Inducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutírico

dc.contributor.advisorMorales Osorio, Juan Gonzalo
dc.contributor.advisorPatiño Hoyos, Luis Fernando
dc.contributor.authorArboleda-Giraldo, Daniela
dc.contributor.researchgroupFitotecnia Tropicalspa
dc.coverage.countryColombia
dc.date.accessioned2022-08-29T15:11:18Z
dc.date.available2022-08-29T15:11:18Z
dc.date.issued2021-08
dc.descriptionilustraciones, diagramas, tablasspa
dc.description.abstractLa gota o el tizón causado por Phytophthora infestans (Mont.) De Bary, es una enfermedad de gran importancia en la producción de papa y el tomate de mesa, por ser devastadora y de gran impacto económico. Además de estas dos especies, se reportado su presencia en otros cultivos de la familia Solanáceas como Solanum betaceum (Tomate de árbol o Tamarillo) y Solanum quitoense (Lulo). Las características agroecológicas de las zonas en donde se cultiva tomate de árbol son altamente favorables durante casi todo el año, al desarrollo de P. infestans, identificándose fuertes epidemias en las últimas décadas, lo que ha ocasionado cuantiosas pérdidas a los agricultores. El fruto de tomate de árbol se caracteriza por su alto valor nutricional y agroindustrial, por ende, posee un potencial de exportación hacia varios países. El manejo de la enfermedad en ausencia de variedades resistentes es una labor difícil y se centra en el uso de fungicidas convencionales como su método de control primordial. Consecuentemente se genera un impacto negativo en la salud y el medio ambiente, además de un aumento de fenotipos resistentes de este oomycete a fungicidas, siendo necesario encontrar alternativas para el manejo y control de la enfermedad. En este trabajo se estudió el efecto del ácido β-aminobutírico (β-aminobutanoico) (BABA), como inductor de defensa en S. betaceum contra P. infestans sensu lato. Los resultados mostraron que aplicaciones de BABA a una dosis de 10 mM: i) exhibió una reducción significativa del crecimiento del oomycete in vitro, ii) el inductor demostró su capacidad de sistemicidad, al reducir la enfermedad en un punto distante desde donde se aplicó directamente, iii) cuando BABA se aplicó previa y simultáneamente con la inoculación mediante esporangios del patógeno la respuesta de defensa inducida fue mayor, iv) la duración de la defensa inducida se expresó al menos hasta 15 días después de la aspersión de BABA, y v) la aplicación por aspersión de BABA en condiciones de campo redujo significativamente la lesión por la enfermedad. Se discute el uso potencial de BABA para el manejo de la gota o tizón en cultivos de tomate de árbol. (Texto tomado de la fuente)spa
dc.description.abstractThe late blight caused by Phytophthora infestans (Mont.) De Bary, is the most devastating disease in potato and tomato crops worldwide. Besides these, late blight has been reported in other Andean crops of the Solanaceae family such as Solanum betaceum (Tree tomato or Tamarillo) and Solanum quitoense (Lulo). The agroecological characteristics of the areas where tree tomatoes are grown are favorable to the development of P. infestans, with strong epidemics being identified in recent decades, which caused serious losses to farmers. The tree tomato fruit is characterized by its high nutritional and agro-industrial value; therefore, it has a potential for export to several countries. Their management in the absence of resistant varieties is a difficult task and focuses mainly on the use of conventional fungicides of chemical synthesis. Consequently, a negative impact on health and the environment is generated, in addition to an increase in the probability of the emergence of resistant strains of this oomycete to fungicides. In the present research, the effect of β-aminobutyric- acid (3-aminobutanoic acid) (BABA) as a defense inducer in S. betaceum against P. infestans sensu lato was investigated. The results showed that applications of BABA at a dose of 10 mM: i) exhibited a significant reduction in the oomycete in vitro growth, ii) the inducer demonstrated its capacity for systematicity by reducing disease at a point distant from where it was directly applied, iii) when BABA was applied prior to and simultaneously with P. infestans sporangia, the induced defense response was greater than when it was applied after pathogen inoculation, iv) the induced defense was expressed at least up to 15 days after BABA spraying, v) spray application of BABA under field conditions significantly reduced late blight disease. The potential use of BABA for late blight disease management in tree tomato crops is discussed.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.funderEl propósito será impulsar la promoción del conocimiento, la productividad y la contribución al desarrollo y la competitividad del paísspa
dc.description.methodsMetodología cuantitativaspa
dc.description.researchareaSanidad Vegetalspa
dc.description.sponsorshipMinciencias | Ministerio de Ciencia Tecnología e Innovaciónspa
dc.format.extentxiii, 114 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82165
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.referencesAcuña, I., Bravo, R., & Remehue, I. (2015). Tizón tardío de la papa : Estrategias de manejo integrado con alertas temprana. 137spa
dc.relation.referencesAGRIOS, G. N. (2005). How Plants Defend Themselves Against Pathogens. Plant Pathology, 207–248. https://doi.org/10.1016/b978-0-08-047378-9.50012-9spa
dc.relation.referencesAlexandersson, E., Jacobson, D., Vivier, M. A., Weckwerth, W., & Andreasson, E. (2014). Field-omics-understanding large-scale molecular data from field crops. Frontiers in Plant Science, 5(JUN), 1–6. https://doi.org/10.3389/fpls.2014.00286spa
dc.relation.referencesAlexandersson, E., Mulugeta, T., Lankinen, Å., Liljeroth, E., & Andreasson, E. (2016). Plant resistance inducers against pathogens in Solanaceae species-from molecular mechanisms to field application. International Journal of Molecular Sciences, 17(10). https://doi.org/10.3390/ijms17101673spa
dc.relation.referencesAltamiranda, E. A. G., Andreu, A. B., Daleo, G. R., & Olivieri, F. P. (2008). Effect of β-aminobutyric acid (BABA) on protection against Phytophthora infestans throughout the potato crop cycle. Australasian Plant Pathology, 37(4), 421–427. https://doi.org/10.1071/AP08033spa
dc.relation.referencesAmzalek, E., & Cohen, Y. (2007a). Comparative efficacy of systemic acquired resistance-inducing compounds against rust infection in sunflower plants. Phytopathology, 97(2), 179–186. https://doi.org/10.1094/PHYTO-97-2-0179spa
dc.relation.referencesAn, Y., Kang, S., Kim, K. D., Hwang, B. K. K., & Jeun, Y. (2010). Enhanced defense responses of tomato plants against late blight pathogen Phytophthora infestans by pre-inoculation with rhizobacteria. Crop Protection, 29(12), 1406–1412. https://doi.org/10.1016/j.cropro.2010.07.023spa
dc.relation.referencesAndreu, A. B., Guevara, M. G., Wolski, E. A., Daleo, G. R., & Caldiz, D. O. (2006). Enhancement of natural disease resistance in potatoes by chemicals. Pest Management Science, 62(2), 162–170. https://doi.org/10.1002/ps.1142spa
dc.relation.referencesArici, Ş. E., & Dehne, H. W. (2007). Induced resistance against Phytophthora infestans by chemical inducers BION and BABA in tomato plants. Acta Horticulturae, 729, 503–507. https://doi.org/10.17660/ActaHortic.2007.729.86spa
dc.relation.referencesAsim, R., Khan, A., Ghazanfar, M. U., & Raza, W. (2019). Eco-friendly management of Phytophthora infestans causing late blight of potato. May, 144–147.spa
dc.relation.referencesAsohofrucol. (2018). Balance Hortifruticola 2018. In Asohofrucol. http://www.asohofrucol.com.co/imagenes/BALANCE_DEL_SECTOR_HORTIFRUTICULTURA_2018.pdfspa
dc.relation.referencesÁvila, E. (2015). Manual de Tomate de árbol. Cámara de Comercio de Bogotá, 1, 50. https://doi.org/10.1158/2159-8290.CD-16-1154spa
dc.relation.referencesAvrova, A. O., Boevink, P. C., Young, V., Grenville-Briggs, L. J., Van West, P., Birch, P. R. J., & Whisson, S. C. (2008). A novel Phytophthora infestans haustorium-specific membrane protein is required for infection of potato. Cellular Microbiology, 10(11), 2271–2284. https://doi.org/10.1111/j.1462-5822.2008.01206.xspa
dc.relation.referencesBaccelli, I., & Mauch-Mani, B. (2016). Beta-aminobutyric acid priming of plant defense: the role of ABA and other hormones. Plant Molecular Biology, 91(6), 703–711. https://doi.org/10.1007/s11103-015-0406-yspa
dc.relation.referencesBae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Hong, S. B., Seo, H., Bae, D. W., Bae, I., Kim, J. J., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128–138. https://doi.org/10.1016/j.biocontrol.2015.10.005spa
dc.relation.referencesBaider, A., & Cohen, Y. (2003). Synergistic interaction between BABA and mancozeb in controlling Phytophthora infestans in potato and tomato and Pseudoperonospora cubensis in cucumber. Phytoparasitica, 31(4), 399–409. https://doi.org/10.1007/BF02979812spa
dc.relation.referencesBain, R. A., & Walters, D. R. (2016). The contribution of host resistance elicitors to the control of potato foliar blight in Scotland. The Dundee Conference: Crop Protection in Northern Britain 2016, 23-24 February 2016, Dundee, UK, 205–210.spa
dc.relation.referencesBalmer, A., Glauser, G., Mauch-Mani, B., & Baccelli, I. (2019). Accumulation patterns of endogenous β-aminobutyric acid during plant development and defence in Arabidopsis thaliana. In Plant Biology (Vol. 21, Issue 2). https://doi.org/10.1111/plb.12940spa
dc.relation.referencesBarilli, E., Rubiales, D., Amalfitano, C., Evidente, A., & Prats, E. (2015). BTH and BABA induce resistance in pea against rust (Uromyces pisi) involving differential phytoalexin accumulation. Planta, 242(5), 1095–1106. https://doi.org/10.1007/s00425-015-2339-8spa
dc.relation.referencesBarilli, E., Sillero, J. C., & Rubiales, D. (2010). Induction of systemic acquired resistance in pea against rust (Uromyces pisi) by exogenous application of biotic and abiotic inducers. Journal of Phytopathology, 158(1), 30–34. https://doi.org/10.1111/j.1439-0434.2009.01571.xspa
dc.relation.referencesBaysal, Ö., Gürsoy, Y. Z., Örnek, H., & Duru, A. (2005). Induction of oxidants in tomato leaves treated with DL-β-Amino butyric acid (BABA) and infected with Clavibacter michiganensis ssp. michiganensis. European Journal of Plant Pathology, 112(4), 361–369. https://doi.org/10.1007/s10658-005-6234-1spa
dc.relation.referencesBeckers, G. J., & Conrath, U. (2007). Priming for stress resistance: from the lab to the field. Current Opinion in Plant Biology, 10(4), 425–431. https://doi.org/10.1016/j.pbi.2007.06.002spa
dc.relation.referencesBengtsson, T., Holefors, A., Witzell, J., Andreasson, E., & Liljeroth, E. (2014). Activation of defence responses to Phytophthora infestans in potato by BABA. Plant Pathology, 63(1), 193–202. https://doi.org/10.1111/ppa.12069spa
dc.relation.referencesBirch, P. R. J., & Whisson, S. C. (2001). Pathogen profile Phytophthora infestans enters the genomics era. MOLECULAR PLANT PATHOLOGY, 2(5), 257–263.spa
dc.relation.referencesBoller, T., & Felix, G. (2009). A Renaissance of Elicitors: Perception of Microbe-Associated Molecular Patterns and Danger Signals by Pattern-Recognition Receptors. Annual Review of Plant Biology, 60(1), 379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346spa
dc.relation.referencesBostock, R. M., Thaler, J., Fidantsef, A., & Duffey, S. (1999). Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. Journal of Chemical Ecology, 25(7), 1597–1609. http://www.springerlink.com/index/UT5534K176615T37.pdfspa
dc.relation.referencesBoubakri, H. (2020). Induced resistance to biotic stress in plants by natural compounds: Possible mechanisms. In Priming-Mediated Stress and Cross-Stress Tolerance in Crop Plants Academic Press. (pp. 79-99).spa
dc.relation.referencesBruce, T. J. A., Smart, L. E., Birch, A. N. E., Blok, V. C., MacKenzie, K., Guerrieri, E., Cascone, P., Luna, E., & Ton, J. (2016). Prospects for plant defence activators and biocontrol in IPM – Concepts and lessons learnt so far. Crop Protection, 97, 128–134. https://doi.org/10.1016/j.cropro.2016.10.003spa
dc.relation.referencesBurgos, H., Chávez, C., Amaya, J., & Julca, J. (2006). Tomate de árbol (Cyphomandra betacea Send.). 8. www.regionlalibertad.gob.pespa
dc.relation.referencesBurra, D. D., Berkowitz, O., Hedley, P. E., Morris, J., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., & Alexandersson, E. (2014). Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biology, 14(1), 1–17. https://doi.org/10.1186/s12870-014-0254-yspa
dc.relation.referencesBuswell, W., Schwarzenbacher, R. E., Luna, E., Sellwood, M., Chen, B., Flors, V., Pétriacq, P., & Ton, J. (2018). Chemical priming of immunity without costs to plant growth. New Phytologist, 218(3), 1205–1216. https://doi.org/10.1111/nph.1506spa
dc.relation.referencesCárdenas, M., Grajales, A., Sierra, R., Rojas, A., González-Almario, A., Vargas, A., Marín, M., Fermín, G., Lagos, L. E., Grünwald, N. J., Bernal, A., Salazar, C., & Restrepo, S. (2011). Genetic diversity of Phytophthora infestans in the Northern Andean region. BMC Genetics, 12. https://doi.org/10.1186/1471-2156-12-23spa
dc.relation.referencesCarreño, N., Vargas, A., Bernal, A. J., & Restrepo, S. (2007). Problemas fitopatológicos en especies de la familia Solanaceae causados por los géneros Phytophthora , Alternaria y Ralstonia en Colombia . Una revisión Biotic contraints of the Solanaceae caused by Phytophthora ,. Agronomía Colombiana, 25(2), 320–329. http://www.scielo.org.co/pdf/rfce/v18n2/v18n2a04.pdfspa
dc.relation.referencesCastaño Monsalve, J. I., Guillermo Ramírez Gil, J. I., Fernando Patiño Hoyos, L. I., & Gonzalo Morales Osorio, J. I. (2015). Alternativa para el manejo de Phytophthora infestans (Mont.) de Bary en Solanum betaceum Cav. mediante inductores de resistencia. Rev. Protección Veg, 30(3), 204–212. http://blast.ncbi.nlm.nih.gov/spa
dc.relation.referencesCaulier, S., Gillis, A., Colau, G., Licciardi, F., Liépin, M., Desoignies, N., Modrie, P., Legrève, A., Mahillon, J., & Bragard, C. (2018). Versatile antagonistic activities of soil-borne Bacillus spp. and Pseudomonas spp. against Phytophthora infestans and other potato pathogens. Frontiers in Microbiology, 9(143). https://doi.org/10.3389/fmicb.2018.00143spa
dc.relation.referencesCerkauskas, R. F., Ferguson, G., & Macnair, C. (2015). Management of Phytophthora blight (Phytophthora capsici) on vegetables in Ontario: Some greenhouse and field aspects. Canadian Journal of Plant Pathology, 37(3), 285–304. https://doi.org/10.1080/07060661.2015.1078411spa
dc.relation.referencesChañag-Miramag, H. A., Viveros-Rojas, J., Álvarez-Ordoñez, S., Criollo-Escobar, H., & Lagos-Mora, L. E. (2017). Evaluación de genotipos de tomate de árbol [Cyphomandra betacea (Cav.) Sendt.] frente al ataque de Phytophthora infestans (Mont.) de Bary sensu lato. Revista Colombiana de Ciencias Hortícolas, 11(1), 11–20. https://doi.org/10.17584/rcch.2017v11i1.4725spa
dc.relation.referencesChowdappa, P., Mohan Kumar, S. P., Jyothi Lakshmi, M., & Upreti, K. K. (2013). Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biological Control, 65(1), 109–117. https://doi.org/10.1016/j.biocontrol.2012.11.009spa
dc.relation.referencesCohen, Y. (1994). Local and systemic control of Phytophthora infestans in tomato plants by DL-3-amino-n-butanoic acids. Phytopathology, 84(1), 55–59. https://doi.org/10.1094/Phyto-84-55spa
dc.relation.referencesCohen, Y., & Gisi, U. (1994). Systemic translocation of 14C-dl-3-aminobutyric acid in tomato plants in relation to induced resistance against Phytophthora infestans. Physiological and Molecular Plant Pathology, 45(6), 441–456. https://doi.org/10.1016/S0885-5765(05)80041-4spa
dc.relation.referencesCohen, Y., Niderman, T., Mosinger, E., & Fluhr, R. (1994). beta-Aminobutyric acid induces the accumulation of pathogenesis-related proteins in tomato (Lycopersicon esculentum L.) plants and resistance to late blight infection caused by Phytophthora infestans. Plant Physiology, 104(1), 59–66. https://doi.org/10.1104/pp.104.1.59spa
dc.relation.referencesCohen, Y. R. (2000). Method for protecting plants from fungal infection. https://patentimages.storage.googleapis.com/f2/58/60/bd52d493cc4915/US6075051.pdspa
dc.relation.referencesCohen, Y. R. (2002). β-Aminobutyric Acid-Induced Resistance Against Plant Pathogens. Plant Disease, 86(5), 448–457. https://doi.org/10.1094/pdis.2002.86.5.448spa
dc.relation.referencesCohen, Y, Reuveni, M., & Baider, A. (2002). Local and Systemic Activity of Baba ( Dl-3-Aminobutyric (pp. 207–224).spa
dc.relation.referencesCohen, Yigal., Rubin, A. E., & Vaknin, M. (2011). Post infection application of DL-3-amino-butyric acid (BABA) induces multiple forms of resistance against Bremia lactucae in lettuce. European Journal of Plant Pathology, 130(1), 13–27. https://doi.org/10.1007/s10658-010-9724-8spa
dc.relation.referencesCohen, Yigal, Baider, A., Gotlieb, D., & Rubin, E. (2007). Control of Bremia lactucae in Field-Grown Lettuce by DL-3-Amino-n-Butanoic Acid (BABA). 3rd QLIF Congress: Improving Sustainability in Organic and Low Input Food Production Systems, University of Hohenheim, Germany, 1–5. http://orgprints.org/view/projects/int_conf_qlif2007.html%0AControlspa
dc.relation.referencesCohen, Yigal, Reuveni, M., & Baider, A. (1999). Local and systemic activity of BABA (DL-3-aminobutyric acid) against Plasmopara viticola in grapevines. European Journal of Plant Pathology, 105(4), 351–361. https://doi.org/10.1023/A:1008734019040spa
dc.relation.referencesCohen, Yigal, Rubin, A. E., & Kilfin, G. (2010). Mechanisms of induced resistance in lettuce against Bremia lactucae by DL-β-amino-butyric acid (BABA). European Journal of Plant Pathology, 126(4), 553–573. https://doi.org/10.1007/s10658-009-9564-6spa
dc.relation.referencesCohen, Yigal, Vaknin, M., & Mauch-Mani, B. (2016). BABA-induced resistance: milestones along a 55-year journey. Phytoparasitica, 44(4), 513–538. https://doi.org/10.1007/s12600-016-0546-xspa
dc.relation.referencesConrath, U. (2011). Molecular aspects of defence priming. Trends in Plant Science, 16(10), 524–531. https://doi.org/10.1016/j.tplants.2011.06.004spa
dc.relation.referencesde Vries, S., von Dahlen, J. K., Schnake, A., Ginschel, S., Schulz, B., & Rose, L. E. (2018). Broad-spectrum inhibition of Phytophthora infestans by fungal endophytes. FEMS Microbiology Ecology, 94(4), 1–15. https://doi.org/10.1093/femsec/fiy037spa
dc.relation.referencesDe Vrieze, M., Germanier, F., Vuille, N., & Weisskopf, L. (2018). Combining Different Potato-Associated Pseudomonas Strains for Improved Biocontrol of Phytophthora infestans. Frontiers in Microbiology, 9(2573), 1–13. https://doi.org/10.3389/fmicb.2018.02573spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística DANE. (2018). Boletín mensual insumos y factores asociados a la producción agropecuaria (Issue 75). https://www.dane.gov.co/files/investigaciones/agropecuario/sipsa/Bol_Insumos_sep_2018.pdfspa
dc.relation.referencesDevelopment Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0, (https://www.r-project.org/)spa
dc.relation.referencesDi Francesco, A., Milella, F., Mari, M., & Roberti, R. (2017). A preliminary investigation into Aureobasidium pullulans as a potential biocontrol agent against Phytophthora infestans of tomato. Biological Control, 114, 144–149. https://doi.org/10.1016/j.biocontrol.2017.08.010spa
dc.relation.referencesElsherbiny, E. A., Amin, B. H., Aleem, B., Kingsley, K. L., & Bennett, J. W. (2020). Trichoderma Volatile Organic Compounds as a Biofumigation Tool against Late Blight Pathogen Phytophthora infestans in Postharvest Potato Tubers. Journal of Agricultural and Food Chemistry, 68(31), 8163–8171. https://doi.org/10.1021/acs.jafc.0c03150spa
dc.relation.referencesElsherbiny, E. A., Dawood, D. H., & Safwat, N. A. (2021). Antifungal action and induction of resistance by β-aminobutyric acid against Penicillium digitatum to control green mold in orange fruit. Pesticide Biochemistry and Physiology, 171, 104721.spa
dc.relation.referencesElsisi, A. A., & Shams, A. S. (2019). Controlling of Artichoke powdery mildew and improving Vegetative growth and yield productivity by using Dl-β-aminobutyric acid (BABA) with some natural essential oils. Middle East Journal of Applied Sciences, 09(02), 443–455.spa
dc.relation.referencesEschen-Lippold, L., Altmann, S., & Rosahl, S. (2010). DL-β-Aminobutyric acid-induced resistance of potato against Phytophthora infestans requires salicylic acid but not oxylipins. Molecular Plant-Microbe Interactions, 23(5), 585–592. https://doi.org/10.1094/MPMI-23-5-0585spa
dc.relation.referencesFarahani, A. S., Mohsen Taghavi, S., Afsharifar, A., & Niazi, A. (2016). Effect of β-aminobutyric acid on resistance of tomato against Pectobacterium carotovorum subsp. Carotovorum. Journal of Plant Diseases and Protection, 123(4), 155–161. https://doi.org/10.1007/s41348-016-0028-xspa
dc.relation.referencesFatima, K., Noureddine, K., Henni, J. E., & Mabrouk, K. (2015). Antagonistic effect of Trichoderma harzianum against Phytophthora infestans in the North-west of Algeria. 6(4), 44–53.spa
dc.relation.referencesFeicán-Mejia, C. G., Encalada-Alvarado, C. R., & Becerril-Román, A. E. (2016). Descripción agronómica del cultivo de tomate de árbol (Solanum betaceum Cav.). Agroproductividad, 9, 78–86. Https://www.researchgate.net/profile/Carlos_Feican/publication/312938646_DESCRIPCION_AGRONOMICA_DEL_CULTIVO_DE_TOMATE_DE_ARBOL_Solanum_betaceum_Cav/links/588a4f3d45851522127ff7b3/DESCRIPCION-AGRONOMICA-DEL-CULTIVO-DE-TOMATE-DE-ARBOL-Solanum-betaceum-Cav.pspa
dc.relation.referencesFischer, M. J. C., Farine, S., Chong, J., Guerlain, P., & Bertsch, C. (2009). The direct toxicity of BABA against grapevine ecosystem organisms. Crop Protection, 28(8), 710–712. https://doi.org/10.1016/j.cropro.2009.03.014spa
dc.relation.referencesForbes, Gregory A, Morales, J. G., Restrepo, S., Pérez, W., Gamboa, S., Ruiz, R., Cedeño, L., Fermin, G., Andreu, A. B., Acuña, I., & Oliva, R. (2013). Phytophthora infestans and Phytophthora andina on Solanaceous hosts in South America. In Phytophthora: a global perspective (pp. 48–58). https://doi.org/10.1079/9781780640938.0048spa
dc.relation.referencesGajendran, K., Gonzales, M., Farmer, A., Archuleta, E., Win, J., Waugh, M., & Kamoun, S. (2006). Phytophthora functional genomics database (PFGD): functional genomics of Phytophthora-plant interactions. Nucleic Acids Research, 34(90001), D465–D470. https://doi.org/10.1093/nar/gkj119spa
dc.relation.referencesGarcía-Núñez, H. G., Martínez-Campos, Á. R., Hermosa-Prieto, M. R., Monte-Vázquez, E., Aguilar-Ortigoza, C. J., & González-Esquivel, C. E. (2017). Caracterización morfológica y molecular de cepas nativas de Trichoderma y su potencial de biocontrol sobre Phytophthora infestans. Revista Mexicana de Fitopatología, Mexican Journal of Phytopathology, 35(1), 58–79. https://doi.org/10.18781/r.mex.fit.1605-4spa
dc.relation.referencesGhazanfar, M. U., Raza, W., Wakil, W., Hussain, I., & Qamar, M. I. (2020). Management of late blight and sucking insect pests of potato with application of salicylic acid and β-aminobutyric acid under greenhouse conditions. Sarhad Journal of Agriculture, 36(2), 646–654. https://doi.org/10.17582/JOURNAL.SJA/2020/36.2.646.654spa
dc.relation.referencesGómez-Alpizar, L., Hu, C.-H., Oliva, R., Forbes, G., & Ristaino, J. B. (2008). Phylogenetic relationships of Phytophthora andina , a new species from the highlands of Ecuador that is closely related to the Irish potato famine pathogen Phytophthora infestans . Mycologia, 100(4), 590–602. https://doi.org/10.3852/07-074r1spa
dc.relation.referencesGoss, E. M., Cardenas, M. E., Myers, K., Forbes, G. A., Fry, W. E., Restrepo, S., & Grünwald, N. J. (2011). The plant pathogen Phytophthora andina emerged via hybridization of an unknown Phytophthora species and the irish potato famine pathogen, P. infestans. PLoS ONE, 6(9). https://doi.org/10.1371/journal.pone.0024543spa
dc.relation.referencesGudero, G., Hussien, T., Dejene, M., & Biazin, B. (2018). Integrated Management of Tomato Late Blight [Phytophthora infestans (Mont.) de Bary] Through Host Plant Resistance and Reduced Frequency of Fungicide in Arbaminch Areas, Southern Ethiopia. Journal of Biology, Agriculture and Healthcare, 8(9). https://www.researchgate.net/publication/336209921%0AIntegratedspa
dc.relation.referencesHaesaert, G., Vossen, J. H., Custers, R., De Loose, M., Haverkort, A., Heremans, B., Hutten, R., Kessel, G., Landschoot, S., Van Droogenbroeck, B., Visser, R. G. F., & Gheysen, G. (2015). Transformation of the potato variety Desiree with single or multiple resistance genes increases resistance to late blight under field conditions. Crop Protection, 77, 163–175. https://doi.org/10.1016/j.cropro.2015.07.018spa
dc.relation.referencesHamiduzzaman, M. M., Jakab, G., Barnavon, L., Neuhaus, J. M., & Mauch-Mani, B. (2005). β-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling. Molecular Plant-Microbe Interactions, 18(8), 819–829. https://doi.org/10.1094/MPMI-18-0819spa
dc.relation.referencesHan, G. Z. (2019). Origin and evolution of the plant immune system. New Phytologist, 222(1), 70–83. https://doi.org/10.1111/nph.15596spa
dc.relation.referencesHao, W., Gray, M. A., Förster, H., & Adaskaveg, J. E. (2019). Evaluation of new oomycota fungicides for management of Phytophthora root rot of citrus in California. Plant Disease, 103(4), 619–628. https://doi.org/10.1094/PDIS-07-18-1152-REspa
dc.relation.referencesHassan, M. A. E., & Buchenauer, H. (2007). Induction of resistance to fire blight in apple by acibenzolar-S-methyl and DL-3-aminobutyric acid. Journal of Plant Diseases and Protection, 114(4), 151–158. https://doi.org/10.1007/BF03356211spa
dc.relation.referencesHassan, M., & Abo-Elyousr, K. (2013). Activation of tomato plant defence responses against bacterial wilt caused by Ralstonia solanacearum using DL-3-aminobutyric acid (BABA). European Journal of Plant Pathology, 136(1), 145–157. https://doi.org/10.1007/s10658-012-0149-4spa
dc.relation.referencesHaverkort, A. J., Struik, P. C., Visser, R. G. F., & Jacobsen, E. (2009). Applied biotechnology to combat late blight in potato caused by Phytophthora infestans. Potato Research, 52(3), 249–264. https://doi.org/10.1007/s11540-009-9136-3spa
dc.relation.referencesHernandez, M. L., Falloon, R. E., Butler, R. C., Conner, A. J., & Bulman, S. R. (2015). Resistance to Spongospora subterranea induced in potato by the elicitor β-aminobutyric acid. Australasian Plant Pathology, 44(4), 445–453. https://doi.org/10.1007/s13313-015-0363-6spa
dc.relation.referencesHinestrosa Maldonado, A., & Peláez Restrepo, D. (2006). Manual fitosanitario para la protección de cultivos de fruta pequeña de clima frío moderado. In Gobernación de Antioquia, Corporación PBA. https://doi.org/10.1017/CBO9781107415324.004spa
dc.relation.referencesHong, J. K., Hwang, B. K., & Kim, C. H. (1999). Induction of local and systemic resistance to Colletotrichum coccodes in pepper plants by DL-β-amino-n-butyric acid. Journal of Phytopathology, 147(4), 193–198. https://doi.org/10.1046/j.1439-0434.1999.147004193.xspa
dc.relation.referencesIvanov, A. A., Ukladov, E. O., & Golubeva, T. S. (2021). Phytophthora infestans: An overview of methods and attempts to combat late blight. Journal of Fungi, 7(12), 1071.spa
dc.relation.referencesJakab, G., Cottier, V., Toquin, V., Rigoli, G., Zimmerli, L., Métraux, J.-P., & Mauch-Mani, B. (2001). β-Aminobutyric acid-induced resistance in plants Gabor. 107, 29–37.spa
dc.relation.referencesJung, H. W., Tschaplinski, T. J., Wang, L., Glazebrook, J., & Greenberg, J. T. (2009). Priming in systemic plant immunity. Science, 324(5923), 89–91. https://doi.org/10.1126/science.1170025spa
dc.relation.referencesJustyna, P. G., & Ewa, K. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-zspa
dc.relation.referencesKamoun, S. (2003). Molecular Genetics of Pathogenic MINIREVIEWS Molecular Genetics of Pathogenic Oomycetes. Eukaryotic Cell, 2(2), 191–199.spa
dc.relation.referencesKilonzi, J. M., Mafurah, J. J., & Nyongesa, M. W. (2020). In vivo and in vitro antagonism of Streptomyces sp. RO3 against Penicillium digitatum and Geotrichum candidum. African Journal of Microbiology Research, 14(5), 148–157. https://doi.org/10.5897/AJMR2019.9195spa
dc.relation.referencesKim, Y. C., Kim, Y. H., Lee, Y. H., Lee, S. W., Chae, Y. S., Kang, H. K., Yun, B. W., & Hong, J. K. (2013). Β-Amino-N-Butyric Acid Regulates Seedling Growth and Disease Resistance of Kimchi Cabbage. Plant Pathology Journal, 29(3), 305–316. https://doi.org/10.5423/PPJ.OA.12.2012.0191spa
dc.relation.referencesKoné, D., Csinos, A. S., Jackson, K. L., & Ji, P. (2009). Evaluation of systemic acquired resistance inducers for control of Phytophthora capsici on squash. Crop Protection, 28(6), 533–538. https://doi.org/10.1016/j.cropro.2009.02.005spa
dc.relation.referencesKroon, L. P. N. M., Bakker, F. T., Van Den Bosch, G. B. M., Bonants, P. J. M., & Flier, W. G. (2004). Phylogenetic analysis of Phytophthora species based on mitochondrial and nuclear DNA sequences. Fungal Genetics and Biology, 41(8), 766–782. https://doi.org/10.1016/j.fgb.2004.03.007spa
dc.relation.referencesLadi, E., Shukla, N., Bohra, Y., Tiwari, A. K., & Kumar, J. (2020). Copper tolerant Trichoderma asperellum increases bio-efficacy of copper against Phytophthora infestans in dual combination. Phytoparasitica, 48(3), 357–370. https://doi.org/10.1007/s12600-020-00804-9spa
dc.relation.referencesLagos, T. C., Checa, O. E., Bacca, T., Betancourt, C. A., Vélez, J. A., Benavides, C. A., Portilla, A. E., Lagos, L. K., & Insuasty, S. (2012). Principales Problemas Sanitarios en el cultivo de Tomate de árbol Cyphomandra betacea (Cav.) Sendt en el Departamento de Nariño (Universidad de Nariño (ed.)). https://repository.agrosavia.co/handle/20.500.12324/1862spa
dc.relation.referencesLeal, A. (2020). Agronegocios.. https://www.agronegocios.co/agricultura/colombia-exporto-us743-millones-de-frutas-exoticas-en-2019-6-mas-que-en-2018-2950228spa
dc.relation.referencesLi, G., Meng, F., Wei, X., & Lin, M. (2019). Postharvest dipping treatment with BABA induced resistance against rot caused by Gilbertella persicaria in red pitaya fruit. Scientia Horticulturae, 257(July). https://doi.org/10.1016/j.scienta.2019.108713spa
dc.relation.referencesLi, J., Trivedi, P., & Wang, N. (2016). Field Evaluation of Plant Defense Inducers for the Control of Citrus Huanglongbing. Phytopathology®, 106(1), 37–46. https://doi.org/10.1094/PHYTO-08-15-0196-Rspa
dc.relation.referencesLiljeroth, E., Bengtsson, T., Wiik, L., & Andreasson, E. (2010). Induced resistance in potato to Phytophthora infestans-effects of BABA in greenhouse and field tests with different potato varieties. European Journal of Plant Pathology, 127(2), 171–183. https://doi.org/10.1007/s10658-010-9582-4spa
dc.relation.referencesLobo Arias, M. (2006). Recursos genéticos y mejoramiento de frutales andinos: una visión conceptual. Corpoica Ciencia y Tecnología Agropecuaria, 7(2), 40–54. https://doi.org/10.21930/rcta.vol7_num2_art:68spa
dc.relation.referencesLudewing, U., & Koch, W. (2000). Amino acid transporters in plants. Plant Membrane and Vacuolar Transporters, 1465, 267–282. https://doi.org/10.1079/9781845934026.0267spa
dc.relation.referencesLuna, Estrella;, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Plant perception of β-aminobutyric acid is mediated by an aspartyl-tRNA synthetase. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520spa
dc.relation.referencesLuna, Estrella, López, A., Kooiman, J., & Ton, J. (2014). Role of NPR1 and KYP in long-lasting induced resistance by Î2-aminobutyric acid. Frontiers in Plant Science, 5(May), 1–9. https://doi.org/10.3389/fpls.2014.00184spa
dc.relation.referencesLuna, Estrella, Van Hulten, M., Zhang, Y., Berkowitz, O., López, A., Pétriacq, P., Sellwood, M. A., Chen, B., Burrell, M., Van De Meene, A., Pieterse, C. M. J., Flors, V., & Ton, J. (2014). Induced resistance for plant defense. Nature Chemical Biology, 10(6), 450–456. https://doi.org/10.1038/nchembio.1520spa
dc.relation.referencesMa, Y., Chang, Z. zhou, Zhao, J. tao, & Zhou, M. guo. (2008). Antifungal activity of Penicillium striatisporum Pst10 and its biocontrol effect on Phytophthora root rot of chilli pepper. Biological Control, 44(1), 24–31. https://doi.org/10.1016/j.biocontrol.2007.10.005spa
dc.relation.referencesMachinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., & Andreu, A. B. (2012). Potassium phosphite primes defense responses in potato against Phytophthora infestans. Journal of Plant Physiology, 169(14), 1417–1424. https://doi.org/10.1016/j.jplph.2012.05.005spa
dc.relation.referencesMADR. (2005). La cadena de los frutales de exportación en Colombia: Una mirada global de su estructura y dinámica 1991-2005. Min. Agricultura y Desarrollo Rural, Obs. Agrocadenas Colombia, 67. http://www.agronet.gov.co/www/docs_agronet/2005112145659_caracterizacion_cacao.pdfspa
dc.relation.referencesMajeed, A., Muhammad, Z., Ahmad, H., Islam, S., Ullah, Z., & Ullah, R. (2017). Late Blight of Potato (Phytophthora infestans) II: Employing Integrated Approaches in Late Blight Disease Management. PSM Biological Research, 2(3), 117–123. https://www.journals.psmpublishers.org/index.php/biolres/article/view/71spa
dc.relation.referencesMarcucci, E., Aleandri, M. P., Chilosi, G., & Magro, P. (2010). Induced resistance by β-aminobutyric acid in artichoke against white mould caused by Sclerotinia sclerotiorum. Journal of Phytopathology, 158(10), 659–667. https://doi.org/10.1111/j.1439-0434.2010.01677.xspa
dc.relation.referencesMarquez, C., Otero, C., & Cortes, M. (2007). Cambios fisiológicos, texturales, fisicoquímicos y microestructurales del tomate de árbol (Cyphomandra betacea S.) En poscosecha changes physiological, textural, physicochemical and microestructural of the tree tomato (Cyphomandra betacea S.) At postharve. Vitae, 14(2), 07–08. http://www.scielo.org.co/scielo.php?script=sci_abstract&pid=S0121-40042007000200002spa
dc.relation.referencesMartin, R. L., Le Boulch, P., Clin, P., Schwarzenberg, A., Yvin, J. C., Andrivon, D., ... & Val, F. (2020). A comparison of PTI defense profiles induced in Solanum tuberosum by PAMP and non-PAMP elicitors shows distinct, elicitor-specific responses. Plos one, 15(8), e0236633.spa
dc.relation.referencesMatson, M. E. H., Small, I. M., Fry, W. E., & Judelson, H. S. (2015). Metalaxyl resistance in Phytophthora infestans: Assessing role of RPA190 gene and diversity within clonal lineages. Phytopathology, 105(12), 1594–1600. https://doi.org/10.1094/PHYTO-05-15-0129-Rspa
dc.relation.referencesMauch-Mani, B., Baccelli, I., Luna, E., & Flors, V. (2017). Defense Priming: An Adaptive Part of Induced Resistance. Annual Review of Plant Biology, 68(1), 485–512. https://doi.org/10.1146/annurev-arplant-042916-041132spa
dc.relation.referencesMcKee, M. L., Zheng, L., O’sullivan, E. C., Kehoe, R. A., Doyle Prestwich, B. M., Mackrill, J. J., & McCarthy, F. O. (2020). Synthesis and evaluation of novel ellipticines and derivatives as inhibitors of Phytophthora infestans. Pathogens, 9(7), 1–23. https://doi.org/10.3390/pathogens9070558spa
dc.relation.referencesMhamdi, A., & Van Breusegem, F. (2018). Reactive oxygen species in plant development. Development, 145(15), dev164376. https://doi.org/10.1242/dev.16437spa
dc.relation.referencesMhatre, P. H., Lekshmanan, D. K., Palanisamy, V. E., Bairwa, A., & Sharma, S. (2021). Management of the late blight (Phytophthora infestans) disease of potato in the southern hills of India. Journal of Phytopathology, 169(1), 52–61. https://doi.org/10.1111/jph.12958spa
dc.relation.referencesMideros, M. F., Turissini, D. A., Guayazán, N., Ibarra-Avila, H., Danies, G., Cárdenas, M., Myers, K., Tabima, J., Goss, E. M., Bernal, A., Lagos, L. E., Grajales, A., Gonzalez, L. N., Cooke, D. E. L., Fry, W. E., Grünwald, N., Matute, D. R., & Restrepo, S. (2018). Phytophthora betacei , a new species within Phytophthora clade 1c causing late blight on Solanum betaceum in Colombia . Persoonia - Molecular Phylogeny and Evolution of Fungi, 41(1), 39–55. https://doi.org/10.3767/persoonia.2018.41.03spa
dc.relation.referencesMiller, J., Olsen, N., Woodell, L., Porter, L., & Clayson, S. (2006). Post-Harvest Applications of Zoxamide and Phosphite for Control of Potato Tuber Rots Caused by Oomycetes at Harvest. American Journal of Potato Research, 83(January), 269–278.spa
dc.relation.referencesMosquera Espinosa, A. T. (2016). Fitonematodos asociados a Cyphomandra betacea (Cav.) Sendtn., Solanum quitoense Lam. y Daucus carota L. en el Departamento de Boyacá, Colombia. Acta Agronómica, 65(1), 87–97. https://doi.org/10.15446/acag.v65n1.45180spa
dc.relation.referencesMosquera, T., Fernández, C., Martínez, L., & Acuña, A. (2008). Genética de la resistencia de la papa ( Solanum tuberosum ) a patógenos . Estado de arte Genetics of the Solanum tuberosum pathogen resistance . State of research. 26(1), 7–15.spa
dc.relation.referencesNajdabbasi, N., Mirmajlessi, S. M., Dewitte, K., Landschoot, S., Mänd, M., Audenaert, K., Ameye, M., & Haesaert, G. (2020). Biocidal activity of plant-derived compounds against Phytophthora infestans: An alternative approach to late blight management. Crop Protection, 138, 105315. https://doi.org/10.1016/j.cropro.2020.105315spa
dc.relation.referencesNavia, Ó., Gandarillas, A., Ortuño, N., Meneses, E., & Franco, J. (2012). Tizón de la Papa (Phytophthora infestans ) y Agricultura Sostenible : Integración de Resistencia Sistémica Inducida y Estrategias de Manejo Integrado. Fundación PROINPA, 1–18. http://www.proinpa.org/phocadownload/articulos/Papa/Oscar Navia_tizon papa.pdfspa
dc.relation.referencesNowicki, M., Foolad, M. R., Nowakowska, M., & Kozik, E. U. (2012). Potato and Tomato Late Blight Caused by Phytophthora infestans : An Overview of Pathology and Resistance Breeding. Plant Disease, 96(1), 4–17. https://doi.org/10.1094/PDIS-05-11-0458spa
dc.relation.referencesOliva, R. F., Kroon, L. P. N. M., Chacón, G., Flier, W. G., Ristaino, J. B., & Forbes, G. A. (2010). Phytophthora andina sp. nov., a newly identified heterothallic pathogen of solanaceous hosts in the Andean highlands. Plant Pathology, 59(4), 613–625. https://doi.org/10.1111/j.1365-3059.2010.02287.xspa
dc.relation.referencesOlivieri, F. P., Lobato, M. C., González Altamiranda, E., Daleo, G. R., Huarte, M., Guevara, M. G., & Andreu, A. B. (2009). BABA effects on the behaviour of potato cultivars infected by Phytophthora infestans and Fusarium solani. European Journal of Plant Pathology, 123(1), 47–56. https://doi.org/10.1007/s10658-008-9340-zspa
dc.relation.referencesOostendorp, M., Kunz, W., Dietrich, B., & Staub, T. (2001). Induced disease resistance in plants by chemicals. European Journal of Plant Pathology, 107(1), 19–28. https://doi.org/10.1023/A:1008760518772spa
dc.relation.referencesOrdoñez, M. E., Hohl, H. R., Velasco, J. A., Ramon, M. P., Oyarzun, P. J., Smart, C. D., Fry, W. E., Forbes, G. A., & Erselius, L. J. (2000). A novel population of Phytophthora, similar to P. infestans, attacks wild Solanum species in ecuador. Phytopathology, 90(2), 197–202. https://doi.org/10.1094/PHYTO.2000.90.2.197spa
dc.relation.referencesOvadia, A., Biton, R., & Cohen, Y. (2000). Induced resistance to downy mildew and fusarium wilt in cucurbits. https://doi.org/10.17660/ActaHortic.2000.510.8spa
dc.relation.referencesPajot, E., Le Corre, D., & Silué, D. (2001). Phytogard® and DL-β-amino butyric acid (BABA) induce resistance to downy mildew (Bremia lactucae) in lettuce (Lactuca sativa L). European Journal of Plant Pathology, 107(9), 861–869. https://doi.org/10.1023/A:1013136608965spa
dc.relation.referencesPardo-De la Hoz, C. J., Calderón, C., Rincón, A. M., Cárdenas, M., Danies, G., López-Kleine, L., Restrepo, S., & Jiménez, P. (2016). Species from the Colletotrichum acutatum, Colletotrichum boninense and Colletotrichum gloeosporioides species complexes associated with tree tomato and mango crops in Colombia. Plant Pathology, 65(2), 227–237. https://doi.org/10.1111/ppa.12410spa
dc.relation.referencesPark, S. W., Kaimoyo, E., Kumar, D., Mosher, S., & Klessig, D. F. (2007). Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science, 318(5847), 113–116. https://doi.org/10.1126/science.1147113spa
dc.relation.referencesPastor, V., Balmer, A., Gamir, J., Flors, V., & Mauch-Mani, B. (2014). Preparing to fight back: Generation and storage of priming compounds. Frontiers in Plant Science, 5(JUN), 1–13. https://doi.org/10.3389/fpls.2014.00295spa
dc.relation.referencesPeerzada, S. H., Bhat, K. A., & Viswanath, H. S. (2020). Studies on Management of Late Blight (Phytophthora infestans (Mont) de Bary) of Potato Using Organic Soil Amendments. International Journal of Current Microbiology and Applied Sciences, 9(2), 2093–2099. https://doi.org/10.20546/ijcmas.2020.902.237spa
dc.relation.referencesPiekna Grochala, J., & Kepczyńska, E. (2013). Induction of resistance against pathogens by β-aminobutyric acid. Acta Physiologiae Plantarum, 35(6), 1735–1748. https://doi.org/10.1007/s11738-013-1215-zspa
dc.relation.referencesPieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A., & Van Wees, S. C. M. (2011). Hormonal Modulation of Plant Immunity. Annual Review of Cell and Developmental Biology, 28(1), 489–521. https://doi.org/10.1146/annurev-cellbio-092910-154055spa
dc.relation.referencesPirondi, A., Brunelli, A., Muzzi, E., & Collina, M. (2017). Post-infection activity of fungicides against Phytophthora infestans on tomato (Solanum lycopersicum L.). Journal of General Plant Pathology, 83(4), 244–252. https://doi.org/10.1007/s10327-017-0717-8spa
dc.relation.referencesPorat, R., Vinokur, V., Weiss, B., Cohen, L., Daus, A., Goldschmidt, E. E., & Droby, S. (2003). Induction of Resistance to Penicillium digitatum in Grapefruit by the Yeast Biocontrol Agent Candida oleophila. European Journal of Plant Pathology, 109, 901–907. https://doi.org/10.1094/phyto.2002.92.4.393spa
dc.relation.referencesRamírez, F., & Kallarackal, J. (2019). Tree tomato (Solanum betaceum Cav.) reproductive physiology: A review. Scientia Horticulturae, 248(January), 206–215. https://doi.org/10.1016/j.scienta.2019.01.019spa
dc.relation.referencesRejeb, I. Ben, Pastor, V., Gravel, V., & Mauch-Mani, B. (2018). Impact of β-aminobutyric acid on induced resistance in tomato plants exposed to a combination of abiotic and biotic stress. Journal of Agricultural Science and Botany, 2(3). http://www.alliedacademies.org/articles/impact-of-aminobutyric-acid-on-induced-resistance-in-tomato-plantsexposed-to-a-combination-of-abiotic-and-biotic-stress-10758.htmlspa
dc.relation.referencesReuveni, M., Sheglov, D., & Cohen, Y. (2003). Control of moldy-core decay in apple fruits by β-aminobutyric acids and potassium phosphites. Plant Disease, 87(8), 933–936. https://doi.org/10.1094/PDIS.2003.87.8.933spa
dc.relation.referencesReuveni, Moshe, Zahavi, T., & Cohen, Y. (2001). Controlling downy mildew (Plasmopara viticola) in field-grown grapevine with β-aminobutyric acid (BABA). Phytoparasitica, 29(2), 125–133. https://doi.org/10.1007/BF02983956spa
dc.relation.referencesRevelo, E., Dorado, G., Lagos, L. E., & Burbano-Figueroa, O. (2011). Foliar virulence of isolates of Phytophthora infestans sensu lato on detached leaves of two Solanum betaceum cultivars. Tropical Plant Pathology, 36(6), 367–373. https://doi.org/10.1590/s1982-56762011000600005spa
dc.relation.referencesRiofrío, L. A. (2010). Regeneración de plantas de tomate de árbol ( Solanum betacea ) a partir de protoplastos. Universidad San Fracisco De Quitospa
dc.relation.referencesRojas-Estevez, P., Urbina-Gómez, D. A., Ayala-Usma, D. A., Guayazan-Palacios, N., Mideros, M. F., Bernal, A. J., Cardenas, M., & Restrepo, S. (2020). Effector Repertoire of Phytophthora betacei: In Search of Possible Virulence Factors Responsible for Its Host Specificity. Frontiers in Genetics, 11(June). https://doi.org/10.3389/fgene.2020.00579spa
dc.relation.referencesSafaie Farahani, A., & Taghavi, S. M. (2017). Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australasian Plant Disease Notes, 12(1), 12–15. https://doi.org/10.1007/s13314-016-0226-1spa
dc.relation.referencesSafarova, F., & Novruzova, E. (2021). Self-defense Mechanisms of Plants in Nature. Bulletin of Science and Practice, 7(8), 73-77. (in Russian). https://doi.org/10.33619/2414-2948/69/09spa
dc.relation.referencesSanabria, K., Pérez, W., & Andrade-Piedra, J. L. (2020). Effectiveness of resistance inductors for potato late blight management in Peru. Crop Protection, 137, 105241spa
dc.relation.referencesŠašek, V., Nováková, M., Dobrev, P. I., Valentová, O., & Burketová, L. (2012). β-aminobutyric acid protects Brassica napus plants from infection by Leptosphaeria maculans. Resistance induction or a direct antifungal effect? European Journal of Plant Pathology, 133(1), 279–289. https://doi.org/10.1007/s10658-011-9897-9spa
dc.relation.referencesSaville, A., Graham, K., Grünwald, N. J., Myers, K., Fry, W. E., & Ristaino, J. B. (2015). Fungicide sensitivity of U.S. genotypes of Phytophthora infestans to six oomycete-targeted compounds. Plant Disease, 99(5), 659–666. https://doi.org/10.1094/PDIS-05-14-0452-REspa
dc.relation.referencesSchneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9(7), 671–675. https://doi.org/10.1038/nmeth.2089spa
dc.relation.referencesSchotsmans, W. C., East, A., & Woolf, A. (2011). Tamarillo (Solanum betaceum (Cav.)). In Postharvest Biology and Technology of Tropical and Subtropical Fruits (Vol. 4). Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.427spa
dc.relation.referencesShailasree, S., Ramachandra, K. K., & Shetty, S. H. (2007). β-Amino butyric acid-induced resistance in pearl millet to downy mildew is associated with accumulation of defence-related proteins. Australasian Plant Pathology, 36(2), 204–211. https://doi.org/10.1071/AP06093spa
dc.relation.referencesShailasree, S., Sarosh, B. R., Vasanthi, N. S., & Shetty, H. S. (2001). Seed treatment with β-aminobutyric acid protects Pennisetum glaucum systemically from Sclerospora graminicola. Pest Management Science, 57(8), 721–728. https://doi.org/10.1002/ps.346spa
dc.relation.referencesShattock, R. C. (2002). Phytophthora infestans: Populations, pathogenicity and phenylamides. Pest Management Science, 58(9), 944–950. https://doi.org/10.1002/ps.527spa
dc.relation.referencesShoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual Review of Phytopathology, 48, 21–43. https://doi.org/10.1146/annurev-phyto-073009-114450spa
dc.relation.referencesSi-Ammour, A., Mauch-Mani, B., & Mauch, F. (2003). Quantification of induced resistance against Phytophthora species expressing GFP as a vital marker: β-aminobutyric acid but not BTH protects potato and Arabidopsis from infection. Molecular Plant Pathology, 4(4), 237–248. https://doi.org/10.1046/j.1364-3703.2003.00168.xspa
dc.relation.referencesSiegrist, J., Orober, M., & Buchenauer, H. (2000). β-Aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiological and Molecular Plant Pathology, 56, 95–106. https://doi.org/10.1006?pmpp.1999.0255,spa
dc.relation.referencesSilué, D., Pajot, E., & Cohen, Y. (2002). Induction of resistance to downy mildew (Peronospora parasitica) in cauliflower by DL-β-amino-n-butanoic acid (BABA). Plant Pathology, 51(1), 97–102. https://doi.org/10.1046/j.1365-3059.2002.00649.xspa
dc.relation.referencesSlaughter, A. R., Hamiduzzaman, M. M., Gindro, K., Neuhaus, J. M., & Mauch-Mani, B. (2008). Beta-aminobutyric acid-induced resistance in grapevine against downy mildew: Involvement of pterostilbene. European Journal of Plant Pathology, 122(1), 185–195. https://doi.org/10.1007/s10658-008-9285-2spa
dc.relation.referencesSoto Plancarte, A., Rodríguez Alvarado, G., Fernández Pavía, Y. L., Pedraza Santos, M. E., López Pérez, L., Celaya Díaz, M., & Fernández Pavía, S. P. (2017). Protocolos de aislamiento y diagnóstico de Phytophthora spp . enfoque aplicado a la investigación * Isolation and diagnosis protocols of Phytophthora spp . applied research approach Resumen. Revista Mexicana de Ciencias Agrícolas Vol.8, 8(December), 1867–1880. https://doi.org/10.29312/remexca.v8i8.708spa
dc.relation.referencesSunwoo, J. Y., Lee, Y. K., & Hwang, B. K. (1996). Induced resistance against Phytophthora capsici in pepper plants in response to DL-ß-amino-n-butyric acid. European Journal of Plant Pathology, 102(7), 663–670. https://doi.org/10.1007/BF01877247spa
dc.relation.referencesTamayo, P., Navarro, R., & de la Rotta, M. C. (2001). Enfermedades del cultivo del lulo en Colombia. Boletín Técnico 9 - CORPOICA.spa
dc.relation.referencesTavallali, V., Karimi, S., Mohammadi, S., & Hojati, S. (2008). Effects of ß-aminobutyric Acid on the Induction of Resistance to Penicillium italicum. World Applied Sciences Journal, 5(3), 345–351.spa
dc.relation.referencesTejeda-sartorius, M., Martínez-gallardo, N. A., Olalde-Portugal, V., & Délano-frier, J. P. (2007). Jasmonic Acid Accelerates the Expression of a Pathogen-Specific Lipoxygenase (POTLX-3) and Delays Foliar Late Blight Development in Potato (Solanum tuberosum L.). Revista Mexicana de Fitopatología, 25(1), 18–25.spa
dc.relation.referencesThevenet, D., Pastor, V., Baccelli, I., Balmer, A., Vallat, A., Neier, R., Glauser, G., & Mauch-Mani, B. (2016). The priming molecule β -aminobutyric acid is naturally present in plants and is induced by stress. New Phytologist, 213(2), 552–559. https://doi.org/10.1111/nph.14298spa
dc.relation.referencesTon, J., Jakab, G., Toquin, V., Flors, V., Lavicoli, A., Maeder, M., Métrax, J.-P., & Mauch-Mani, B. (2005). Dissecting the b -Aminobutyric Acid – Induced Priming Phenomenon in Arabidopsis. The Plant Cell, 17(March), 987–999. https://doi.org/10.1105/tpc.104.029728.2spa
dc.relation.referencesTon, J., & Mauch-Mani, B. (2004). β-amino-butyric acid-induced resistance against necrotrophic pathogens is based on ABA-dependent priming for callose. Plant Journal, 38(1), 119–130. https://doi.org/10.1111/j.1365-313X.2004.02028.xspa
dc.relation.referencesTosi, L., Luigetti, R., & Zazzerini, A. (1998). Induced Resistance Against Plasmopara helianthi in Sunflower Plants by DL-β-Amino-n-butyric acid. Journal of Phytopathology, 146(5–6), 295–299. https://doi.org/10.1111/j.1439-0434.1998.tb04694.xspa
dc.relation.referencesUpson, J. L., Zess, E. K., Białas, A., Wu, C. hang, & Kamoun, S. (2018). The coming of age of EvoMPMI: evolutionary molecular plant–microbe interactions across multiple timescales. Current Opinion in Plant Biology, 44, 108–116. https://doi.org/10.1016/j.pbi.2018.03.003spa
dc.relation.referencesVallad, G. E., & Goodman, R. M. (2004). Systemic Acquired Resistance and Induced Systemic Resistance in Conventional Agriculture. Crop Science Society of America, 44, 1920–1934.spa
dc.relation.referencesVasyukova, N. I., Ozeretskovskaya, O. L., Chalenko, G. I., Gerasimova, N. G., L’vova, A. A., Il’ina, A. V., Levov, A. N., Varlamov, V. P., & Tarchevsky, I. A. (2010). Immunomodulating activity of chitosan derivatives with salicylic acid and its fragments. Applied Biochemistry and Microbiology, 46(3), 346–351. https://doi.org/10.1134/S0003683810030166spa
dc.relation.referencesWalters, D., & Heil, M. (2007). Costs and trade-offs associated with induced resistance. Physiological and Molecular Plant Pathology, 71(1–3), 3–17. https://doi.org/10.1016/j.pmpp.2007.09.008spa
dc.relation.referencesWalters, D. R., & Fountaine, J. M. (2009). Practical application of induced resistance to plant diseases: An appraisal of effectiveness under field conditions. Journal of Agricultural Science, 147(5), 523–535. https://doi.org/10.1017/S0021859609008806spa
dc.relation.referencesWalters, D., Walsh, D., Newton, A., & Lyon, G. (2005). Induced resistance for plant disease control: Maximizing the efficacy of resistance elicitors. Phytopathology, 95(12), 1368–1373. https://doi.org/10.1094/PHYTO-95-1368spa
dc.relation.referencesWalters, Dale R. (2009). Are plants in the field already induced? Implications for practical disease control. Crop Protection, 28(6), 459–465. https://doi.org/10.1016/j.cropro.2009.01.009spa
dc.relation.referencesWalters, Dale R., Havis, N. D., Paterson, L., Taylor, J., & Walsh, D. J. (2011). Cultivar effects on the expression of induced resistance in spring barley. Plant Disease, 95(5), 595–600. https://doi.org/10.1094/PDIS-08-10-0577spa
dc.relation.referencesWilkinson, S. W., Pastor, V., Paplauskas, S., Pétriacq, P., & Luna, E. (2018). Long-lasting β-aminobutyric acid-induced resistance protects tomato fruit against Botrytis cinerea. Plant Pathology, 67(1), 30–41. https://doi.org/10.1111/ppa.12725spa
dc.relation.referencesWorrall, D., Holroyd, G. H., Moore, J. P., Glowacz, M., Croft, P., Taylor, J. E., Paul, N. D., & Roberts, M. R. (2012). Treating seeds with activators of plant defence generates long-lasting priming of resistance to pests and pathogens. New Phytologist, 193(3), 770–778. https://doi.org/10.1111/j.1469-8137.2011.03987.xspa
dc.relation.referencesYuan, M., Ngou, B. P. M., Ding, P., & Xin, X. F. (2021). PTI-ETI crosstalk: an integrative view of plant immunity. Current Opinion in Plant Biology, 62, 102030. https://doi.org/10.1016/j.pbi.2021.102030spa
dc.relation.referencesZapata P., J. L., & Bernal E., J. A. (2012). Caracterización de razas fisiológicas de Phytophthora infestans (Mont.) de Bary en lulo (Solanum quitoense Lam.). Corpoica Ciencia y Tecnología Agropecuaria, 13(1), 13. https://doi.org/10.21930/rcta.vol13_num1_art:235spa
dc.relation.referencesZhang, C., Wang, J., Zhang, J., Hou, C., & Wang, G. (2011). Effects of β-aminobutyric acid on control of postharvest blue mould of apple fruit and its possible mechanisms of action. Postharvest Biology and Technology, 61(2–3), 145–151. https://doi.org/10.1016/j.postharvbio.2011.02.008spa
dc.relation.referencesZhang, S., Reddy, M. S., Kokalis-Burelle, N., Wells, L. W., Nightengale, S. P., & Kloepper, J. W. (2001). Lack of induced systemic resistance in peanut to late leaf spot disease by plant growth-promoting rhizobacteria and chemical elicitors. Plant Disease, 85(8), 879–884. https://doi.org/10.1094/PDIS.2001.85.8.879spa
dc.relation.referencesZimmerli, L., Jakab, G., Metraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proceedings of the National Academy of Sciences, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897spa
dc.relation.referencesZimmerli, Laurent, Jakab, G., Métraux, J.-P., & Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by β-aminobutyric acid. Proceedings of the National Academy of Sciences of the United States of America, 97(23), 12920–12925. https://doi.org/10.1073/pnas.230416897spa
dc.relation.referencesZimmerli, Laurent, Me, J., & Mauch-mani, B. (2001). β- aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiology, 126(June), 517–523.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadasspa
dc.subject.lembTomate de árbol - Enfermedades y plagas
dc.subject.lembTree tomato - disease and pests
dc.subject.proposalCrecimiento de Phytophthoraspa
dc.subject.proposalDefensa sistémicaspa
dc.subject.proposalDuraciónspa
dc.subject.proposalBABAspa
dc.subject.proposalPhytophthora infestans sensu latoeng
dc.subject.proposalReducción de enfermedad en campospa
dc.subject.proposalPhytophthora growtheng
dc.subject.proposalDurabilityeng
dc.subject.proposalReduction of disease in the field.eng
dc.subject.proposalSystemic resistanceeng
dc.titleInducción de defensa en Solanum betaceum hacia el ataque por Phytophthora infestans sensu lato mediante ácido β-aminobutíricospa
dc.title.translatedInduction of defense in Solanum betaceum against attack by Phytophthora infestans sensu lato by β-aminobutyric acideng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleEstudio sobre resistencia inducida transgeneracional en la interacción tomate de árbol (Solanum betaceum)- Phytophthora infestans sensu lato"; Código 130171250695, contrato 254-2016spa
oaire.fundernameMinciencias | Ministerio de Ciencia Tecnología e Innovaciónspa
oaire.fundernameUniversidad Nacional de Colombiaspa
oaire.fundernamePolitécnico Colombiano Jaime Isaza Cadavidspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1035428073.2021.pdf
Tamaño:
3.01 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: