.1002/9781118056806.ch13 | |
dc.relation.references | Raggio, J., Pintado, A., Ascaso, C., De La Torre, R., De Los Rios, A., Wierzchos, J., Horneck, G., & Sancho, L. G. (2011). Whole Lichen Thalli Survive Exposure to Space Conditions: Results of Lithopanspermia Experiment with Aspicilia fruticulosa. Astrobiology, 11(4), 1–11. | |
dc.relation.references | Rangel-Churio, J., & Pinto-Zárate, J. H. (2012). Colombian Páramo Vegetation Database (CPVD) – the database on high Andean páramo vegetation in Colombia . Biodiversity & Ecology, 4(May 2014), 275–286. https://doi.org/10.7809/b-e.00084 | |
dc.relation.references | Ranković, B. (2015). Lichen secondary metabolites: Bioactive properties and pharmaceutical potential. In Lichen Secondary Metabolites: Bioactive Properties and Pharmaceutical Potential. https://doi.org/10.1007/978-3-319-13374-4 | |
dc.relation.references | Ranković, B., & Kosanić, M. (2019). Lichens as a Potential Source of Bioactive Secondary Metabolites. In Lichen Secondary Metabolites (pp. 1–29). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_1 | |
dc.relation.references | Ranković, B., Kosanić, M., Stanojković, T., Vasiljević, P., & Manojlović, N. (2012). Biological activities of Toninia candida and Usnea barbata together with their norstictic acid and usnic acid constituents. International Journal of Molecular Sciences, 13(11), 14707–14722. https://doi.org/10.3390/ijms131114707 | |
dc.relation.references | Ranković Branislav. (2015). Lichen Secondary Metabolites. In Lichen Secondary Metabolites. https://doi.org/10.1007/978-3-319-13374-4 | |
dc.relation.references | Rao, R., & Ravishankar, G. A. (2002). Plant cell cultures: Chemical factories of secondary metabolites. Biotechnology Advances, 20(2), 101–153. https://doi.org/10.1016/S0734-9750(02)00007-1 | |
dc.relation.references | Rashid, M. A., Majid, M. A., & Quader, M. A. (1999). Complete NMR assignments of (+)-usnic acid. Fitoterapia, 70(1), 113–115. https://doi.org/10.1016/S0367-326X(98)00033-1 | |
dc.relation.references | Raymond-Lezman, J. R., & Riskin, S. I. (2023). Benefits and Risks of Sun Exposure to Maintain Adequate Vitamin D Levels. Cureus, 15(5), 1–1. https://doi.org/10.7759/cureus.38578 | |
dc.relation.references | Reichrat, J., & Ras, K. (2014). Ultra Cancer Vitamin and in Damage ,in Malignant No Melanoma Repair Update Skin and. Sunlight, Vitamin D and Skin Cancer, Second Edition, 208–233. | |
dc.relation.references | Rice-Evans, C., Miller, N., & Paganga, G. (1996). Review Article: Review Article. Free Radical Biology & Medicine, 20(7), 933–956. https://doi.org/10.1177/1461444810365020 | |
dc.relation.references | Rojas, J. L., Díaz-Santos, M., & Valencia-Islas, N. A. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 3(August 2015), 18–26. https://doi.org/10.20510/ukjpb/3/i4/89454 | |
dc.relation.references | Rünger, T. M., Farahvash, B., Hatvani, Z., & Rees, A. (2012). Comparison of DNA damage responses following equimutagenic doses of UVA and UVB: A less effective cell cycle arrest with UVA may render UVA-induced pyrimidine dimers more mutagenic than UVB-induced ones. Photochemical and Photobiological Sciences, 11(1), 207–215. https://doi.org/10.1039/c1pp05232b | |
dc.relation.references | Russo, A., Piovano, M., Lombardo, L., Vanella, L., Cardile, V., & Garbarino, J. (2006). Pannarin inhibits cell growth and induces cell death in human prostate carcinoma DU-145 cells. Anti-Cancer Drugs, 17(10), 1163–1169. https://doi.org/10.1097/01.cad.0000236310.66080.ed | |
dc.relation.references | Saewan, N., & Jimtaisong, A. (2015). Natural products as photoprotection. Journal of Cosmetic Dermatology, 14, 47–63. https://doi.org/10.1021/np200906s.Natural | |
dc.relation.references | Sample, A., & He, Y. Y. (2018). Mechanisms and prevention of UV-induced melanoma. Photodermatology Photoimmunology and Photomedicine, 34(1), 13–24. https://doi.org/10.1111/phpp.12329 | |
dc.relation.references | Sánchez-Lira, N. M. V., Morales-Miranda, A., García de la Mora, G., León Contreras, J. C., González-Sánchez, I., Valencia, N., Cerbón, M., & Morimoto, S. (2017). Orcinol derivative compound with antioxidant properties protects Langerhans islets against streptozotocin damage. Journal of Pharmacy and Pharmacology, 69(3), 305–313. https://doi.org/10.1111/jphp.12696 | |
dc.relation.references | Santos, L. L., Wu, E. L., Grinias, K. M., Koetting, M. C., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750. | |
dc.relation.references | Sayre, R., Agin, P. P., Levee, G. J., & Maruiwe, E. (1978). A Comparison of In Vivo and In Vitro Testing of Sunscreening Formulas. Photochemistry and Photobiology, 29, 559–566. | |
dc.relation.references | Schuch, A. P., Moreno, N. C., Schuch, N. J., Menck, C. F. M., & Garcia, C. C. M. (2017). Sunlight damage to cellular DNA: Focus on oxidatively generated lesions. Free Radical Biology and Medicine, 107(September 2016), 110–124. https://doi.org/10.1016/j.freeradbiomed.2017.01.029 | |
dc.relation.references | Schweiger, A. H., Ullmann, G. M., Nürk, N. M., Triebel, D., Schobert, R., & Rambold, G. (2022). Chemical properties of key metabolites determine the global distribution of lichens. Ecology Letters, 25(2), 416–426. https://doi.org/10.1111/ele.13930 | |
dc.relation.references | Seminara, A., Fritz, J., Brenner, M. P., & Pringle, A. (2018). A universal growth limit for circular lichens. Journal of the | |
dc.relation.references | Sharma, R. R., Singh, D., & Singh, R. (2009). Biological control of postharvest diseases of fruits and vegetables by microbial antagonists: A review. Biological Control, 50(3), 205–221. https://doi.org/10.1016/j.biocontrol.2009.05.001 | |
dc.relation.references | Sipman, H., & Aguirre, J. (1982). Contribución al conocimiento de los líquenes de Colombia - I. Clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. In Caldasia (Vol. 13, Issue 64, pp. 603–634). | |
dc.relation.references | Soto-Medina, E., Días Escandón, D., & Zuluaga Trochez, A. (2023). Lista de especies de líquenes del Valle del Cauca (Colombia). In Revista de Ciencias (Vol. 26, Issue 1). https://doi.org/10.25100/rc.v26i1.12416 | |
dc.relation.references | Spribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M. C., Schneider, K., Stabentheiner, E., Toome-Heller, M., Thor, G., Mayrhofer, H., Johannesson, H., & McCutcheon, J. P. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488–492. https://doi.org/10.1126/science.aaf8287 | |
dc.relation.references | Stocker-Wörgötter, E. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: Culturing, polyketide and shikimate metabolite production, and PKS genes. In Natural Product Reports (Vol. 25, Issue 1, pp. 188–200). https://doi.org/10.1039/b606983p | |
dc.relation.references | Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2004). Free Radical Scavenging Behavior of Antioxidant Compounds of Sesame (Sesamum indicum L.) in DPPH• System. Journal of Agricultural and Food Chemistry, 52(4), 912–915. https://doi.org/10.1021/jf0303621 | |
dc.relation.references | Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660 | |
dc.relation.references | Suozzi, K., Turban, J., & Girardi, M. (2020). Cutaneous photoprotection: A review of the current status and evolving strategies. Yale Journal of Biology and Medicine, 93(1), 55–67. | |
dc.relation.references | Tang, X., Yang, T., Yu, D., Xiong, H., & Zhang, S. (2024). Current insights and future perspectives of ultraviolet radiation (UV) exposure: Friends and foes to the skin and beyond the skin. Environment International, 185(November 2023), 108535. https://doi.org/10.1016/j.envint.2024.108535 | |
dc.relation.references | Tay, T., Türk, A. Ö., Yilmaz, M., Türk, H., & Kivanç, M. (2004). Evaluation of the antimicrobial activity of the acetone extract of the lichen Ramalina farinacea and its (+)-usnic acid, norstictic acid, and protocetraric acid constituents. Journal of Biosciences, 59(5–6), 384–388. https://doi.org/10.1515/znc-2004-5-617 | |
dc.relation.references | Torres-Contreras, A. M., Garcia-Baeza, A., Vidal-Limon, H. R., Balderas-Renteria, I., Ramírez-Cabrera, M. A., & Ramirez-Estrada, K. (2022). Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants, 11(2). https://doi.org/10.3390/plants11020220 | |
dc.relation.references | Tripathi, A. H., Mehrotra, S., Kumari, A., Bajpai, R., Joshi, Y., Joshi, P., Tewari, L. M., Rai, R. C., & Upadhyay, S. K. (2022). Lichens as bioremediation agents—A review. In Synergistic Approaches for Bioremediation of Environmental Pollutants : Recent Advances and Challenges (pp. 289–312). Elsevier. https://doi.org/10.1016/B978-0-323-91860-2.00015-4 | |
dc.relation.references | Tripathi, A. H., Negi, N., Gahtori, R., Kumari, A., Joshi, P., Tewari, L. M., Joshi, Y., Bajpai, R., Upreti, D. K., & Upadhyay, S. K. (2021). A Review of Anti-Cancer and Related Properties of Lichen-Extracts and Metabolites. Anti-Cancer Agents in Medicinal Chemistry, 22(1), 115–142. https://doi.org/10.2174/1871520621666210322094647 | |
dc.relation.references | Tsikas, D. (2017). Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Analytical Biochemistry, 524, 13–30. https://doi.org/10.1016/j.ab.2016.10.021 | |
dc.relation.references | Tumilaar, S., Hardianto, A., Dohi, H., & Kurnia, D. (2024). A Comprehensive Review of Free Radicals, Oxidative Stress, and Antioxidants: Overview, Clinical Applications, Global Perspectives, Future Directions, and Mechanisms of Antioxidant Activity of Flavonoid Compounds. Journal of Chemistry, 2024, 1. https://doi.org/10.1155/2024/5594386 | |
dc.relation.references | Valencia-Islas, N. A., Argüello, J. J., & Rojas, J. L. (2021). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, A lichen from the Andean Páramo. Pharmaceutical Sciences, 27(2), 281–290. https://doi.org/10.34172/PS.2020.83 | |
dc.relation.references | Valencia-Islas, N. A., Zambrano, A., & Rojas, J. L. (2007). Ozone reactivity and free radical scavenging behavior of phenolic secondary metabolites in lichens exposed to chronic oxidant air pollution from Mexico City. Journal of Chemical Ecology, 33(8), 1619–1634. https://doi.org/10.1007/s10886-007-9330-1 | |
dc.relation.references | Varol, M., Tay, T., Candan, M., Türk, A., & Koparal, A. T. (2015). Evaluation of the sunscreen lichen substances usnic acid and atranorin. Biocell, 39, 25–31. | |
dc.relation.references | Vechtomova, Y. L., Telegina, T. A., Buglak, A. A., & Kritsky, M. S. (2021). Uv radiation in dna damage and repair involving dna-photolyases and cryptochromes. Biomedicines, 9(11), 1–13. https://doi.org/10.3390/biomedicines9111564 | |
dc.relation.references | Verheugen, G. (2006). European Commission Recommendation on The Efficacy of Sunscreen Products and The Claims Made Relating Thereto. Official Journal of the European Union, 39–43. https://eur-lex.europa.eu/legal-content/IT/TXT/PDF/?uri=CELEX:32006H0647&from=EN | |
dc.relation.references | Verma, A., Zanoletti, A., Kareem, K. Y., Adelodun, B., Kumar, P., Ajibade, F. O., Silva, L. F. O., Phillips, A. J., Kartheeswaran, T., Bontempi, E., & Dwivedi, A. (2024). Skin protection from solar ultraviolet radiation using natural compounds: a review. Environmental Chemistry Letters, 22(1), 273–295. https://doi.org/10.1007/s10311-023-01649-4 | |
dc.relation.references | Verma, N., & Behera, B. C. (2015). In vitro culture of lichen partners: Need and implications. In Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2 (pp. 147–160). Springer India. https://doi.org/10.1007/978-81-322-2235-4_8 | |
dc.relation.references | Verma, N., & Behera, B. C. (2019). Future Directions in the Study of Pharmaceutical Potential of Lichens. In Lichen Secondary Metabolites (pp. 237–260). Springer International Publishing. https://doi.org/10.1007/978-3-030-16814-8_9 | |
dc.relation.references | Vicente, C., Fontaniella, B., Millanes, A. M., Sebastián, B., & Legaz, M. E. (2003). Enzymatic production of atranorin: A component of the oak moss absolute by immobilized lichen cells. International Journal of Cosmetic Science, 25(1–2), 25–29. https://doi.org/10.1046/j.1467-2494.2003.00169.x | |
dc.relation.references | Vicente, C., Martins, M., Lima, M., Santiago, R., Buril, M., Pereira, E. C., Legaz, M., & Vicente, C. (2017). New Biotechnological Methods for Producing Therapeutic Compounds (Usnic, Stictic and Norstictic Acids) by Cell Immobilization of the Lichen Cladonia substellata Vainio. Article in BioTechnology: An Indian Journal, 13(2), 1–13. www.tsijournals.com | |
dc.relation.references | Wang, S., Balagula, Y., & Osterwalder, U. (2010). Photoprotection: A review of the current and future technologies. Dermatologic Therapy, 23(1), 31–47. https://doi.org/https://doi.org/10.1111/j.1529-8019.2009.01289.x | |
dc.relation.references | Wang, X., Hou, X., Hu, Y., Zhou, Q., Liao, C., & Jiang, G. (2018). Synthetic Phenolic Antioxidants and Their Metabolites in Mollusks from the Chinese Bohai Sea: Occurrence, Temporal Trend, and Human Exposure. Environmental Science and Technology, 52(17), 10124–10133. https://doi.org/10.1021/acs.est.8b03322 | |
dc.relation.references | Wang, Y., Wei, X., Bian, Z., Wei, J., & Xu, J. R. (2020). Coregulation of dimorphism and symbiosis by cyclic AMP signaling in the lichenized fungus Umbilicaria muhlenbergii. Proceedings of the National Academy of Sciences of the United States of America, 117(38), 23847–23858. https://doi.org/10.1073/pnas.2005109117 | |
dc.relation.references | White, P. A. S., Oliveira, R. C. M., Oliveira, A. P., Serafini, M. R., Araújo, A. A. S., Gelain, D. P., Moreira, J. C. F., Almeida, J. R. G. S., Quintans, J. S. S., Quintans-Junior, L. J., & Santos, M. R. V. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: A systematic review. In Molecules (Vol. 19, Issue 9, pp. 14496–14527). MDPI AG. https://doi.org/10.3390/molecules190914496 | |
dc.relation.references | Winslow, T. (2008). Skin With Melanocyte Anatomy. National Cancer Institute. https://visualsonline.cancer.gov/details.cfm?imageid=7279 | |
dc.relation.references | Xu, X., Liu, A., Hu, S., Ares, I., Martínez-Larrañaga, M. R., Wang, X., Martínez, M., Anadón, A., & Martínez, M. A. (2021). Synthetic phenolic antioxidants: Metabolism, hazards and mechanism of action. Food Chemistry, 353(March). https://doi.org/10.1016/j.foodchem.2021.129488 | |
dc.relation.references | Yang, X., Sun, Z., Wang, W., Zhou, Q., Shi, G., Wei, F., & Jiang, G. (2018). Developmental toxicity of synthetic phenolic antioxidants to the early life stage of zebrafish. Science of the Total Environment, 643, 559–568. https://doi.org/10.1016/j.scitotenv.2018.06.213 | |
dc.relation.references | Yoshimura, I., Yamamoto, Y., & Finnie, J. (2002). Isolation and Culture of lichen Photobionts and Mycobionts. | |
dc.relation.references | Zayed, M. A., & Manojlović, N. T. (2020). Isolation, identification, thermal analysis, DFT calculations and antioxidant activity studies of lichen metabolites norstictic acid and evernic acid. Egyptian Journal of Chemistry, 63(11), 4589–4605. https://doi.org/10.21608/EJCHEM.2020.28473.2611 | |
dc.relation.references | Zerres, S., & Stahl, W. (2020). Carotenoids in human skin. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids, 1865(11), 158588. https://doi.org/10.1016/j.bbalip.2019.158588 | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.license | Atribución-NoComercial-SinDerivadas 4.0 Internacional | |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject.agrovoc | Líquen | spa |
dc.subject.bne | Protectores solares -- Investigación | spa |
dc.subject.bne | Sunscreens (Cosmetics) -- Research | eng |
dc.subject.bne | Estrés oxidativo | spa |
dc.subject.bne | Oxidative stress and disease | eng |
dc.subject.bne | Radicales libres (Química) | spa |
dc.subject.bne | Free radicals (Chemistry) | eng |
dc.subject.bne | Biotecnología farmacéutica | spa |
dc.subject.bne | Pharmaceutical biotechnology | eng |
dc.subject.ddc | 610 - Medicina y salud::615 - Farmacología y terapéutica | |
dc.subject.decs | Líquenes -- Química | spa |
dc.subject.decs | Lichens -- Chemistry | eng |
dc.subject.decs | Líquenes -- Efectos de la radiación | spa |
dc.subject.decs | Lichens -- Radiation effects | eng |
dc.subject.decs | Cianobacterias -- Química | spa |
dc.subject.decs | Cyanobacteria -- Chemistry | eng |
dc.subject.decs | Melanoma -- Prevención & control | spa |
dc.subject.decs | Melanoma -- Prevention & control | eng |
dc.subject.decs | Agentes de inmovilización de enzimas | spa |
dc.subject.decs | Enzyme immobilizing agents | eng |
dc.subject.decs | Neoplasias cutáneas -- Tratamiento farmacológico | spa |
dc.subject.decs | Skin neoplasms -- Drug therapy | eng |
dc.subject.proposal | Phyllobaeis imbricata | spa |
dc.subject.proposal | Ácido norstíctico | spa |
dc.subject.proposal | Antioxidante | spa |
dc.subject.proposal | Fotoprotector | spa |
dc.subject.proposal | Bioproducción | spa |
dc.subject.proposal | Inmovilización celular | spa |
dc.subject.proposal | Phyllobaeis imbricata | eng |
dc.subject.proposal | Norstictic acid | eng |
dc.subject.proposal | Antioxidant | eng |
dc.subject.proposal | Photoprotective | eng |
dc.subject.proposal | Bioproduction | eng |
dc.subject.proposal | Cell inmobilization | eng |
dc.subject.unam | Agentes dermatológicos | spa |
dc.subject.unam | Dermatologic agents | eng |
dc.subject.unam | Farmacología dermatológica | spa |
dc.subject.unam | Dermatopharmacology | eng |
dc.title | Evaluación de la actividad antioxidante y fotoprotectora de metabolitos aislados del liquen Phyllobaeis imbricata y contribución a su posible bioproducción | spa |
dc.title.translated | Evaluation of the antioxidant and photoprotective activity of metabolites isolated from the Lichen Phyllobaeis imbricata and contribution to their potential bioproduction | eng |
dc.type | Trabajo de grado - Maestría | |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
dc.type.content | Text | |
dc.type.driver | info:eu-repo/semantics/masterThesis | |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dcterms.audience.professionaldevelopment | Estudiantes | |
dcterms.audience.professionaldevelopment | Investigadores | |
dcterms.audience.professionaldevelopment | Maestros | |
dcterms.audience.professionaldevelopment | Público general | |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | |
oaire.awardtitle | Bioprospección de líquenes del Páramo de Sumapaz, Colombia como fuente original de sustancias duales con actividad antioxidante y fotoprotectora para la prevención de problemas dérmicos asociados a la radiación solar. Código HERMES: 35978, Convocatoria Nacional de Proyectos 2016-2018 | |
oaire.fundername | Universidad Nacional de Colombia |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1015403693 Evaluacion de la actividad antioxidante y fotoprotectora de Phylloabeis imbricata y contribución a su posible bioproduccion DCRC 2025.pdf
- Tamaño:
- 5.53 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Farmacéuticas
Bloque de licencias
1 - 1 de 1
Cargando...
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: