Estudio del efecto de la radiación UV sobre las propiedades eléctricas en un tejido ex vivo, como contribución al desarrollo de las metodologías in vitro para la determinación del FPS

dc.contributor.advisorVallejo Díaz, Bibiana Margaritaspa
dc.contributor.authorHernández Camargo, Aura Rocíospa
dc.contributor.corporatenameUniversidad Nacional de Colombiaspa
dc.contributor.researchgroupInvestigación en Procesos de Transformación de Materiales para la Industria Farmacéuticaspa
dc.date.accessioned2020-08-09T03:50:41Zspa
dc.date.available2020-08-09T03:50:41Zspa
dc.date.issued2020-06-10spa
dc.description.abstractSunlight corresponds to the spectrum of electromagnetic radiation from the sun that includes ultraviolet, visible and infrared radiation, and the exposition for some biochemical processes in humans is vital. However, ultraviolet radiation in particular has several harmful effects on the structure and function of the skin. In this work, we study the ex vivo model of pigskin as a suitable substrate to evaluate the effect of UVB radiation with a biophysical approach through its electrical properties. For this, we characterize the biological model in terms of its integrity and barrier function, we define its storage and conservation conditions. Subsequently, we studied its electrical properties by Electric Impedance Spectroscopy and developed a methodology that allowed us to study the effect of radiation in vitro, which took into account the skin antioxidant system, especially the enzyme catalase, inhibitors such as azide and oxidative agents such as hydrogen peroxide. The results showed that a dose of 180 J/cm2 being very high compared to the daily sun exposure, does not affect the electrical variable by itself and conditions of induced oxidative stress are required to see any effect on the tissue electrical resistance; Similarly, oxidative stress conditions do not affect it by themself, which suggested that the effect observed was due to radiation and that mentioned dose caused a loss of resistance close to 50%. Finally, the methodology and the variable defined were challenged with the inclusion of sunscreens of different Sun Protection Factor (SPF) demonstrating that by means of an electric type variable it is possible to identify the effect of UVB radiation on the skin and establish a correlation model between the electrical response of the skin and the different levels of protection evaluated, this result, could eventually be used as a quantifiable evaluation in the determination of SPF.spa
dc.description.abstractLa luz solar corresponde al espectro de radiación electromagnética proveniente del sol que incluye la radiación ultravioleta, visible e infrarroja, y resulta vital la exposición para varios procesos bioquímicos en los seres humanos. Sin embargo, la radiación ultravioleta en particular tiene varios efectos nocivos sobre la estructura y función de la piel. En este trabajo, estudiamos el modelo ex vivo de piel de cerdo para evaluar el efecto de la radiación ultravioleta B (UVB) mediante un enfoque biofísico a través de sus propiedades eléctricas. Para ello, caracterizamos el modelo biológico en términos de su integridad y función de barrera, definimos sus condiciones de almacenamiento y conservación. Posteriormente, estudiamos sus características eléctricas empleando la Espectroscopía de Impedancia Eléctrica y desarrollamos una metodología que permitiera estudiar el efecto de la radiación de manera in vitro, la cual tuvo en cuenta el sistema antioxidante de la piel, en especial la enzima catalasa, inhibidores como azida de sodio, y agentes oxidantes como el peróxido de hidrógeno. Los resultados mostraron que una dosis de 180 J/cm2 siendo muy alta comparada con la exposición solar cotidiana, no afecta por si sola las variables eléctricas y que se requieren condiciones de estrés oxidativo inducido para ver un efecto sobre la resistencia eléctrica del tejido; del mismo modo, las condiciones de estrés oxidativo por si solas no la afectan, lo cual sugirió que el efecto observado si fue debido a la radiación y cuya dosis mencionada provocó una perdida de la resistencia cercana al 50%. Finalmente, se desafió la metodología desarrollada y la variable respuesta definida mediante la inclusión de protectores solares de diferente valor de Factor de Protección Solar (FPS), demostrando que mediante una variable de tipo eléctrica si es posible identificar el efecto de la radiación UVB sobre la piel y establecer un modelo de correlación entre la respuesta eléctrica de la piel y los diferentes valores de protección evaluados, este resultado, eventualmente podría utilizarse como una evaluación cuantificable en la determinación del FPS.spa
dc.description.degreelevelDoctoradospa
dc.format.extent182spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77985
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Farmaciaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.referencesAbd, E., Yousef, S., Pastore, M., Telaprolu, K., Mohammed, Y.H., Namjoshi, S., Grice, J.E., Roberts, M.S., 2016. Skin models for the testing of transdermal drugs. Clin. Pharmacol. Adv. Appl. 8, 163–176.spa
dc.relation.referencesAberg, P., Nicander, I., Hansson, J., Geladi, P., Holmgren, U., Ollmar, S., 2004. Skin Cancer Identification Using Multifrequency Electrical Impedance—A Potential Screening Tool. IEEE Trans. Biomed. Eng. 51, 2097–2102. https://doi.org/10.1109/TBME.2004.836523spa
dc.relation.referencesAlexander, H., Brown, S., Danby, S., Flohr, C., 2018. Research Techniques Made Simple: Transepidermal Water Loss Measurement as a Research Tool. J. Invest. Dermatol. 138, 2295–2300. https://doi.org/10.1016/j.jid.2018.09.001spa
dc.relation.referencesAlves, L.M., Aegerter, M.A., Hata, K., 1991. In vitro determination of sun protection factor (SPF) of solar moderators. An. Bras. Dermatol. 66, 313–319.spa
dc.relation.referencesAntoniou, C., Kosmadaki, M., Stratigos, A., Katsambas, A., 2008. Sunscreens - what’s important to know. J. Eur. Acad. Dermatology Venereol. 22, 1110–1119. https://doi.org/10.1111/j.1468-3083.2007.02580.xspa
dc.relation.referencesAzevedo Tosta, T.A., de Faria, P.R., Neves, L.A., do Nascimento, M.Z., 2018. Computational normalization of H&E-stained histological images: Progress, challenges and future potential. Artif. Intell. Med. https://doi.org/10.1016/j.artmed.2018.10.004spa
dc.relation.referencesBaccarin, T., Mitjans, M., Ramos, D., Lemos-Senna, E., Vinardell, M.P., 2015. Photoprotection by Punica granatum seed oil nanoemulsion entrapping polyphenol-rich ethyl acetate fraction against UVB-induced DNA damage in human keratinocyte (HaCaT) cell line. J. Photochem. Photobiol. B Biol. 153, 127–136. https://doi.org/10.1016/j.jphotobiol.2015.09.005spa
dc.relation.referencesBalasubramani, L., Brown, B.H., Healey, J., Tidy, J.A., 2009. The detection of cervical intraepithelial neoplasia by electrical impedance spectroscopy: The effects of acetic acid and tissue homogeneity. Gynecol. Oncol. 115, 267–271. https://doi.org/10.1016/j.ygyno.2009.08.010spa
dc.relation.referencesBarba, C., Alonso, C., Martí, M., Carrer, V., Yousef, I., Coderch, L., 2019. Selective modification of skin barrier lipids. J. Pharm. Biomed. Anal. 172, 94–102. https://doi.org/10.1016/j.jpba.2019.04.040spa
dc.relation.referencesBarbero, A.M., Frasch, H.F., 2009. Pig and guinea pig skin as surrogates for human in vitro penetration studies: A quantitative review. Toxicol. Vitr. 23, 1–13. https://doi.org/10.1016/j.tiv.2008.10.008spa
dc.relation.referencesBatlle, C., 2005. Factor de protección solar: Criterios de elección de un fotoprotector. Offarm, Offarm. Doyma.spa
dc.relation.referencesBendová, H., Akrman, J., Krejčí, A., Kubáč, L., Jírová, D., Kejlová, K., Kolářová, H., Brabec, M., Malý, M., 2007. In vitro approaches to evaluation of Sun Protection Factor. Toxicol. Vitr. 21, 1268–1275. https://doi.org/10.1016/j.tiv.2007.08.022spa
dc.relation.referencesBernerd, F., Asselineau, D., 2008. An organotypic model of skin to study photodamage and photoprotection in vitro. J. Am. Acad. Dermatol. 58, 155–159. https://doi.org/10.1016/j.jaad.2007.08.050spa
dc.relation.referencesBethesda (MD), National Cancer Institute (US), 2008. PDQ Cancer Information Summaries. Health Professional Version. 2018 Jul 19. In [WWW Document]. [Figure, Schematic Represent. Norm. Ski. https//www.ncbi.nlm.nih.gov/books/NBK66034/figure/CDR0000062917__343/.spa
dc.relation.referencesBhattacharya, S., 2018. Cryopretectants and Their Usage in Cryopreservation Process, in: Bozkurt, Y. (Ed.), Cryopreservation Biotechnology in Biomedical and Biological Sciences. IntechOpen, p. 15. https://doi.org/10.5772/intechopen.80477spa
dc.relation.referencesBickers, D.R., Athar, M., 2006. Oxidative stress in the pathogenesis of skin disease. J. Invest. Dermatol. 126, 2565–2575. https://doi.org/10.1038/sj.jid.5700340spa
dc.relation.referencesBiniek, K., Levi, K., Dauskardt, R.H., 2012. Solar UV radiation reduces the barrier function of human skin. Proc. Natl. Acad. Sci. 109, 17111–17116. https://doi.org/10.1073/pnas.1206851109spa
dc.relation.referencesBirgersson, U., Birgersson, E., Åberg, P., Nicander, I., Ollmar, S., 2011. Non-invasive bioimpedance of intact skin: mathematical modeling and experiments. Physiol. Meas. 32, 1–18. https://doi.org/10.1088/0967-3334/32/1/001spa
dc.relation.referencesBjörklund, S., Engblom, J., Thuresson, K., Sparr, E., 2013a. Glycerol and urea can be used to increase skin permeability in reduced hydration conditions. Eur. J. Pharm. Sci. 50, 638–645. https://doi.org/10.1016/j.ejps.2013.04.022spa
dc.relation.referencesBjörklund, S., Engblom, J., Thuresson, K., Sparr, E., 2010. A water gradient can be used to regulate drug transport across skin. J. Control. Release 143, 191–200. https://doi.org/10.1016/j.jconrel.2010.01.005spa
dc.relation.referencesBjörklund, S., Nowacka, A., Bouwstra, J.A., Sparr, E., Topgaard, D., 2013b. Characterization of stratum corneum molecular dynamics by natural-abundance 13C solid-state NMR. PLoS One 8, e61889. https://doi.org/10.1371/journal.pone.0061889spa
dc.relation.referencesBjörklund, S., Pham, Q.D., Jensen, L.B., Knudsen, N.Ø., Nielsen, L.D., Ekelund, K., Ruzgas, T., Engblom, J., Sparr, E., 2016. The effects of polar excipients transcutol and dexpanthenol on molecular mobility, permeability, and electrical impedance of the skin barrier. J. Colloid Interface Sci. 479, 207–220. https://doi.org/10.1016/j.jcis.2016.06.054spa
dc.relation.referencesBjörklund, S., Ruzgas, T., Nowacka, A., Dahi, I., Topgaard, D., Sparr, E., Engblom, J., 2013c. Skin membrane electrical impedance properties under the influence of a varying water gradient. Biophys. J. 104, 2639–2650. https://doi.org/10.1016/j.bpj.2013.05.008spa
dc.relation.referencesBladier, C., Wolvetang, E.J., Hutchinson, P., de Haan, J.B., Ismail, K., 1997. Response of a primary human fibroblast cell line to H202 : senescence-like growth arrest or apoptosis ? Cell Growth Differ. 8, 589–598.spa
dc.relation.referencesBoddé, H.E., van den Brink, I., Koerten, H.K., de Haan, F.H.N., 1991. Visualization of in vitro percutaneous penetration of mercuric chloride; transport through intercellular space versus cellular uptake through desmosomes. J. Control. Release 15, 227–236. https://doi.org/10.1016/0168-3659(91)90114-Sspa
dc.relation.referencesBouwstra, J., 2003. Structure of the skin barrier and its modulation by vesicular formulations. Prog. Lipid Res. 42, 1–36. https://doi.org/10.1016/S0163-7827(02)00028-0spa
dc.relation.referencesBrandner, J., Zorn-Kruppa, M., Yoshida, T., Moll, I., Beck, L., De Benedetto, A., 2015. Epidermal tight junctions in health and disease. Tissue Barriers 3, e974451. https://doi.org/10.4161/21688370.2014.974451spa
dc.relation.referencesBravo, D., Rigley, T.H., Gibran, N., Strong, D.M., Newman-Gage, H., 2000. Effect of storage and preservation methods on viability in transplantable human skin allografts. Burns 26, 367–378. https://doi.org/10.1016/S0305-4179(99)00169-2spa
dc.relation.referencesBriganti, S., Picardo, M., 2003. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatology Venereol. 17, 663–669. https://doi.org/10.1046/j.1468-3083.2003.00751.xspa
dc.relation.referencesCáceres, F., Herrera, G., Fernández, A., Fernández, J., Martínez, R., Carvajal, D., Haidar, Z.S., 2017. Utilidad de Tinción de Tricrómico de Masson en la Cuantificación de Densidad Media Vascular en Mucosa Oral Normal , Displasia Epitelial y Carcinoma Oral de Células Escamosas. Int. J. Morphol. https://doi.org/http://dx.doi.org/10.4067/S0717-95022017000401576spa
dc.relation.referencesCayrol, Sarraute, Tarroux, Redoules, Charveron, Gall, 1999. A mineral sunscreen affords genomic protection against ultraviolet (UV) B and UVA radiation: in vitro and in situ assays. Br. J. Dermatol. 141, 250–258. https://doi.org/10.1046/j.1365-2133.1999.02973.xspa
dc.relation.referencesCelis, R., Romero, E., 2015. Unsupervised color normalisation for H and E stained histopathology image analysis. 11th Int. Symp. Med. Inf. Process. Anal. 9681, 968104. https://doi.org/10.1117/12.2211536spa
dc.relation.referencesCezar, T.L.C., Martinez, R.M., Rocha, C. da, Melo, C.P.B., Vale, D.L., Borghi, S.M., Fattori, V., Vignoli, J.A., Camilios-Neto, D., Baracat, M.M., Georgetti, S.R., Verri, W.A., Casagrande, R., 2019. Treatment with maresin 1, a docosahexaenoic acid-derived pro-resolution lipid, protects skin from inflammation and oxidative stress caused by UVB irradiation. Sci. Rep. 9, 3062. https://doi.org/10.1038/s41598-019-39584-6spa
dc.relation.referencesChatelain, E., Gabard, B., Surber, C., 2003. Skin penetration and sun protection factor of five UV filters: Effect of the vehicle. Skin Pharmacol. Appl. Skin Physiol. 16, 28–35. https://doi.org/10.1159/000068291spa
dc.relation.referencesChizmadzhev, Y.A., Indenbom, A. V., Kuzmin, P.I., Galichenko, S. V., Weaver, J.C., Potts, R.O., 1998. Electrical properties of skin at moderate voltages. Biophys. J. 74, 843–856. https://doi.org/10.1016/S0006-3495(98)74008-1spa
dc.relation.referencesCilurzo, F., Minghetti, P., Sinico, C., 2007. Newborn pig skin as model membrane in in vitro drug permeation studies: a technical note. AAPS PharmSciTech 8, E94. https://doi.org/10.1208/pt0804094spa
dc.relation.referencesClark, L.C., Lyons, C., 2006. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 102, 29–45. https://doi.org/10.1111/j.1749-6632.1962.tb13623.xspa
dc.relation.referencesClayton, T.H., Clark, S.M., Turner, D., Goulden, V., 2006. The treatment of severe atopic dermatitis in childhood with narrowband ultraviolet B phototherapy. Clin. Exp. Dermatol. 32, 28–33. https://doi.org/10.1111/j.1365-2230.2006.02292.xspa
dc.relation.referencesClemente, F., Arpaia, P., Manna, C., 2013. Characterization of human skin impedance after electrical treatment for transdermal drug delivery. Measurement 46, 3494–3501. https://doi.org/10.1016/j.measurement.2013.06.033spa
dc.relation.referencesCole, K.S., Cole, R.H., 1941. Dispersion and absorption in dielectrics I. alternating current characteristics. J. Chem. Phys. 9, 341–351. https://doi.org/10.1063/1.1750906spa
dc.relation.referencesCOLIPA, CTFA-SA, CTFA-US, JCIA, 2006. Standardisation mandate assigned to CEN concerning: Methods for testing efficacy of sunscreen products. Brussels.spa
dc.relation.referencesColl, L., Chinchilla, D., Pellerano, G., Coll, C., Stengel, F., 2006. ¿Pueden compararse los valores de protectores solares efectuados con normas diferentes (FDA y COLIPA)? Acta Ter. dermatologica 29, 330–334.spa
dc.relation.referencesCórdoba-Torres, P., 2017. Relationship between constant-phase element (CPE) parameters and physical properties of films with a distributed resistivity. Electrochim. Acta 225, 592–604. https://doi.org/10.1016/j.electacta.2016.12.087spa
dc.relation.referencesCouteau, C., Philippe, A., Vibet, M.-A., Paparis, E., Coiffard, L., 2018. Study of the influence of substrate and spectrophotometer characteristics on the in vitro measurement of sunscreens efficiency. Eur. J. Pharm. Sci. 121, 210–217. https://doi.org/10.1016/j.ejps.2018.05.010spa
dc.relation.referencesCrovara Pescia, A., Astolfi, P., Puglia, C., Bonina, F., Perrotta, R., Herzog, B., Damiani, E., 2012. On the assessment of photostability of sunscreens exposed to UVA irradiation: From glass plates to pig/human skin, which is best? Int. J. Pharm. 427, 217–223. https://doi.org/10.1016/j.ijpharm.2012.02.001spa
dc.relation.referencesD’Orazio, J., Jarrett, S., Amaro-Ortiz, A., Scott, T., 2013. UV radiation and the skin. Int. J. Mol. Sci. 14, 12222–12248. https://doi.org/10.3390/ijms140612222spa
dc.relation.referencesDarlenski, R., Sassning, S., Tsankov, N., Fluhr, J.W., 2009. Non-invasive in vivo methods for investigation of the skin barrier physical properties. Eur. J. Pharm. Biopharm. 72, 295–303. https://doi.org/10.1016/j.ejpb.2008.11.013spa
dc.relation.referencesDavies, D.J., Heylings, J.R., Mccarthy, T.J., Correa, C.M., 2015. Development of an in vitro model for studying the penetration of chemicals through compromised skin. Toxicol. Vitr. 29, 176–181. https://doi.org/10.1016/j.tiv.2014.09.012spa
dc.relation.referencesDavies, D.J., Ward, R.J., Heylings, J.R., 2004. Multi-species assessment of electrical resistance as a skin integrity marker for in vitro percutaneous absorption studies. Toxicol. Vitr. 18, 351–358. https://doi.org/10.1016/j.tiv.2003.10.004spa
dc.relation.referencesDiffey, B.L., Robson, J., 1989. A new substrate to measure sunscreen protection factors throughout the ultraviolet spectrum. J. Soc. Cosmet. Chem. 40, 127–133.spa
dc.relation.referencesDöge, N., Avetisyan, A., Hadam, S., Pfannes, E.K.B., Rancan, F., Blume-Peytavi, U., Vogt, A., 2017. Assessment of skin barrier function and biochemical changes of ex vivo human skin in response to physical and chemical barrier disruption. Eur. J. Pharm. Biopharm. 116, 138–148. https://doi.org/10.1016/j.ejpb.2016.12.012spa
dc.relation.referencesDonglikar, M.M., Deore, S.L., 2016. Sunscreens: A review. Pharmacogn. J. 8, 171–179. https://doi.org/10.5530/pj.2016.3.1spa
dc.relation.referencesDröge, W., 2002. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95.spa
dc.relation.referencesDutra, E.A., Oliveira, D.A.G. da C., Kedor-Hackmann, E.R.M., Santoro, M.I.R.M., 2004. Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Rev. Bras. Ciências Farm. 40, 381–385. https://doi.org/10.1590/S1516-93322004000300014spa
dc.relation.referencesEdelberg, R., 1977. Relation of electrical properties of skin to structure and physiologic state. J. Invest. Dermatol. 69, 324–327.spa
dc.relation.referencesEgerton, T.A., Tooley, I.R., 2012. UV absorption and scattering properties of inorganic-based sunscreens. Int. J. Cosmet. Sci. 34, 117–122. https://doi.org/10.1111/j.1468-2494.2011.00689.xspa
dc.relation.referencesFageon, L., Moyal, D., Coutet, J., Candau, D., 2009. Importance of sunscreen products spreading protocol and substrate roughness for in vitro sun protection factor assessment. Int. J. Cosmet. Sci. 31, 405–418. https://doi.org/10.1111/j.1468-2494.2009.00524.xspa
dc.relation.referencesFarr, P.M., Diffey, B.L., 1985. The erythemal response of human skin to ultraviolet radiation. Br. J. Dermatol. 113, 65–76. https://doi.org/10.1111/j.1365-2133.1985.tb02045.xspa
dc.relation.referencesFasano, W.., Hinderliter, P.., 2004. The Tinsley LCR Databridge Model 6401 and electrical impedance measurements to evaluate skin integrity in vitro. Toxicol. Vitr. 18, 725–729. https://doi.org/10.1016/j.tiv.2004.01.003spa
dc.relation.referencesFasano, W.., Manning, L.., Green, J.., 2002. Rapid integrity assessment of rat and human epidermal membranes for in vitro dermal regulatory testing: correlation of electrical resistance with tritiated water permeability. Toxicol. Vitr. 16, 731–740. https://doi.org/10.1016/S0887-2333(02)00084-Xspa
dc.relation.referencesFerancová, A., Rengaraj, S., Kim, Y., Labuda, J., Sillanpää, M., 2010. Electrochemical determination of guanine and adenine by CdS microspheres modified electrode and evaluation of damage to DNA purine bases by UV radiation. Biosens. Bioelectron. 26, 314–320. https://doi.org/10.1016/j.bios.2010.08.026spa
dc.relation.referencesFerrero, L., Pissavini, M., Doucet, O., 2010. How a calculated model of sunscreen film geometry can explain in vitro and in vivo SPF variation. Photochem. Photobiol. Sci. 9, 540. https://doi.org/10.1039/b9pp00183bspa
dc.relation.referencesFinkel, T., 2011. Signal transduction by reactive oxygen species. J. Cell Biol. 194, 7–15. https://doi.org/10.1083/JCB.201102095spa
dc.relation.referencesFirooz, A., Sadr, B., Babakoohi, S., Sarraf-Yazdy, M., Fanian, F., Kazerouni-Timsar, A., Nassiri-Kashani, M., Naghizadeh, M.M., Dowlati, Y., 2012. Variation of biophysical parameters of the skin with age, gender, and body region. Sci. World J. 2012, 1–5. https://doi.org/10.1100/2012/386936spa
dc.relation.referencesFlaten, G.E., Palac, Z., Engesland, A., Filipovic-Grcic, J., Vanic, Z., Škalko-Basnet, N., 2015. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci. 75, 10–24. https://doi.org/10.1016/j.ejps.2015.02.018spa
dc.relation.referencesFokuhl, J., Müller-Goymann, C.C., 2013. Modified TEWL in vitro measurements on transdermal patches with different additives with regard to water vapour permeability kinetics. Int. J. Pharm. 444, 89–95. https://doi.org/10.1016/j.ijpharm.2013.01.035spa
dc.relation.referencesGaray, F., Hernández, A., López, H., Barbosa, H., Vallejo, B., 2018. Design of a device for recording bioelectric signals with surface electrodes, in the evaluation of the effect of ultraviolet radiation on a tissue, in: Communications in Computer and Information Science. pp. 428–441. https://doi.org/10.1007/978-3-030-00353-1_38spa
dc.relation.referencesGari, H., Rembiesa, J., Masilionis, I., Vreva, N., Svensson, B., Sund, T., Hansson, H., Morén, A.K., Sjöö, M., Wahlgren, M., Engblom, J., Ruzgas, T., 2015. Amperometric In Vitro Monitoring of Penetration through Skin Membrane. Electroanalysis 27, 111–117. https://doi.org/10.1002/elan.201400426spa
dc.relation.referencesGaroli, D., Pelizzo, M.G., Nicolosi, P., Peserico, A., Tonin, E., Alaibac, M., 2009. Effectiveness of different substrate materials for in vitro sunscreen tests. J. Dermatol. Sci. 56, 89–98. https://doi.org/10.1016/j.jdermsci.2009.07.015spa
dc.relation.referencesGeerligs, M., 2010. Skin layers mechanics. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR657803spa
dc.relation.referencesGeneser, F., 2000. Histología, 3a edición. ed. Buenos Aires Argentina.spa
dc.relation.referencesGiacomoni, P.U., Declercq, L., Hellemans, L., Maes, D., 2000. Aging of Human Skin: Review of a Mechanistic Model and First Experimental Data. IUBMB Life (International Union Biochem. Mol. Biol. Life) 49, 259–263. https://doi.org/10.1080/15216540050033104spa
dc.relation.referencesGlorieux, C., Calderon, P.B., 2017. Catalase, a remarkable enzyme: Targeting the oldest antioxidant enzyme to find a new cancer treatment approach. Biol. Chem. 398, 1095–1108. https://doi.org/10.1515/hsz-2017-0131spa
dc.relation.referencesGlorieux, C., Zamocky, M., Sandoval, J.M., Verrax, J., Calderon, P.B., 2015. Regulation of catalase expression in healthy and cancerous cells. Free Radic. Biol. Med. 87, 84–97. https://doi.org/10.1016/j.freeradbiomed.2015.06.017spa
dc.relation.referencesGuth, K., Schäfer-Korting, M., Fabian, E., Landsiedel, R., van Ravenzwaay, B., 2015. Suitability of skin integrity tests for dermal absorption studies in vitro. Toxicol. Vitr. 29, 113–123. https://doi.org/10.1016/j.tiv.2014.09.007spa
dc.relation.referencesHamed, S.H., Altrabsheh, B., Assa’d, T., Jaradat, S., Alshra’ah, M., Aljamal, A., Alkhatib, H.S., Almalty, A.-M.M., 2012. Construction, in vitro and in vivo evaluation of an in-house conductance meter for measurement of skin hydration. Med. Eng. Phys. 34, 1471–1476. https://doi.org/10.1016/j.medengphy.2012.02.008spa
dc.relation.referencesHaque, T., Crowther, J.M., Lane, M.E., Moore, D.J., 2016. Chemical ultraviolet absorbers topically applied in a skin barrier mimetic formulation remain in the outer stratum corneum of porcine skin. Int. J. Pharm. 510, 250–254. https://doi.org/10.1016/j.ijpharm.2016.06.041spa
dc.relation.referencesHeck, D.E., Vetrano, A.M., Mariano, T.M., Laskin, J.D., 2003. UVB light stimulates production of reactive oxygen species: Unexpected role for catalase. J. Biol. Chem. 278, 22432–22436. https://doi.org/10.1074/jbc.C300048200spa
dc.relation.referencesHellemans, L., Corstjens, H., Neven, A., Declercq, L., Maes, D., 2003. Antioxidant enzyme activity in human stratum corneum shows seasonal variation with an age-dependent recovery. J. Invest. Dermatol. 120, 434–439. https://doi.org/10.1046/j.1523-1747.2003.12056.xspa
dc.relation.referencesHerzog, B., 2008. Models for the calculation of Sun Protection Factors and parameters characterizing the UVA protection ability of cosmetic sunscreens, in: Tadros, T.F. (Ed.), Colloids in Cosmetics and Personal Care. Wiley VCH, Weinheim, pp. 275–308.spa
dc.relation.referencesHerzog, B., 2005. Prediction of Sun Protection Factors and UV-A parameters by calculation of UV transmissions through sunscreen films of inhomogenous surface structure, in: Shaath, N. (Ed.), Sunscreens Regulations and Commercial Development. Grenzach-Wyhlen, pp. 891–900.spa
dc.relation.referencesHerzog, B., 2002. Prediction of sun protection factors by calculation of transmissions with a calibrated step film model. J. Cosmet. Sci. 53, 11–26.spa
dc.relation.referencesHerzog, B., Hüglin, D., Borsos, E., Stehlin, A., Luther, H., 2004a. New UV absorbers for cosmetic sunscreens - A breakthrough for the photoprotection of human skin. Chimia (Aarau). 58, 554–559. https://doi.org/10.2533/000942904777677632spa
dc.relation.referencesHerzog, B., Mongiat, S., Quass, K., Deshayes, C., 2004b. Prediction of sun protection factors and UVA parameters of sunscreens by using a calibrated step film model. J. Pharm. Sci. 93, 1780–1795. https://doi.org/10.1002/jps.20089spa
dc.relation.referencesHirschorn, B., Orazem, M.E., Tribollet, B., Vivier, V., Frateur, I., Musiani, M., 2010. Determination of effective capacitance and film thickness from constant-phase-element parameters. Electrochim. Acta 55, 6218–6227. https://doi.org/10.1016/j.electacta.2009.10.065spa
dc.relation.referencesHlavata, L., Benikova, K., Vyskocil, V., Labuda, J., 2012. Evaluation of damage to DNA induced by UV-C radiation and chemical agents using electrochemical biosensor based on low molecular weight DNA and screen-printed carbon electrode. Electrochim. Acta 71, 134–139. https://doi.org/10.1016/j.electacta.2012.03.119spa
dc.relation.referencesHlavata, L., Striesova, I., Ignat, T., Blaskovisova, J., Ruttkay-Nedecky, B., Kopel, P., Adam, V., Kizek, R., Labuda, J., 2015. An electrochemical DNA-based biosensor to study the effects of CdTe quantum dots on UV-induced damage of DNA. Microchim. Acta 182, 1715–1722. https://doi.org/10.1007/s00604-015-1502-zspa
dc.relation.referencesHorch, R.E., Jeschke, M.G., Spilker, G., Herndon, D.N., Kopp, J., 2005. Treatment of second degree facial burns with allografts—preliminary results. Burns 31, 597–602. https://doi.org/10.1016/j.burns.2005.01.011spa
dc.relation.referencesIARC, 2010. Solar and ultraviolet radiation 1992, 35–101.spa
dc.relation.referencesIARC, 1992. Monographs on the Evaluation of Carcinogenic Risks to Humans—Solar and Ultraviolet Radiation, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans.spa
dc.relation.referencesIDEAM, 2005. Atlas de Radiación Solar de Colombia. Bogotá: UPME - IDEAM. Bogotá, Colombia.spa
dc.relation.referencesImhof, R.E., De Jesus, M.E.P., Xiao, P., Ciortea, L.I., Berg, E.P., 2009. Closed-chamber transepidermal water loss measurement: microclimate, calibration and performance. Int. J. Cosmet. Sci. 31, 97–118. https://doi.org/10.1111/j.1468-2494.2008.00476.xspa
dc.relation.referencesISO 24444, 2010. Cosmetics — Sun Protection Test Methods — In Vivo Determination of the Sun Protection Factor (SPF).spa
dc.relation.referencesIvorra, A., 2002. Bioimpedance monitoring for physicians : an overview. Med. non physicians 2002, 131–178.spa
dc.relation.referencesIvorra, A., Genescà, M., Sola, A., Palacios, L., Villa, R., Hotter, G., Aguiló, J., 2005. Bioimpedance dispersion width as a parameter to monitor living tissues. Physiol. Meas. 26, S165–S173. https://doi.org/10.1088/0967-3334/26/2/016spa
dc.relation.referencesIvorra, A., Rubinsky, B., 2007. In vivo electrical impedance measurements during and after electroporation of rat liver. Bioelectrochemistry 70, 287–295. https://doi.org/10.1016/j.bioelechem.2006.10.005spa
dc.relation.referencesJacobi, U., Kaiser, M., Toll, R., Mangelsdorf, S., Audring, H., Otberg, N., Sterry, W., Lademann, J., 2007. Porcine ear skin: An in vitro model for human skin. Ski. Res. Technol. 13, 19–24. https://doi.org/10.1111/j.1600-0846.2006.00179.xspa
dc.relation.referencesJacobi, U., Taube, H., Schäfer, U.F., Sterry, W., Lademann, J., 2005. Comparison of four different in vitro systems to study the reservoir capacity of the stratum corneum. J. Control. Release 103, 61–71. https://doi.org/10.1016/j.jconrel.2004.11.013spa
dc.relation.referencesJeon, S.-Y., Lee, C.-Y., Song, K.-H., Kim, K.-H., 2014. Spectrophotometric measurement of minimal erythema dose sites after narrowband ultraviolet B phototesting: clinical implication of spetrophotometric values in phototherapy. Ann. Dermatol. 26, 17. https://doi.org/10.5021/ad.2014.26.1.17spa
dc.relation.referencesJiang, S.J., Chen, J.Y., Lu, Z.F., Yao, J., Che, D.F., Zhou, X.J., 2006. Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J. Dermatol. Sci. 44, 29–36. https://doi.org/10.1016/j.jdermsci.2006.05.012spa
dc.relation.referencesKalia, Y.N., Guy, R.H., 1995. The electrical characteristics of human skin in vivo. Pharm. Res. 12, 1605–1613. https://doi.org/10.1023/A:1016228730522spa
dc.relation.referencesKankala, R.K., Kuthati, Y., Liu, C.-L., Mou, C.-Y., Lee, C.-H., 2015. Killing cancer cells by delivering a nanoreactor for inhibition of catalase and catalytically enhancing intracellular levels of ROS. RSC Adv. 5, 86072–86081.spa
dc.relation.referencesKaracolak, T., Cooper, R., Unlu, E.S., Topsakal, E., 2012. Dielectric Properties of Porcine Skin Tissue and In Vivo Testing of Implantable Antennas Using Pigs as Model Animals. IEEE Antennas Wirel. Propag. Lett. 11, 1686–1689. https://doi.org/10.1109/LAWP.2013.2241722spa
dc.relation.referencesKhan, M.A., 2014. Sun protection factor determination studies of sunscreen formultions for their selection and use in cosmetics. J. Pharm. Biol. 4, 9–11.spa
dc.relation.referencesKikuchi, A., Yagi, M., 2011. Direct observation of the intermolecular triplet–triplet energy transfer from UV-A absorber 4-tert-butyl-4′-methoxydibenzoylmethane to UV-B absorber octyl methoxycinnamate. Chem. Phys. Lett. 513, 63–66. https://doi.org/10.1016/j.cplett.2011.07.067spa
dc.relation.referencesKirkman, H.N., Gaetani, G.F., 2007. Mammalian catalase: a venerable enzyme with new mysteries. Trends Biochem. Sci. 32, 44–50. https://doi.org/10.1016/j.tibs.2006.11.003spa
dc.relation.referencesKlimová, Z., Hojerová, J., Beránková, M., 2015. Skin absorption and human exposure estimation of three widely discussed UV filters in sunscreens – In vitro study mimicking real-life consumer habits. Food Chem. Toxicol. 83, 237–250. https://doi.org/10.1016/j.fct.2015.06.025spa
dc.relation.referencesKolarsick, P.A.J., Kolarsick, M.A., Goodwin, C., 2011. Anatomy and Physiology of the Skin. J. Dermatol. Nurses. Assoc. 3, 203–213. https://doi.org/10.1097/JDN.0b013e3182274a98spa
dc.relation.referencesKovacic, P., Jacintho, J., 2001. Mechanisms of carcinogenesis: focus on oxidative stress and electron transfer. Curr. Pharm. Des. 8, 773–796. https://doi.org/10.2174/1381612003401046spa
dc.relation.referencesKullavanijaya, P., Lim, H.W., 2005. Photoprotection. J. Am. Acad. Dermatol. 52, 937–958. https://doi.org/10.1016/j.jaad.2004.07.063spa
dc.relation.referencesKupper, T.S., Fuhlbrigge, R.C., 2004. Immune surveillance in the skin: mechanisms and clinical consequences. Nat. Rev. Immunol. 4, 211–222. https://doi.org/10.1038/nri1310spa
dc.relation.referencesLademann, J., Jacobi, U., Richter, H., Otberg, N., Weigmann, H.-J., Meffert, H., Schaefer, H., Blume-peytavi, U., Sterry, W., 2004. In vivo Determination of UV - Photons Entering into Human Skin. Laser Phys. 14, 234–237.spa
dc.relation.referencesLademann, J., Schanzer, S., Jacobi, U., Schaefer, H., Pflücker, F., Driller, H., Beck, J., Meinke, M., Roggan, A., Sterry, W., 2005. Synergy effects between organic and inorganic UV filters in sunscreens. J. Biomed. Opt. 10, 014008-1–7. https://doi.org/10.1117/1.1854112spa
dc.relation.referencesLaffleur, F., Bernkop-Schnürch, A., 2017. Evaluation of peptide drug delivery via skin barrier-impact of permeation enhancers. J. Drug Deliv. Sci. Technol. 41, 191–196. https://doi.org/10.1016/j.jddst.2017.07.007spa
dc.relation.referencesLambert, G., Reid, C., Kaye, D., Jennings, G., Esler, M., 2002. Effect of sunlight and season on serotonin turnover in the brain. Lancet 360, 1840–1842. https://doi.org/10.1016/S0140-6736(02)11737-5spa
dc.relation.referencesLawler, J.C., Davis, M.J., Griffith, E.C., 1960. Electrical Characteristics of the Skin. J. Invest. Dermatol. 34, 301–308. https://doi.org/10.1038/jid.1960.52spa
dc.relation.referencesLécureux, M., Enoch, S., Deumié, C., Tayeb, G., 2014. Electromagnetic sunscreen model: implementation and comparison between several methods: step-film model, differential method, Mie scattering, and scattering by a set of parallel cylinders. Appl. Opt. 53, 6537–45. https://doi.org/10.1364/AO.53.006537spa
dc.relation.referencesLee, H.-C., Wei, Y.-H., 2000. Mitochondrial role in life and death of the cell. J. Biomed. Sci. 112, 2–15.spa
dc.relation.referencesLevin, J., Maibach, H., 2005. The correlation between transepidermal water loss and percutaneous absorption: an overview. J. Control. Release 103, 291–299. https://doi.org/10.1016/j.jconrel.2004.11.035spa
dc.relation.referencesLim, H.W., Honigsmann, H., Hawk, J.L.M., 2007. Photodermatology, 1st ed. Informa Healthcare USA, Inc, New York.spa
dc.relation.referencesLiou, G.Y., Storz, P., 2010. Reactive oxygen species in cancer. Free Radic. Res. 44, 479–496. https://doi.org/10.3109/10715761003667554spa
dc.relation.referencesLisanti, M.P., Martinez-Outschoorn, U.E., Lin, Z., Pavlides, S., Whitaker-Menezes, D., Pestell, R.G., Howell, A., Sotgia, F., 2011. Hydrogen peroxide fuels aging, inflammation, cancer metabolism and metastasis. Cell Cycle 10, 2440–2449. https://doi.org/10.4161/cc.10.15.16870spa
dc.relation.referencesMackie, D.P., 2002. The euro skin bank and glycerol-preserved allografts. Burns 28, 1. https://doi.org/10.1016/S0305-4179(02)00083-9spa
dc.relation.referencesMadison, K.C., 2003. Barrier Function of the Skin: “La Raison d’Être” of the Epidermis. J. Invest. Dermatol. 121, 231–241. https://doi.org/10.1046/j.1523-1747.2003.12359.xspa
dc.relation.referencesManaia, E.B., Kaminski, R.C.K., Corrêa, M.A., Chiavacci, L.A., 2013. Inorganic UV filters. Brazilian J. Pharm. Sci. 49, 201–209. https://doi.org/10.1590/S1984-82502013000200002spa
dc.relation.referencesMansur, J., Breder, M., Mansur, M., Azulay, R., 1986. Correlação entre a determinação do fator de protecção solar em seres humanos e por espectrofotometria. An. Bras. Dermatol. 61, 167–172.spa
dc.relation.referencesMascini, M., Iannello, M., Palleschi, G., 1982. A liver tissue-based electrochemical sensor for hydrogen peroxide. Anal. Chim. Acta 138, 65–69. https://doi.org/10.1016/S0003-2670(01)85287-9spa
dc.relation.referencesMatsumura, Y., Ananthaswamy, H.N., 2004. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. Pharmacol. 195, 298–308. https://doi.org/10.1016/j.taap.2003.08.019spa
dc.relation.referencesMiksa, S., Lutz, D., Guy, C., 2014. Improving the UV Exposure of Sunscreen During In vitro Testing. Cosmet. Toilet. 34–38.spa
dc.relation.referencesMiura, Y., Hirao, T., Hatao, M., 2012. Influence of Application Amount on Sunscreen Photodegradation in in vitro Sun Protection Factor Evaluation: Proposal of A Skin-Mimicking Substrate. Photochem. Photobiol. 88, 475–482. https://doi.org/10.1111/j.1751-1097.2011.01042.xspa
dc.relation.referencesMoncada, M.E., Saldarriaga, M. del P., Bravo, A.F., Pinedo, C.R., 2010. Medición de impedancia eléctrica en tejido biológico – revisión. TecnoLógicas 51. https://doi.org/10.22430/22565337.113spa
dc.relation.referencesMonteiro-Riviere, N.A., Wiench, K., Landsiedel, R., Schulte, S., Inman, A.O., Riviere, J.E., 2011. Safety evaluation of sunscreen formulations containing titanium dioxide and zinc oxide nanoparticles in UVB sunburned skin: An In vitro and in vivo study. Toxicol. Sci. 123, 264–280. https://doi.org/10.1093/toxsci/kfr148spa
dc.relation.referencesMouret, S., Bogdanowicz, P., Haure, M.J., Castex-Rizzi, N., Cadet, J., Favier, A., Douki, T., 2011. Assessment of the photoprotection properties of sunscreens by chromatographic measurement of DNA damage in skin explants. Photochem. Photobiol. 87, 109–116. https://doi.org/10.1111/j.1751-1097.2010.00834.xspa
dc.relation.referencesMousavisani, S.Z., Raoof, J.-B., Cheung, K.Y., Hernández, A.R., Ruzgas, T., Turner, A.P.F., Mak, W.C., 2019. Integrating an ex-vivo skin biointerface with electrochemical DNA biosensor for direct measurement of the protective effect of UV blocking agents. Biosens. Bioelectron. 128, 159–165. https://doi.org/10.1016/j.bios.2018.12.025spa
dc.relation.referencesMura, S., Manconi, M., Sinico, C., Valenti, D., Fadda, A.M., 2009. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int. J. Pharm. 380, 72–79. https://doi.org/10.1016/j.ijpharm.2009.06.040spa
dc.relation.referencesNilsson, G.E., 1977. Measurement of water exchange through skin. Med. Biol. Eng. Comput. 15, 209–218. https://doi.org/10.1007/BF02441040spa
dc.relation.referencesNocchi, S., Björklund, S., Svensson, B., Engblom, J., Ruzgas, T., 2017. Electrochemical monitoring of native catalase activity in skin using skin covered oxygen electrode. Biosens. Bioelectron. 93, 9–13. https://doi.org/10.1016/j.bios.2017.01.001spa
dc.relation.referencesO’Neill, J.J., 1984. Effect of film irregularities on sunscreen efficacy. J. Pharm. Sci. 73, 888–891. https://doi.org/10.1002/jps.2600730707spa
dc.relation.referencesO’Neill, R.D., Rocchitta, G., McMahon, C.P., Serra, P.A., Lowry, J.P., 2008. Designing sensitive and selective polymer/enzyme composite biosensors for brain monitoring in vivo. TrAC Trends Anal. Chem. 27, 78–88. https://doi.org/10.1016/j.trac.2007.11.008spa
dc.relation.referencesOlivier, E., Dutot, M., Regazzetti, A., Laprévote, O., Rat, P., 2017. 25-Hydroxycholesterol induces both P2X7-dependent pyroptosis and caspase-dependent apoptosis in human skin model: New insights into degenerative pathways. Chem. Phys. Lipids 207, 171–178. https://doi.org/10.1016/j.chemphyslip.2017.06.001spa
dc.relation.referencesOrazem, M.E., Pébère, N., Tribollet, B., 2006. Enhanced graphical representation of electrochemical impedance data. J. Electrochem. Soc. 153, B129-136. https://doi.org/10.1149/1.2168377spa
dc.relation.referencesOsterwalder, U., Herzog, B., 2010. The long way towards the ideal sunscreen—where we stand and what still needs to be done. Photochem. Photobiol. Sci. 9, 470. https://doi.org/10.1039/b9pp00178fspa
dc.relation.referencesOsterwalder, U., Herzog, B., 2009. Sun protection factors: world wide confusion. Br. J. Dermatol. 161, 13–24. https://doi.org/10.1111/j.1365-2133.2009.09506.xspa
dc.relation.referencesPearse, A.D., Edwards, C., 1993. Human stratum corneum as a substrate for in vifro sunscreen testing. Int. J. Cosmet. Sci. 15, 234–244.spa
dc.relation.referencesPelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., Alaibac, M., 2012. In vitro evaluation of sunscreens: An update for the clinicians. ISRN Dermatol. 2012, 1–4. https://doi.org/10.5402/2012/352135spa
dc.relation.referencesPenven, K., Leroy, D., Verneuil, L., Faguer, K., Dompmartin, A., 2005. Evaluation of vaseline oil applied prior to UVB TL01 phototherapy in the treatment of psoriasis. Photodermatol. Photoimmunol. Photomed. 21, 138–141.spa
dc.relation.referencesPillai, S., Oresajo, C., Hayward, J., 2005. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation – a review. Int. J. Cosmet. Sci. 27, 17–34. https://doi.org/10.1111/j.1467-2494.2004.00241.xspa
dc.relation.referencesPissavini, M., Ferrero, L., Alard, V., Heinrich, U., Tronnier, H., Kockott, D., Lutz, D., Tournier, V., Zambonin, M., Meloni, M., 2003. Determination of the In Vitro SPF. Cosmet. Toilet. 118, 65–70.spa
dc.relation.referencesPissavini, M., Marguerie, S., Dehais, A., Ferrero, L., Zastrow, L., 2009. Characterizing Roughness : A New Substrate to Measure SPF. Cosmet. Toilet. 124, 56–64.spa
dc.relation.referencesPissavini, M., Tricaud, C., Wiener, G., Lauer, A., Contier, M., Kolbe, L., Trullás Cabanas, C., Boyer, F., Nollent, V., Meredith, E., Dietrich, E., Matts, P.J., 2018. Validation of an in vitro sun protection factor (SPF) method in blinded ring-testing. Int. J. Cosmet. Sci. 40, 263–268. https://doi.org/10.1111/ics.12459spa
dc.relation.referencesPlanz, V., Lehr, C.-M., Windbergs, M., 2016. In vitro models for evaluating safety and efficacy of novel technologies for skin drug delivery. J. Control. Release 242, 89–104. https://doi.org/10.1016/j.jconrel.2016.09.002spa
dc.relation.referencesPodda, M., Grundmann-Kollmann, M., 2001. Low molecular weight antioxidants and their role in skin ageing. Clin. Exp. Dermatol. 26, 578–582. https://doi.org/10.1046/j.1365-2230.2001.00902.xspa
dc.relation.referencesPodda, M., Traber, M.G., Weber, C., Yan, L.-J., Packer, L., 1998. UV-Irradiation depletes antioxidants and causes oxidative damage in a model of human skin. Free Radic. Biol. Med. 24, 55–65. https://doi.org/10.1016/S0891-5849(97)00142-1spa
dc.relation.referencesPopov, A.P., Lademann, J., Priezzhev, A. V., Myllylä, R., 2007. Reconstruction of stratum corneum profile of porcine ear skin after tape stripping using UV/VIS spectroscopy, in: Schweitzer, D., Fitzmaurice, M. (Eds.), Optics InfoBase Conference Papers. p. 66281S. https://doi.org/10.1117/12.729525spa
dc.relation.referencesPopov, A.P., Lademann, J., Priezzhev, A. V., Myllylä, R., 2005. Effect of size of TiO[sub 2] nanoparticles embedded into stratum corneum on ultraviolet-A and ultraviolet-B sun-blocking properties of the skin. J. Biomed. Opt. 10, 064037. https://doi.org/10.1117/1.2138017spa
dc.relation.referencesPotts, R., Guy, R.H., Francoeur, M.L., 1992. Routes of ionic permeability through mammalian skin. Solid State Ionics 53–56, 165–169. https://doi.org/10.1016/0167-2738(92)90378-3spa
dc.relation.referencesPrasad, A., Pospíšil, P., 2012. Ultraweak photon emission induced by visible light and ultraviolet A radiation via photoactivated skin chromophores: in vivo charge coupled device imaging. J. Biomed. Opt. 17, 085004 1–8. https://doi.org/10.1117/1.jbo.17.8.085004spa
dc.relation.referencesPutnam, C.D., Arvai, A.S., Bourne, Y., Tainer, J.A., 2000. Active and inhibited human catalase structures: ligand and NADPH binding and catalytic mechanism. J. Mol. Biol. 296, 295–309. https://doi.org/10.1006/JMBI.1999.3458spa
dc.relation.referencesRembiesa, J., Gari, H., Engblom, J., Ruzgas, T., 2015. Amperometric monitoring of quercetin permeation through skin membranes. Int. J. Pharm. 496, 636–643. https://doi.org/10.1016/j.ijpharm.2015.10.073spa
dc.relation.referencesRhie, G., Seo, J.Y., Chung, J.H., 2001a. Modulation of Catalase in Human Skin In Vivo by Acute and Chronic UV Radiation Gi-eun. Mol. Cells 11, 399–404.spa
dc.relation.referencesRhie, G., Shin, M.H., Seo, J.Y., Choi, W.W., Cho, K.H., Kim, K.H., Park, K.C., Eun, H.C., Chung, J.H., 2001b. Aging- and Photoaging-Dependent Changes of Enzymic and Nonenzymic Antioxidants in the Epidermis and Dermis of Human Skin In Vivo. J. Invest. Dermatol. 117, 1212–1217. https://doi.org/10.1046/j.0022-202x.2001.01469.xspa
dc.relation.referencesRichters, C.D., Hoekstra, M.J., Baare, J. Van, Dupont, J.S., Kamperdijk, E.W.A., 1996. Morphology skin of glycerol-preserved human cadaver 22, 113–116.spa
dc.relation.referencesRigaud, B., Morucci, J.P., Chauveau, N., 1996. Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. Second section: impedance spectrometry. Crit. Rev. Biomed. Eng. 24, 257–351.spa
dc.relation.referencesRinnerthaler, M., Bischof, J., Streubel, M.K., Trost, A., Richter, K., 2015. Oxidative stress in aging human skin. Biomolecules 5, 545–589. https://doi.org/10.3390/biom5020545spa
dc.relation.referencesRobb, E.C., Bechmann, N., Plessinger, R.T., Boyce, S.T., Warden, G.D., Kagan, R.J., 2001. Storage media and temperature maintain normal anatomy of cadaveric human skin for transplantation to full-thickness skin wounds. J. Burn Care Rehabil. 22, 393–396. https://doi.org/10.1097/00004630-200111000-00008spa
dc.relation.referencesSarruf, F.D., Peres, D.D.A., de Oliveira, N.D., Consiglieri, V.O., Kaneko, T.M., Velasco, M.V.R., Baby, A.R., 2013. Assessment of in vitro sun protection factor (SPF) and rheological profile of commercial infant sunscreens. Rev. Ciencias Farm. Basica e Apl. 34, 33–36.spa
dc.relation.referencesSastre, M.P., Vernet, M., Steinert, S., 2001. Single-cell Gel/Comet assay applied to the analysis of UV radiation–induced DNA damage in Rhodomonas sp. (Cryptophyta)¶. Photochem. Photobiol. 74, 55. https://doi.org/10.1562/0031-8655(2001)074<0055:SCGCAA>2.0.CO;2spa
dc.relation.referencesSayre, R., Agin, P.P., LeVee, G.J., Edward, M., 1979. A comparison of in vivo and in vitro testing of sunscreening formulas. Photochem. Photobiol. 29, 559–566.spa
dc.relation.referencesSchalka, S., Reis, V.M.S. Dos, 2011. Sun protection factor: meaning and controversies. An. Bras. Dermatol. 86, 507–15. https://doi.org/10.1590/s0365-05962011000300013spa
dc.relation.referencesScibior, D., Czeczot, H., 2006. Catalase: structure, properties, functions. Postepy Hig. Med. Dosw. (Online) 60, 170–80.spa
dc.relation.referencesSerpone, N., Dondi, D., Albini, A., 2007. Inorganic and organic UV filters: Their role and efficacy in sunscreens and suncare products. Inorganica Chim. Acta 360, 794–802. https://doi.org/10.1016/j.ica.2005.12.057spa
dc.relation.referencesSies, H., 2017. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: Oxidative eustress. Redox Biol. 11, 613–619. https://doi.org/10.1016/J.REDOX.2016.12.035spa
dc.relation.referencesSimic-Krstic, J., Kalauzi, A., Ribar, S., Lazovic, G., Radojicic, R., 2012. Electrical characteristics of female and male human skin. Arch. Biol. Sci. 64, 1165–1171. https://doi.org/10.2298/ABS1203165Sspa
dc.relation.referencesSimić-Krstić, J.B., Kalauzi, A.J., Ribar, S.N., Matija, L.R., Misevic, G.N., 2014. Electrical properties of human skin as aging biomarkers. Exp. Gerontol. 57, 163–167. https://doi.org/10.1016/j.exger.2014.06.001spa
dc.relation.referencesSimon, G.A., Maibach, H.I., 2000. The Pig as an Experimental Animal Model of Percutaneous Permeation in Man : Qualitative and Quantitative Observations – An Overview. Skin Pharmacol. Appl. Skin Physiol. 229–234.spa
dc.relation.referencesSmijs, T.G., Pavel, S., 2011. Titanium dioxide and zinc oxide nanoparticles in sunscreens: Focus on their safety and effectiveness. Nanotechnol. Sci. Appl. 4, 95–112. https://doi.org/10.2147/nsa.s19419spa
dc.relation.referencesSoehnge, H., Ouhtit, A., Ananthaswamy, H.N., 1997. Mechanisms of induction of skin cancer by UV radiation 2, 538–551.spa
dc.relation.referencesSohn, M., Buehler, T., Imanidis, G., 2016a. Repartition of oil miscible and water soluble UV filters in an applied sunscreen film determined by confocal Raman microspectroscopy. Photochem. Photobiol. Sci. 15, 861–871. https://doi.org/10.1039/c6pp00024jspa
dc.relation.referencesSohn, M., Hêche, A., Herzog, B., Imanidis, G., 2014. Film thickness frequency distribution of different vehicles determines sunscreen efficacy. J. Biomed. Opt. 19, 115005. https://doi.org/10.1117/1.JBO.19.11.115005spa
dc.relation.referencesSohn, M., Hêche, A., Herzog, B., Imanidis, G., 2014. Film thickness frequency distribution of different vehicles determines sunscreen efficacy. J. Biomed. Opt. 19, 115005. https://doi.org/10.1117/1.JBO.19.11.115005spa
dc.relation.referencesSohn, M., Herzog, B., Osterwalder, U., Imanidis, G., 2016b. Calculation of the sun protection factor of sunscreens with different vehicles using measured film thickness distribution — Comparison with the SPF in vitro. J. Photochem. Photobiol. B Biol. 159, 74–81. https://doi.org/10.1016/j.jphotobiol.2016.02.038spa
dc.relation.referencesSohn, M., Korn, V., Imanidis, G., 2015. Porcine Ear Skin as a Biological Substrate for in vitro Testing of Sunscreen Performance. Skin Pharmacol. Physiol. 28, 31–41. https://doi.org/10.1159/000358273spa
dc.relation.referencesSohn, M., Malburet, C., Baptiste, L., Prigl, Y., 2017. Development of a synthetic substrate for the in vitro performance testing of sunscreens. Skin Pharmacol. Physiol. 30, 159–170. https://doi.org/10.1159/000464471spa
dc.relation.referencesSpringsteen, A., Yurek, R., Frazier, M., Carr, K.F., 1999. In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Anal. Chim. Acta 380, 155–164.spa
dc.relation.referencesStanley, R., Cotran, R., Kumar, V., 2015. Patología estructural y funcional, 9th ed.spa
dc.relation.referencesSu, D.G.T., Taylor, J.-S.A., Gross, M.L., 2010. A new photoproduct of 5-methylcytosine and adenine characterized by High-Performance Liquid Chromatography and Mass Spectrometry. Chem. Res. Toxicol. 23, 474–479. https://doi.org/10.1021/tx9003962spa
dc.relation.referencesSukumar, S., Kar, S.P., 2019. Numerical analysis of an enhanced cooling rate cryopreservation process in a biological tissue. J. Therm. Biol. 81, 146–153. https://doi.org/10.1016/j.jtherbio.2019.03.001spa
dc.relation.referencesSullivan, T.P., Eaglstein, W.H., Davis, S.C., Mertz, P., 2001. The pig as a model for human wound healing. Wound Repair Regen. 9, 66–76. https://doi.org/10.1046/j.1524-475x.2001.00066.xspa
dc.relation.referencesSummerfield, A., Meurens, F., Ricklin, M.E., 2015. The immunology of the porcine skin and its value as a model for human skin. Mol. Immunol. 66, 14–21. https://doi.org/10.1016/j.molimm.2014.10.023spa
dc.relation.referencesSundaram, H., Mackiewicz, N., Burton, E., Peno-Mazzarino, L., Lati, E., Meunier, S., 2016. Pilot Comparative Study of the Topical Action of a Novel, Crosslinked Resilient Hyaluronic Acid on Skin Hydration and Barrier Function in a Dynamic, Three-Dimensional Human Explant Model. J. drugs dermatology 15, 434–441.spa
dc.relation.referencesSvitkova, V., Blaskovicova, J., Tekelova, M., Kallai, B.M., Ignat, T., Horackova, V., Skladal, P., Kopel, P., Adam, V., Farkasova, D., Labuda, J., 2017. Assessment of CdS quantum dots effect on UV damage to DNA using a DNA/quantum dots structured electrochemical biosensor and DNA biosensing in solution. Sensors Actuators B Chem. 243, 435–444. https://doi.org/10.1016/j.snb.2016.11.160spa
dc.relation.referencesSzatrowski, T.P., Nathan, C.F., 1991. Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res. 51, 794–798.spa
dc.relation.referencesTunstall, D.F., 2000. A mathematical approach for the analysis of in vitro sun protection factor measurements. J. Soc. Cosmet. Chem. 51, 303–315.spa
dc.relation.referencesTurner, A.P.F., Karube, I., Wilson, G.S., Worsfold, P.J., 1987. Biosensors: fundamentals and applications, Analytica Chimica Acta. https://doi.org/10.1016/s0003-2670(00)85361-1spa
dc.relation.referencesUllah, S., Hamade, F., Bubniene, U., Engblom, J., Ramanavicius, A., Ramanaviciene, A., Ruzgas, T., 2018. In-vitro model for assessing glucose diffusion through skin. Biosens. Bioelectron. 110, 175–179. https://doi.org/10.1016/j.bios.2018.03.039spa
dc.relation.referencesVargas Luna, J.L., Krenn, M., Cortés Ramírez, J.A., Mayr, W., 2015. Dynamic impedance model of the skin-electrode interface for transcutaneous electrical stimulation. PLoS One 10, 1–15. https://doi.org/10.1371/journal.pone.0125609spa
dc.relation.referencesVitola, A., 2016. Propuesta de una metodología “in vitro” para la determinación del factor de protección solar (FPS). Universidad Nacional de Colombia.spa
dc.relation.referencesWagener, F., Carels, C., Lundvig, D., 2013. Targeting the redox balance in inflammatory skin conditions. Int. J. Mol. Sci. 14, 9126–9167. https://doi.org/10.3390/ijms14059126spa
dc.relation.referencesWhite, E.A., Orazem, M.E., Bunge, A.L., 2011. A critical analysis of single-frequency LCR databridge impedance measurements of human skin. Toxicol. Vitr. 25, 774–784. https://doi.org/10.1016/j.tiv.2011.01.013spa
dc.relation.referencesWHO, 2003. Índice UV solar mundial: guía práctica. Ginebra, Suiza.spa
dc.relation.referencesWilkinson, J.., Moore, R.J., 1990. Cosmetología de Harry., Ediciones. ed.spa
dc.relation.referencesXu, H., Zheng, Y.-W., Liu, Q., Liu, L., Luo, F., Zhou, H.-C., Isoda, H., Ohkohchi, N., Li, Y., 2018. Reactive Oxygen Species in Skin Repair, Regeneration, Aging, and Inflammation, in: Reactive Oxygen Species (ROS) in Living Cells. InTech, pp. 69–88. https://doi.org/10.5772/intechopen.72747spa
dc.relation.referencesYamamoto, T., Yamamoto, Y., 1976. Electrical properties of the epidermal stratum corneum. Med. Biol. Eng. 14, 151–158. https://doi.org/10.1007/BF02478741spa
dc.relation.referencesYoon, J., Lee, T., Bapurao G., B., Jo, J., Oh, B.-K., Choi, J.-W., 2017. Electrochemical H2O2 biosensor composed of myoglobin on MoS2 nanoparticle-graphene oxide hybrid structure. Biosens. Bioelectron. 93, 14–20. https://doi.org/10.1016/j.bios.2016.11.064spa
dc.relation.referencesZhang, F., Jin, T., Hu, Q., He, P., 2018. Distinguishing skin cancer cells and normal cells using electrical impedance spectroscopy. J. Electroanal. Chem. 823, 531–536. https://doi.org/10.1016/j.jelechem.2018.06.021spa
dc.relation.referencesZhang, Q., Murawsky, M., LaCount, T., Kasting, G.B., Li, S.K., 2018. Transepidermal water loss and skin conductance as barrier integrity tests. Toxicol. Vitr. 51, 129–135. https://doi.org/10.1016/j.tiv.2018.04.009spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc540 - Química y ciencias afinesspa
dc.subject.ddc615 - Farmacología y terapéuticaspa
dc.subject.ddc613 - Salud y seguridad personalspa
dc.subject.ddc530 - Físicaspa
dc.subject.proposalUVB radiationeng
dc.subject.proposalpropiedades eléctricasspa
dc.subject.proposalestrés oxidativo inducidospa
dc.subject.proposalelectrical propertieseng
dc.subject.proposalradiación UVBspa
dc.subject.proposalinduced oxidative stresseng
dc.titleEstudio del efecto de la radiación UV sobre las propiedades eléctricas en un tejido ex vivo, como contribución al desarrollo de las metodologías in vitro para la determinación del FPSspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1030541167.2020.pdf
Tamaño:
38.79 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.8 KB
Formato:
Item-specific license agreed upon to submission
Descripción: