Metodología basada en un algoritmo natural metaheurístico para programar el ruteo de los vehículos de la pastelería ubicada en la región cafetera

dc.contributor.advisorRuiz Herrera, Santiagospa
dc.contributor.authorBetancourth Arias, Irma Jhulietspa
dc.date.accessioned2020-09-03T19:56:08Zspa
dc.date.available2020-09-03T19:56:08Zspa
dc.date.issued2020spa
dc.description.abstractEn este documento se presenta el diseño de una metodología soportada en algoritmos naturales metaheurísticos, con el fin de programar la ruta de los vehículos de la Pastelería ubicada en la región cafetera, contribuyendo en la reducción de costos de abastecimiento y distribución y en la disminución de desperdicios alimenticios generados. Esta investigación de tipo interpretativa contiene un procedimiento que permite solucionar el problema de distribución de productos visto como un VRP (Vehicle Routing Problem), donde el objetivo es minimizar la distancia de recorrido de los vehículos al distribuir los productos de una pastelería ubicada en la región cafetera de Colombia, generando un impacto positivo en los costos. Este procedimiento se basa en el diseño de algoritmo genético multiobjetivo NSGA II (Elitist Non-Dominated Sorting Genetic Algorithm II) aplicando la herramienta sistemática MATLAB (The Math Works Inc., 2020). El resultado es una propuesta cuya finalidad se centra en la reducción de los costos por medio del análisis de variables de entrada y salida (distancias, tiempos, etc.) permitiendo solucionar los problemas actuales.spa
dc.description.abstractThis document presents the design of a methodology supported on natural metaheuristic algorithms in order to program the route of the vehicles of the Pastry of Manizales, contributing to the reduction of supply and distribution costs and the reduction of food waste generated. This interpretative research contains a procedure that helped to solve a product distribution problem, seen as a Vehicle Routing Problem VRP, where the objective is to minimize the distance traveled by the vehicles by distributing the ducts of a pastry shop located in the coffee region of Colombia. Its application has a positive impact on costs. The procedure is based on the design of NSGA II multi-target genetic algorithm (Elitist Non-Dominated Sorting Genetic Algorithm II) applying the systematic tool MATLAB (The Math Works Inc., 2020). The result is a proposal whose purpose is to reduce costs by analyzing input and output variables, such as distances, times and other variables that allowed to solve the current problems.spa
dc.description.additionalTrabajo de investigación presentado como requisito para optar al título de Magíster en Ingeniería - Ingeniería Industrial. -- Línea de Investigación Dirección y Producción de Operaciones.spa
dc.description.degreelevelMaestríaspa
dc.format.extent73spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.citationBetancourth A., I. J.(2020). Metodología basada en un algoritmo natural metaheurístico para programar el ruteo de los vehículos de la pastelería ubicada en la región cafetera.spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78373
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.departmentDepartamento de Ingeniería Industrialspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Industrialspa
dc.relation.referencesAho, A. V, Hopcroft, J. E., & Ullman, J. D. (1988). Estructuras de datos y algoritmos (Vol. 1). Addison-Wesley Iberoamericana.spa
dc.relation.referencesAktouf, O. (2016). La administración: entre tradición y renovaciónspa
dc.relation.referencesAndradóttir, S. (1995). A Stochastic Approximation Algorithm with Varying Bounds. Operations Research, 43(6), 1037–1048. https://doi.org/10.1287/opre.43.6.1037spa
dc.relation.referencesAsefi, H., Shahparvari, S., Chhetri, P., & Lim, S. (2019). Variable fleet size and mix VRP with fleet heterogeneity in Integrated Solid Waste Management. Journal of Cleaner Production, 230, 1376–1395. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.04.250spa
dc.relation.referencesBallou, R. H. (2004). Logística: Administración de la cadena de suministro. Pearson educación.spa
dc.relation.referencesBaradaran, V., Shafaei, A., & Hosseinian, A. H. (2019). Stochastic vehicle routing problem with heterogeneous vehicles and multiple prioritized time windows: Mathematical modeling and solution approach. Computers and Industrial Engineering, 131, 187– 199. https://doi.org/10.1016/j.cie.2019.03.047spa
dc.relation.referencesBrooks, O. (2007). Solving discrete resource allocation problems using the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm. SpringSim (3), 55–62.spa
dc.relation.referencesBullnheimer, B., Hartl, R. F., & Strauss, C. (1999). An improved Ant System algorithm for theVehicle Routing Problem. Annals of Operations Research, 89(0), 319–328. https://doi.org/10.1023/A:1018940026670spa
dc.relation.referencesÇatay, B. (2010). A new saving-based ant algorithm for the Vehicle Routing Problem with simultaneous Pickup and Delivery. Expert Systems with Applications, 37(10), 6809– 6817. https://doi.org/10.1016/j.eswa.2010.03.045spa
dc.relation.referencesClarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581.spa
dc.relation.referencesCoelho, V. N., Grasas, A., Ramalhinho, H., Coelho, I. M., Souza, M. J. F., & Cruz, R. C. (2016). An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints. European Journal of Operational Research, 250(2), 367–376.spa
dc.relation.referencesDantzig, G. B., & Ramser, J. H. (1959). The truck dispatching problem. Management Science, 6(1), 80–91.spa
dc.relation.referencesDeb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). John Wiley & Sons.spa
dc.relation.referencesDeb, K., Anand, A., & Joshi, D. (2002). A computationally efficient evolutionary algorithm for real-parameter optimization. Evolutionary Computation, 10(4), 371–395.spa
dc.relation.referencesDelyon, B. (1996). General results on the convergence of stochastic algorithms. IEEE Transactions on Automatic Control, 41(9), 1245–1255.spa
dc.relation.referencesDethloff, J. (2001). Vehicle routing and reverse logistics: the vehicle routing problem with simultaneous delivery and pick-up. OR-Spektrum, 23(1), 79–96.spa
dc.relation.referencesDíaz Gómez, H., García Cáceres, R., & Porcell Mancilla, N. (2008). Las Pymes: costos en la cadena de abastecimiento. Revista Escuela de Administración de Negocios, 0(63 SE-Artículos científicos). https://doi.org/10.21158/01208160.n63.2008.438spa
dc.relation.referencesDorigo, M., & Stützle, T. (2004). Ant Colony Optimization. The MIT Press.spa
dc.relation.referencesFAO. (2012). Pérdidas y desperdicio de alimentos en el mundo – Alcance, causas y prevención (p. 42). http://www.fao.org/3/i2697s/i2697s.pdfspa
dc.relation.referencesFAO. (2014). Pérdidas y desperdicios de alimentos en América Latina y el Caribe (p. 10). http://www.fao.org/3/a-i3942s.pdfspa
dc.relation.referencesFarhang-Mehr, A., & Azarm, S. (2002). Diversity assessment of Pareto optimal solution sets: an entropy approach. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600), 1, 723–728.spa
dc.relation.referencesGlover, F. (1989). Tabu search—part I. ORSA Journal on Computing, 1(3), 190–206.spa
dc.relation.referencesGlover, F. (1990). Tabu search—part II. ORSA Journal on Computing, 2(1), 4–32.spa
dc.relation.referencesGlover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8(1), 156–166.spa
dc.relation.referencesGlover, F. W., & Kochenberger, G. A. (2006). Handbook of metaheuristics (Vol. 57). Springer Science & Business Media.spa
dc.relation.referencesGoogle LLC. (n.d.). [Eje Cafetero]. https://www.google.com/mapsspa
dc.relation.referencesHernández González, S. (2012). Experimentos con dos estrategias de búsqueda implementadas en el algoritmo recocido simulado para un problema de inventario. Revista Facultad de Ingeniería Universidad de Antioquia, 62, 33–43. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0120- 62302012000100004&lang=ptspa
dc.relation.referencesHo, W., Ho, G. T. S., Ji, P., & Lau, H. C. W. (2008). A hybrid genetic algorithm for the multi-depot vehicle routing problem. Engineering Applications of Artificial Intelligence, 21(4), 548–557.spa
dc.relation.referencesHolland, J. H. (1992). Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press.spa
dc.relation.referencesJaramillo, P. (1999). Desarrollo de un sistema soporte a la decisión para la asignación de recursos naturales con satisfacción de múltiples objetivos y múltiples decisores. Universidad Politécnica de Valencia.spa
dc.relation.referencesKassem, S., & Chen, M. (2013). Solving reverse logistics vehicle routing problems with time windows. The International Journal of Advanced Manufacturing Technology, 68(1–4), 57–68.spa
dc.relation.referencesKirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680.spa
dc.relation.referencesKulkarni, S. R., & Horn, C. S. (1996). An alternative proof for convergence of stochastic approximation algorithms. IEEE Transactions on Automatic Control, 41(3), 419–424.spa
dc.relation.referencesKumar, R. S., Kondapaneni, K., Dixit, V., Goswami, A., Thakur, L. S., & Tiwari, M. K. (2016). Multi-objective modeling of production and pollution routing problem with time window: A self-learning particle swarm optimization approach. Computers & Industrial Engineering, 99, 29–40. https://doi.org/https://doi.org/10.1016/j.cie.2015.07.003spa
dc.relation.referencesLaporte, G. (1992). The vehicle routing problem: An overview of exact and approximate algorithms. European Journal of Operational Research, 59(3), 345–358. https://doi.org/https://doi.org/10.1016/0377-2217(92)90192-Cspa
dc.relation.referencesLarrañaga, P., & Lozano, J. A. (2001). Estimation of distribution algorithms: A new tool for evolutionary computation (Vol. 2). Springer Science & Business Media.spa
dc.relation.referencesLi, Y., Chu, F., Côté, J.-F., Coelho, L. C., & Chu, C. (2020). The multi-plant perishable food production routing with packaging consideration. International Journal of Production Economics, 221, 107472. https://doi.org/https://doi.org/10.1016/j.ijpe.2019.08.007spa
dc.relation.referencesLópez García, J. C. (2009). Guía de algoritmos y programación para docentes (2nd ed.). Fundación Gabriel Piedrahita. http://eduteka.icesi.edu.co/pdfdir/AlgoritmosProgramacion.pdfspa
dc.relation.referencesLópez Ruiz, J. (2017). Metaheurísticas para el análisis de datos masivos en el ámbito del transporte por carretera [Universidad Politécnica de Madrid]. http://oa.upm.es/47927/1/TFM_JAVIER_LOPEZ_RUIZ.pdfspa
dc.relation.referencesMADR. (2013). Boletín de coyuntura económica IPC. Alimentos. Ministerio de Agricultura y Desarrollo Rural.spa
dc.relation.referencesMartı, R. (2003). Procedimientos metaheurısticos en optimización combinatoria. Matemátiques, Universidad de Valencia, 1(1), 3–62.spa
dc.relation.referencesMartínez, C., & Mota, E. (2000). Del poliedro del agente viajero gráfico al de rutas de vehículos con demanda compartida. Qüestiió: Quaderns d’estadística i Investigació Operativa, 24(3), 495–530.spa
dc.relation.referencesMladenović, N., & Hansen, P. (1997). Variable neighborhood search. Computers & Operations Research, 24(11), 1097–1100. https://doi.org/https://doi.org/10.1016/S0305-0548(97)00031-2spa
dc.relation.referencesOlivera, A. (2004). Heurísticas para problemas de ruteo de vehículos. In Reportes Técnicos 04-08. UR. FI – INCO. https://www.colibri.udelar.edu.uy/jspui/bitstream/20.500.12008/3508/1/TR0408.pdfspa
dc.relation.referencesOnggo, B. S., Panadero, J., Corlu, C. G., & Juan, A. A. (2019). Agri-food supply chains with stochastic demands: A multi-period inventory routing problem with perishable products. Simulation Modelling Practice and Theory, 97, 101970. https://doi.org/https://doi.org/10.1016/j.simpat.2019.101970spa
dc.relation.referencesOrtega Calvo, M., & Cayuela Domínguez, A. (2002). Regresión logística no condicionada y tamaño de muestra: una revisión bibliográfica. Revista Española de Salud Pública, 76, 85–93. https://www.scielosp.org/article/resp/2002.v76n2/85-93/spa
dc.relation.referencesPan, T., Zhang, Z.-H., & Cao, H. (2014). Collaborative production planning with production time windows and order splitting in make-to-order manufacturing. Computers & Industrial Engineering, 67, 1–9. https://doi.org/https://doi.org/10.1016/j.cie.2013.10.006spa
dc.relation.referencesPardo, L., & Valdés, T. (1987). Simulación: aplicaciones prácticas en la empresa. Díaz de Santos.spa
dc.relation.referencesPeduzzi, P., Concato, J., Kemper, E., Holford, T. R., & Feinstein, A. R. (1996). A simulation study of the number of events per variable in logistic regression analysis. Journal of Clinical Epidemiology, 49(12), 1373–1379. https://www.jclinepi.com/article/S0895-4356(96)00236-3/abstractspa
dc.relation.referencesPelikan, M., Goldberg, D. E., & Cantú-Paz, E. (1999). BOA: The Bayesian optimization algorithm. Proceedings of the Genetic and Evolutionary Computation Conference GECCO-99, 1, 525–532. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.467.8687&rep=rep1&type= pdfspa
dc.relation.referencesPolo Hernán, D., & Sastre Méndez, M. (2014). Aprovisionamiento interno en pastelería. HOTR0109. IC Editorial.spa
dc.relation.referencesPrins, C. (2004). A simple and effective evolutionary algorithm for the vehicle routing problem. Computers & Operations Research, 31(12), 1985–2002.spa
dc.relation.referencesRincon-Garcia, N., Waterson, B., & Cherrett, T. (2017). A hybrid metaheuristic for the timedependent vehicle routing problem with hard time windows. International Journal of Industrial Engineering Computations, 8(1), 141–160.spa
dc.relation.referencesRocha Medina, L. B., González La Rota, E. C., & Orjuela Castro, J. A. (2011). Una revisión al estado del arte del problema de ruteo de vehículos: Evolución histórica y métodos de solución. Ingeniería, 16(2), 35–55.spa
dc.relation.referencesRosen, K. H. (2003). Discrete Mathematics and Its Applications, McGraw-Hill. United State.spa
dc.relation.referencesSawik, B., Faulin, J., & Pérez-Bernabeu, E. (2017). A Multicriteria Analysis for the Green VRP: A Case Discussion for the Distribution Problem of a Spanish Retailer. Transportation Research Procedia, 22, 305–313. https://doi.org/https://doi.org/10.1016/j.trpro.2017.03.037spa
dc.relation.referencesSecomandi, N. (2001). A Rollout Policy for the Vehicle Routing Problem with Stochastic Demands. Operations Research, 49(5), 796–802. https://doi.org/10.1287/opre.49.5.796.10608spa
dc.relation.referencesSedgewick, R. (1988). Algorithms (2nd Ed). Addison-Wesley Longman Publishing Co., Inc.spa
dc.relation.referencesSimsir, F., & Ekmekci, D. (2019). A metaheuristic solution approach to capacitied vehicle routing and network optimization. Engineering Science and Technology, an International Journal, 22(3), 727–735. https://doi.org/https://doi.org/10.1016/j.jestch.2019.01.002spa
dc.relation.referencesTamayo, M. (1999). Aprender a investigar. In Bogotá: Icfes (1ra ed.). Arfo.spa
dc.relation.referencesThe Math Works Inc. (2020). MATLAB (Version 2020a). [Computer software]. https://www.mathworks.com/spa
dc.relation.referencesWeiss, M. A., Moreno, J. tr L., Eguíluz, A. colab. téc, & Jacob, I. colab. téc. (1995). Estructuras de datos y algoritmos. Addison-Wesley Iberoamericana.spa
dc.relation.referencesWilf, H. S. (1989). Algorithmes et complexité. In Masson (Ed.), Volumen 2 de Logique mathématiques informatique.spa
dc.relation.referencesWilf, H. S. (2002). Algorithms and Complexity. Taylor & Francis.spa
dc.relation.referencesXiao, Z., & Jiang-qing, W. (2012). Hybrid Ant Algorithm and Applications for Vehicle Routing Problem. Physics Procedia, 25, 1892–1899. https://doi.org/https://doi.org/10.1016/j.phpro.2012.03.327spa
dc.relation.referencesYu, S., Tai, C., Liu, Y., & Gao, L. (2016). An improved artificial bee colony algorithm for vehicle routing problem with time windows: A real case in Dalian. Advances in Mechanical Engineering, 8(8), 1687814016665298.spa
dc.relation.referencesZhang, D., Cai, S., Ye, F., Si, Y.-W., & Nguyen, T. T. (2017). A hybrid algorithm for a vehicle routing problem with realistic constraints. Information Sciences, 394–395, 167–182. https://doi.org/https://doi.org/10.1016/j.ins.2017.02.028spa
dc.relation.referencesZulvia, F. E., Kuo, R. J., & Nugroho, D. Y. (2020). A many-objective gradient evolution algorithm for solving a green vehicle routing problem with time windows and time dependency for perishable products. Journal of Cleaner Production, 242, 118428. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118428spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddcIngeniería Industrialspa
dc.subject.proposalAlgoritmosspa
dc.subject.proposalAlgorithmseng
dc.subject.proposalmetaheurísticaspa
dc.subject.proposalmetaheuristicseng
dc.subject.proposalruteo de vehículosspa
dc.subject.proposalvehicle routingeng
dc.subject.proposalcostseng
dc.subject.proposalcostosspa
dc.subject.proposalmultiobjetivospa
dc.subject.proposalmulti-targeteng
dc.subject.proposalfood distributioneng
dc.subject.proposaldistribución de alimentosspa
dc.titleMetodología basada en un algoritmo natural metaheurístico para programar el ruteo de los vehículos de la pastelería ubicada en la región cafeteraspa
dc.title.alternativeMethodology based on a natural metaheuristic algorithm to program the routing of the vehicles of the bakery located in the coffee regionspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053776771.2020.pdf
Tamaño:
2.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Industrial

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: