Non-commutative differential calculus of some algebras of polynomial type having PBW bases

dc.contributor.advisorReyes Villamil, Milton Armandospa
dc.contributor.authorSarmiento Santiago, Cristian Davidspa
dc.contributor.researchgroupSAC2spa
dc.date.accessioned2020-09-15T17:10:02Zspa
dc.date.available2020-09-15T17:10:02Zspa
dc.date.issued2020-06-12spa
dc.description.abstractIn this work, we study the notion of differential calculus associated to an associative algebra, from its origin in manifolds geometry, to some generalizations in non commutative differential geometry. In particular, we inquire the notion of differentially smoothness of an algebra, which treats about the existence of differential calculus structures that satisfies conditions relative to the Gelfand-Kirillov dimension of the base algebra, a condition of connectedness over the differential, and the existence of a volume form that allow to construct isomorphisms between the homogeneous sets of forms and the dual of these sets, such as in manifolds theory. We also study the Brzezinski's differential calculus, which is a differential calculus constructed from a finite set of skew derivations, and the Brzezinski's integral calculus, that is a pair of a cokernel and a hom-connection that induces a complex of integral forms over the Brzezinski's differential calculus. Finally, we study automorphisms and skew derivations of some 3-dimensional diffusion algebras, generalized Weyl algebras and skew polynomial algebras, which are objects having PBW bases.spa
dc.description.abstractEn este trabajo, estudiamos la noción de cálculo diferencial asociado a un álgebra asociativa, desde su origen en la geometría de variedades, hasta algunas generalizaciones en la geometría diferencial no conmutativa. En particular, investigamos la noción de álgebra diferencialmente suave, que consiste en la existencia de estructuras de cálculo diferencial que satisfacen condiciones relativas a la dimensión de Gelfand-Kirillov del álgebra base, una condición de conexidad sobre la diferencial, y la existencia de una forma de volumen que permite construir isomorfismos entre los conjuntos homogéneos de formas y el dual de estos conjuntos, tal cual como en la teoría de variedades. También estudiamos el cálculo diferencial de Brezezinski, el cual es un cálculo diferencial construido a partir de un conjunto finito de derivaciones torcidas, y el cálculo integral de Brzezinski, que consta de una pareja de un conúcleo y una conexión-hom que permite inducir un complejo de formas integrales sobre el cálculo diferencial de Brzezinski. Finalmente, estudiamos automorfismos y derivaciones torcidas de algunas álgebras de difusión, álgebras de Weyl generalizadas y álgebras polinomiales torcidas que son 3-dimensionales, las cuales son objetos que poseen bases PBW.spa
dc.description.degreelevelMaestríaspa
dc.format.extent134spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/78462
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Matemáticasspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesMunerah Almulhem and Tomasz Brzezinski. Skew derivations on generalized Weyl algebras. J. Algebra, 493:194–235, 2018.spa
dc.relation.referencesFrancisco Alcaraz, Srinandan Dasmahapatra, and Vladimir Rittenberg. N-species stochastic models with boundaries and quadratic algebras. J. Phys.A: Math. Gen., 31(3):845, 1998.spa
dc.relation.referencesViacheslav Alexandrovich Artamonov. Derivations of skew PBW-extensions. Commun. Math. Stat., 3(4):449–457, 2015.spa
dc.relation.referencesTomasz Brzezinski et al. On the smoothness of the noncommutative pillow and quantum teardrops. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 10:015, 2014.spa
dc.relation.referencesVladimir Bavula. Generalized Weyl algebras and their representations. Algebra i Analiz, 4(1):75–97, 1992.spa
dc.relation.referencesVladimir Bavula. Generalized Weyl algebras, kernel and tensor-simple algebras, their simple modules. Canadian Math. Soc. Conf. Proc, 14:83–107,1993. CMP 94:09.spa
dc.relation.referencesVladimir Bavula. Filter dimension of algebras and modules, a simplicity criterion of generalized Weyl algebras. Comm. Algebra, 24(6):1971–1992,1996.spa
dc.relation.referencesVladimir Bavula. Tensor homological minimal algebras, global dimension of the tensor product of algebras and of generalized Weyl algebras. Bull. Sci.Math., 120, 1996.spa
dc.relation.referencesTomasz Brzezinski, Laiachi El Kaoutit, and Christian Lomp. Non-commutative integral forms and twisted multi-derivations. J. Noncommut. Geom., 4:281–312, 2010.spa
dc.relation.referencesTomasz Brzeziński and Christian Lomp. Differential smoothness of skew polynomial rings. J. Pure Appl. Algebra, 222(9):2413–2426, 2018.spa
dc.relation.referencesTomasz Brzezinski and Shahn Majid. Quantum group gauge theory on quantum spaces. Comm. Math. Phys., 157(3):591–638, 1993.spa
dc.relation.referencesNicolas Bourbaki. Algebra I, Chapters 1-3. Springer, 1989.spa
dc.relation.referencesTomasz Brzeziński. Non-commutative connections of the second kind. J.Algebra Appl., 7(05):557–573, 2008.spa
dc.relation.referencesTomasz Brzezinski. Differential smoothness of affine Hopf algebras of Gelfand-Kirillov dimension two. Colloq. Math., 139:111–119, 2014. DOI:10.4064/cm139-1-6spa
dc.relation.referencesTomasz Brzezinski. Circle and line bundles over generalized Weyl algebras. Algebr. Represent. Theory, 19(1):57–69, 2016spa
dc.relation.referencesTomasz Brzezinski. Noncommutative differential geometry of generalized Weyl algebras. SIGMA Symmetry Integrability Geom. Methods Appl., 12, 2016.spa
dc.relation.referencesTomasz Brzezinski and Andrzej Sitarz. Smooth geometry of the noncommutative pillow, cones and lens spaces. J. Noncommut. Geom., 11:413 – 449,2017.spa
dc.relation.referencesAlain Connes. Non-commutative differential geometry. Publications Mathematiques de l’IHES, 62:41–144, 1985spa
dc.relation.referencesSeverino Coutinho. A Primer of Algebraic D-modules, volume 33. Cambridge University Press, 1995.spa
dc.relation.referencesBernard Derrida, Eytan Domany, and David Mukamel. An exact solution of a one-dimensional asymmetric exclusion model with open boundaries. J.Stat. Phys., 69(3-4):667–687, 1992.spa
dc.relation.referencesBernard Derrida, Martin R Evans, Vincent Hakim, and Vincent Pasquier. Exact solution of a 1d asymmetric exclusion model using a matrix formulation. J. Phys. A: Math. Gen., 26(7):1493, 1993.spa
dc.relation.referencesBernard Derrida, Steven A Janowsky, Joel L Lebowitz, and Eugene R Speer. Exact solution of the totally asymmetric simple exclusion process: shock profiles. J. Stat. Phys., 73(5-6):813–842, 1993.spa
dc.relation.referencesGeorges de Rham. Differentiable manifolds: forms, currents, harmonic forms. Springer, 1984.spa
dc.relation.referencesM Dubois-Violette. Dérivations et calcul différentiel non commutatif. Class.Quant. Grav, 6:403–408, 1988.spa
dc.relation.referencesMichel Dubois-Violette, Richard Kerner, and John Madore. Noncommutative differential geometry of matrix algebras. J. Math. Phys., 31(2):316–322,1990spa
dc.relation.referencesMichel Dubois-Violette, Andreas Kriegl, Yoshiaki Maeda, and Peter Michor. Smooth*-algebras. Progress of Theoretical Physics Supplement, 144:54–78,2001spa
dc.relation.referencesGene Freudenburg. Algebraic theory of locally nilpotent derivations, volume 136. Springer, 2006.spa
dc.relation.referencesGiovanni Giachetta, Luigi Mangiarotti, and Gennadii Aleksandrovich Sardanashvili. Geometric and Algebraic Topological Methods in Quantum Mechanics. World Scientific, 2005.spa
dc.relation.referencesKenneth R. Goodearl and Robert Breckenridge Warfield Jr. An Introduction to Noncommutative Noetherian Rings, volume 61. Cambridge university press, 2004.spa
dc.relation.referencesOwen Hinchcliffe. Diffusion Algebras. PhD thesis, University of Sheffield, 2005. Sheffield.spa
dc.relation.referencesHaye Hinrichsen, Sven Sandow, and Ingo Peschel. On matrix product ground states for reaction-diffusion models. J. Phys. A: Math. Gen., 29(11):2643,1996.spa
dc.relation.referencesAleksei Petrovich Isaev, Pavel Nikolaevich Pyatov, and Vladimir Rittenberg. Diffusion algebras. Journal of Physics A: Mathematical and General,34(29):5815, 2001.spa
dc.relation.referencesHumphreys James. Introduction to Lie algebras and representation theory. Graduate Texts in Mathematics, 9, 1972.spa
dc.relation.referencesMax Karoubi. Homologie cyclique et K-théorie. Société mathématique de France, 1987.spa
dc.relation.referencesGünter R. Krause and Thomas H. Lenagan. Growth of Algebras and Gelfand-Kirillov dimension, volume 22. American Mathematical Society., 2000.spa
dc.relation.referencesKlaus Krebs and Sven Sandow. Matrix product eigenstates for one-dimensional stochastic models and quantum spin chains. J. Phys. A: Math. Gen., 30(9):3165, 1997.spa
dc.relation.referencesIosif Krasilchchik, Aleksandr Michajlovič Vinogradov, and Valentin Lychagin. Geometry of jet spaces and nonlinear partial differential equations. Gordon and Breach, 1986.spa
dc.relation.referencesGiovanni Landi. An Introduction to Noncommutative Spaces and Their Geometries, volume 51. Springer Science & Business Media, 1997.spa
dc.relation.referencesOswaldo Lezama, William Fajardo, Claudia Gallego, Armando Reyes, Héctor Suárez, and Herbert Venegas. Skew PBW Extensions: Ring and module theoretic properties, matrix and Grobner methods, applications. Springer, 2020. To be published.spa
dc.relation.referencesOswaldo Lezama and Armando Reyes. Some homological properties of skew PBW extensions. Comm. Algebra, 42(3):1200–1230, 2014.spa
dc.relation.referencesShahn Majid. What is a Quantum Group? Notices of the AMS, 53(1), 1995.spa
dc.relation.referencesJoanna Meinel.Affine nilTemperley–Lieb Algebras and Generalized Weyl Algebras: Combinatorics and Representation Theory. PhD thesis, Dissertation, Bonn, 2016.spa
dc.relation.referencesShigeyuki Morita. Geometry of differential forms. Number 201. American Mathematical Society, 1998.spa
dc.relation.referencesJet Nestruev. Smooth manifolds and observables, volume 220. Springer Science & Business Media, 2003.spa
dc.relation.referencesØystein Ore. Theory of non-commutative polynomials. Ann. of Math. (2), pages 480–508, 1933.spa
dc.relation.referencesLudwig Pittner. Algebraic Foundations of Non-commutative Differential Geometry and Quantum Groups, volume 39. Springer Science & Business Media, 2009.spa
dc.relation.referencesPavel Nikolaevich Pyatov and Reidun Twarock. Construction of diffusion algebras. Journal of Mathematical Physics, 43(6):3268–3279, 2002.spa
dc.relation.referencesArmando Reyes. Gelfand-Kirillov dimension of skew PBW extensions. Rev. Colombiana Mat., 47(1):95–111, 2013.spa
dc.relation.referencesAlexander Rosenberg. Noncommutative Algebraic Geometry and Representations of Quantized Algebras, volume 330. Springer Science & Business Media, 1995.spa
dc.relation.referencesArmando Reyes and Camilo Rodríguez. The McCoy Condition on skew Poincaré–Birkhoff–Witt extensions. Commun. Math. Stat., 2019. DOI:10.1007/s40304-019-00184-5.spa
dc.relation.referencesArmando Reyes and Héctor Suárez. Some remarks about the cyclic homology of skew PBW extensions. Ciencia en Desarrollo, 7(2):99–107, 2016.spa
dc.relation.referencesArmando Reyes and Héctor Suárez. σ-PBW Extensions of Skew Armendariz Rings. Adv. Appl. Clifford Algebr., 27(4):3197–3224, 2017.spa
dc.relation.referencesArmando Reyes and Héctor Suárez. PBW bases for some 3-dimensional skew polynomial algebras. Far East J. Math. Sci. (FJMS), 101:1207–1228,03 2017.spa
dc.relation.referencesArmando Reyes and Yésica Suárez. On the ACCP in skew Poincaré–Birkhoff–Witt extensions. Beitr. Algebra Geom., 59(4):625–643, 2018.spa
dc.relation.referencesArmando Reyes and Héctor Suárez. Radicals and Köthe’s conjecture for skew PBW extensions. Commun. Math. Stat., 2019. DOI: 10.1007/s40304-019-00189-0.spa
dc.relation.referencesArmando Reyes and Héctor Suárez. Skew Poincaré–Birkhoff–Witt extensions over weak zip rings. Beitr. Algebra Geom., 60(2):197–216, 2019.spa
dc.relation.referencesMariano Suárez-Alvarez and Quimey Vivas. Automorphisms and isomorphisms of quantum generalized Weyl algebras. J. Algebra, 424:540–552, 2015.spa
dc.relation.referencesWilliam F Schelter. Smooth algebras. J. Algebra, 103(2):677–685, 1986spa
dc.relation.referencesAndrea Solotar, Mariano Suárez-Alvarez, and Quimey Vivas. Hochschild homology and cohomology of generalized Weyl algebras: the quantum case. Annales de l’Institut Fourier, 63(3):923–956, 2013.spa
dc.relation.referencesCésar Fernando Venegas Ramírez. Automorphisms for skew PBW extensions and skew quantum polynomial rings. Comm. Algebra, 43(5):1877–1897,2015.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc510 - Matemáticasspa
dc.subject.proposalNoncommutative geometryeng
dc.subject.proposalGeometría no conmutativaspa
dc.subject.proposalDifferentially smootheng
dc.subject.proposalDiferenciablemente suavespa
dc.subject.proposalIntegral calculuseng
dc.subject.proposalCálculo integralspa
dc.subject.proposalCálculo de Brzezinskispa
dc.subject.proposalBrzezinski's calculuseng
dc.subject.proposalDiffusion algebraeng
dc.subject.proposalÁlgebra de difusiónspa
dc.subject.proposalSkew derivationeng
dc.subject.proposalDerivación torcidaspa
dc.titleNon-commutative differential calculus of some algebras of polynomial type having PBW basesspa
dc.title.alternativeCálculo differencial no conmmutativo de algunas álgebras de tipo polinomial con bases PBWspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1024571764.2020.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: