Estudio de los robos en Pereira mediante la detección y dinámica de patrones en redes espacio temporales

dc.contributor.advisorBohorquez Castañeda, Martha Patricia
dc.contributor.advisorRenteria Ramos, Rafael Ricardo
dc.contributor.authorQuintero Martinez, Miguel Ángel
dc.coverage.cityPereira
dc.coverage.countryColombia
dc.date.accessioned2023-10-05T15:44:20Z
dc.date.available2023-10-05T15:44:20Z
dc.date.issued2023
dc.descriptionilustraciones, diagramas, planosspa
dc.description.abstractEste trabajo presenta un análisis espacio-temporal del crimen en la ciudad de Pereira, Colombia, mediante un modelamiento por medio de redes complejas. Se construye una red de eventos criminales considerando cada crimen como un nodo y las relaciones espaciales y temporales entre ellos como aristas. Los datos utilizados para este estudio consisten en hurtos reportados al departamento de policía local entre 2018 y 2021. Se estudia la estructura de la red mediante la identificación de patrones recurrentes, conocidos como motifs, que describen comportamientos emergentes del crimen. Para mejorar la eficiencia computacional para la detección de motifs, se propone una metodología que utiliza la estructura de estos subgrafos que optimiza el conteo dentro del algoritmo. Se utilizan algoritmos de clusterización en los datos para identificar las áreas que tienen patrones espacio-temporales similares de delincuencia. Se observó que una distribución log-normal se ajustaba adecuadamente a la distribución del grado de la red de eventos, permitiendo definir la distancia en la que dos sucesos pueden estar relacionados en el espacio. Los resultados muestran que la metodología propuesta es eficaz en la identificación de motifs que capturan patrones espacio-temporales del hurto de personas. Este estudio demuestra la utilidad del análisis de redes en la modelización del crimen y aporta ideas que pueden servir de base a las estrategias de prevención de la delincuencia. (Texto tomado de la fuente)spa
dc.description.abstractThis work presents a spatio-temporal analysis of crime in the city of Pereira, Colombia, using a complex network modeling approach. A network of criminal events is constructed considering each crime as a node and the spatial and temporal relationships between them as edges. The data used for this study consists of thefts reported to the local police department between 2018 and 2021. The network structure is studied by identifying recurring patterns, known as motifs, which describe emergent crime behaviors. To improve computational efficiency for motif detection a methodology is proposed that uses the structure of these subgraphs to optimize the count within the algorithm. Clustering algorithms are used on the data to identify areas that have similar spatio-temporal patterns of crime. A log-normal distribution was found to adequately fit the event network degree distribution, allowing to define the appropriate distance in which two events can be related in space. The results show that the proposed methodology is effective in identifying motifs that capture spatio-temporal patterns of crime. This study demonstrates the usefulness of network analysis in crime modeling and provides insights that can inform crime prevention strategieseng
dc.description.degreelevelMaestríaspa
dc.format.extentxv, 85 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84765
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Estadísticaspa
dc.relation.referencesWikimedia Commons. Modificado por corso de [2] (gnufdl), cc by-sa 4.0 lt;https://creativecommons.org/licenses/by-sa/4.0gt;, via wikimedia commons, 2023.spa
dc.relation.referenceslan Miguel Forero Sanabria, Martha Patricia Bohorquez Castañeda, Rafael Ricar do Rentería Ramos, and Jorge Mateu. Identification of patterns for space-time event networks. Applied Network Science, 7(1):1–24, 2022.spa
dc.relation.referencesToby Davies and Elio Marchione. Event networks and the identification of crime pattern motifs. PloS one, 10(11):e0143638, 2015.spa
dc.relation.referencestefano Boccaletti, Ginestra Bianconi, Regino Criado, Charo I Del Genio, Jesús Gómez Gardenes, Miguel Romance, Irene Sendina-Nadal, Zhen Wang, and Massimiliano Zanin. The structure and dynamics of multilayer networks. Physics reports, 544(1):1–122, 2014.spa
dc.relation.referencesLaura Lotero, Rafael G. Hurtado, Luis Mario Floría, and Jesús Gómez-Gardeñes. Rich do not rise early: spatio-temporal patterns in the mobility networks of different socio-economic classes. Royal Society open science, 3(10):150654, 2016.spa
dc.relation.referencesRon Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon. Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827, 2002.spa
dc.relation.referencesNadav Kashtan, Shalev Itzkovitz, Ron Milo, and Uri Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746–1758, 2004.spa
dc.relation.referencesSebastian Wernicke. Efficient detection of network motifs. IEEE/ACM transactions on computational biology and bioinformatics, 3(4):347–359, 2006.spa
dc.relation.referencesThaddeus Vincenty. Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey review, 23(176):88–93, 1975.spa
dc.relation.referencesRachel Boba. Crime analysis with crime mapping. Sage publications, 2016.spa
dc.relation.referencesMarcus Felson and Rachel Boba. Crime and everyday life. Sage, 2010.spa
dc.relation.referencesPaul Cozens, Terence Love, and Brent Davern. Geographical juxtaposition: A new direction in cpted. Social Sciences, 8(9):252, 2019.spa
dc.relation.referencesSergey Dorogovtsev, Alexander Goltsev, and José Mendes. Critical phenomena in complex networks. Reviews of Modern Physics, 80(4):1275, 2008.spa
dc.relation.referencesKatarzyna Sznajd-Weron and Jozef Sznajd. Opinion evolution in closed community. International Journal of Modern Physics C, 11(06):1157–1165, 2000.spa
dc.relation.referencesMark Newman. Networks. Oxford university press, Ann Arbor, 2018spa
dc.relation.referencesMark Newman, Albert-László Barabási, and Duncan J. Watts. The Structure and Dynamics of Networks. Princeton University Press, Princeton, 2006.spa
dc.relation.referencesAlbert-László Barabási. Network science. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 371(1987), 2013.spa
dc.relation.referencesErnesto Estrada. The Structure of Complex Networks: Theory and Applications. Oxford University Press, Inc., USA, 2011.spa
dc.relation.referencesSergey Dorogovtsev and Jose Mendes. Evolution of networks. Advances in physics, 51(4):1079–1187, 2002spa
dc.relation.referencesVito Latora, Vincenzo Nicosia, and Giovanni Russo. Complex Networks: Principles, Methods and Applications. Cambridge University Press, USA, 1st edition, 2017.spa
dc.relation.referencesLinton Freeman. The development of social network analysis. A Study in the Sociology of Science, 1, 2004spa
dc.relation.referencesStanley Wasserman and Katherine Faust. Social Network Analysis: Methods and Applications. Structural Analysis in the Social Sciences. Cambridge University Press, 1994.spa
dc.relation.referencesErnesto Estrada and Philip A Knight. A first course in network theory. Oxford University Press, USA, 2015.spa
dc.relation.referencesMiguel Ángel Quintero. Ising Model applied to Complex Networks: Opinion formation in dialectic processes. Tesis de pregrado inédita, Universidad Nacional de Colombia, 2019.spa
dc.relation.referencesPaul Erdos and Alfréd Rényi. On the evolution of random graphs. ˝ Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 5(1):17–60, 1960.spa
dc.relation.referencesDuncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’networks. nature, 393(6684):440, 1998.spa
dc.relation.referencesAlbert-László Barabási and Réka Albert. Emergence of scaling in random networks. science, 286(5439):509–512, 1999.spa
dc.relation.referencesLawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank citation ranking: Bringing order to the web. Technical report, Stanford InfoLab, 1999.spa
dc.relation.referencesAnna Broido and Aaron Clauset. Scale-free networks are rare. Nature communications, 10(1):1017, 2019.spa
dc.relation.referencesStuart Lloyd. Least squares quantization in pcm. IEEE Transactions on Information Theory, 28(2):129–137, 1982.spa
dc.relation.referencesMartin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, et al. A density-based algorithm for discovering clusters in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.spa
dc.relation.referencesJacques Dutka. The early history of the factorial function. Archive for history of exact sciences, pages 225–249, 1991.spa
dc.relation.referencesDepartamento Administrativo Nacional de Estadística (DANE). Censo nacional de población y vivienda 2018, 2018.spa
dc.relation.referencesWilliams Gilberto Jiménez-García. Hacia una tipología de lugares peligrosos. caso de estudio de la comuna 11 de dosquebradas, colombia. Revista Criminalidad, 56(1):133– 156, 2014.spa
dc.relation.referencesMunicipio de Pereira. Plan integral de seguridad y convivencia ciudadana, 2020.spa
dc.relation.referencesAaron Clauset, Cosma Rohilla Shalizi, and M. E. J. Newman. Power-law distributions in empirical data. SIAM Review, 51(4):661–703, 2009.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.lembRobospa
dc.subject.lembRobberyeng
dc.subject.lembDelitos contra la propiedadspa
dc.subject.lembOffenses against propertyeng
dc.subject.lembVandalismospa
dc.subject.lembVandalismeng
dc.subject.proposalRedes Complejasspa
dc.subject.proposalRedes de Eventosspa
dc.subject.proposalComplex Networkseng
dc.subject.proposalEvent Networkseng
dc.subject.proposalMotifsspa
dc.subject.proposalDatos espacio-temporalesspa
dc.subject.proposalSpatio-Temporal Dataeng
dc.subject.proposalClusterizaciónspa
dc.subject.proposalClusteringeng
dc.subject.proposalCentralityeng
dc.subject.proposalCentralidadspa
dc.titleEstudio de los robos en Pereira mediante la detección y dinámica de patrones en redes espacio temporalesspa
dc.title.translatedStudy of thefts in Pereira through the detection and dynamics of patterns in spatial-temporal networkseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016076555.2023.pdf
Tamaño:
4.7 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Estadística

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: