Desarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metano

dc.contributor.advisorDaza Velásquez, Carlos Enrique
dc.contributor.authorCañón Alvarado, Michael
dc.contributor.cvlacCañón Alvarado, Michael [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000046278]spa
dc.contributor.researchgroupEstado sólido y catálisis ambiental ESCAspa
dc.date.accessioned2023-11-07T19:46:05Z
dc.date.available2023-11-07T19:46:05Z
dc.date.issued2023-11-02
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLa mitigación y la reducción de las emisiones de CO2 son de vital importancia para combatir el cambio climático. Una prometedora estrategia para esta lucha es la metanación de CO2 para producir metano como una potencial fuente de energía sostenible. En la investigación desarrollada para esta tesis de maestría, se sintetizaron catalizadores duales de níquel (Ni) soportados sobre una dolomita calcinada modificada con aluminio (Al) utilizando como material de partida un mineral natural. Se obtuvieron catalizadores impregnados con diferentes cargas de Ni (5, 10, 20% y 30% en masa) y se realizó una caracterización exhaustiva para evaluar las características estructurales, morfológicas, químicas y texturales del soporte y los catalizadores, así como su idoneidad para la captura de CO2 y su conversión hasta metano. Se observó que el tratamiento con 3% en masa de Al en la dolomita calcinada aumentó la estabilidad térmica, limitó la sinterización e incrementó el área superficial pasando de 16 a 39 m2∙g-1. Se utilizaron diferentes técnicas para describir la basicidad y la captura de CO2 de los catalizadores. Los sólidos presentaron capacidades de captura de CO2 medida por TGA a 400 °C entre 100 y 800 μmol∙g-1 encontrándose que con un aumento en la carga de Ni en los catalizadores, esta característica disminuye debido a la reducción de sitios básicos disponibles. Los análisis mediante TPD-CO2 revelaron que el CO2 capturado se encuentra en diferentes tipos de sitios básicos, especialmente en los sitios fuertes y se observa la fácil formación de carbonatos de alta estabilidad térmica. Los catalizadores demostraron conversiones catalíticas de CO2 a 400 °C con velocidades de WHSV: 12 Lg-1h-1 y GHSV: 1915 h-1, superiores al 50% para las cargas más altas de Ni (30% y 20%) y ligeramente inferiores al 50% para las cargas más bajas (10% y 5%). Esto indica que los catalizadores son activos en la reacción de metanación de CO2 y, combinados con su capacidad de captura de CO2, demuestran una capacidad dual efectiva. Los ensayos catalíticos demostraron que los catalizadores son 100 % selectivos a metano ya que fue demostrada la ausencia de CO o de coque y presentan rendimientos hasta del 60 % los cuales son dependientes de la carga de Ni. En este trabajo, se realizó un estudio de la reacción por la técnica DRIFT in situ y Operando con el fin de contribuir a la descripción del mecanismo de la reacción usando este tipo de catalizadores. Se realizaron experimentos en función del tiempo, de la temperatura y un experimento Operando. La técnica permitió identificar la formación de carbonatos estables sobre los catalizadores y su transformación en especies formiato, grupos metoxi y formilo que son intermediarias para la formación de metano. Los resultados señalan que el mecanismo que se sigue es el de la ruta del formiato lo cual explica la ausencia de CO y la selectividad total lograda. (Texto tomado de la fuente)spa
dc.description.abstractMitigation and reduction of CO2 emissions are of vital importance in the fight against climate change. A promising strategy for this battle is CO2 methanation to produce methane as a potential source of sustainable energy. In the research conducted for this master's thesis, dual nickel (Ni) catalysts supported on calcined dolomite modified with aluminum (Al) were synthesized using a natural mineral as the starting material. Catalysts impregnated with different Ni loads (5%, 10%, 20%, and 30% by weight) were obtained, and an exhaustive characterization was performed to evaluate the structural, morphological, chemical, and textural characteristics of the support and catalysts, as well as their suitability for CO2 capture and conversion to methane. It was seen that treatment with 3% by weight of Al in calcined dolomite increased thermal stability, limited sintering, and increased the specific surface area from 16 to 39 m2∙g-1. Various techniques were employed to describe the basicity and CO2 capture capacity of the catalysts. The solids showed CO2 capture capacities measured by TGA at 400 °C ranging from 100 to 800 μmol∙g-1, and it was found that with an increase in the Ni loading in the catalysts, this feature decreased due to the reduction of available basic sites. TPD-CO2 analyses revealed that the captured CO2 was found in different types of basic sites, especially in strong sites, and the easy formation of thermally stable carbonates was observed. The catalysts demonstrated catalytic CO2 conversions at 400 °C with WHSV rates of 12 Lg-1h-1 and GHSV rates of 1915 h-1, exceeding 50% for higher Ni loadings (30% and 20%) and slightly below 50% for lower loadings (10% and 5%). This indicates that the catalysts are active in the CO2 methanation reaction and, combined with their CO2 capture capacity, they demonstrate effective dual functionality. Catalytic tests showed that the catalysts are 100% selective to methane, as evidenced by the absence of CO or coke, and they exhibited yields of up to 60%, which depend on the Ni loading. In this work, an in situ and Operando study of the reaction was conducted using the DRIFT technique to contribute to the description of the reaction mechanism using these types of catalysts. Experiments were performed as a function of time, temperature, and an Operando experiment. The technique allowed the identification of the formation of stable carbonates on the catalysts and their transformation into formiate, methoxy, and formyl species, which are intermediates for methane formation. The results show that the mechanism followed is the formiate route, which explains the absence of CO and the achieved total selectivity to methane.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Químicaspa
dc.format.extentxiv, 103 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84900
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Químicaspa
dc.relation.referencesA. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Mechanism of the CO2 storage and in situ hydrogenation to CH4. Temperature and adsorbent loading effects over Ru-CaO/Al2O3 and Ru-Na2CO3/Al2O3 catalysts,” Appl Catal B, vol. 256, no. April, p. 117845, 2019, doi: 10.1016/j.apcatb.2019.117845.spa
dc.relation.referencesJ. E. Szulejko, P. Kumar, A. Deep, and K. H. Kim, “Global warming projections to 2100 using simple CO2 greenhouse gas modeling and comments on CO2 climate sensitivity factor,” Atmos Pollut Res, vol. 8, no. 1, pp. 136–140, Jan. 2017, doi: 10.1016/J.APR.2016.08.002.spa
dc.relation.referencesD. Nong, P. Simshauser, and D. B. Nguyen, “Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax,” Appl Energy, vol. 298, p. 117223, 2021, doi: 10.1016/j.apenergy.2021.117223.spa
dc.relation.referencesK. O. Yoro and M. O. Daramola, “CO2 emission sources, greenhouse gases, and the global warming effect,” Advances in Carbon Capture: Methods, Technologies and Applications, pp. 3–28, Jan. 2020, doi: 10.1016/B978-0-12-819657-1.00001-3.spa
dc.relation.referencesJ. Bautista, Y. Sierra, and J. F. Bermeo, “Greenhouse Gas Emissions in Higher Education Institutions,” Produccion y Limpia, vol. 17, no. 1, pp. 169–186, Jan. 2022, doi: 10.22507/PML.V17N1A10.spa
dc.relation.referencesM. Lennan and E. Morgera, “The Glasgow Climate Conference (COP26),” International Journal of Marine and Coastal Law, vol. 37, no. 1, pp. 137–151, 2022, doi: 10.1163/15718085-bja10083.spa
dc.relation.referencesG. Climate, “Glasgow Climate Pact,” Glasgow, 2021. [Online]. Available: https://www.ipcc.ch/report/ar6/wg1/.spa
dc.relation.referencesS. Di Pietro, “Acuerdo de París,” Cooperativismo & Desarrollo, vol. 25, no. 111, 2017, doi: 10.16925/co.v25i111.1874.spa
dc.relation.referencesA. Rafiee, K. Rajab Khalilpour, D. Milani, and M. Panahi, “Trends in CO2 conversion and utilization: A review from process systems perspective,” J Environ Chem Eng, vol. 6, no. 5, pp. 5771–5794, 2018, doi: 10.1016/j.jece.2018.08.065.spa
dc.relation.referencesM. Thema, F. Bauer, and M. Sterner, “Power-to-Gas: Electrolysis and methanation status review,” Renewable and Sustainable Energy Reviews, vol. 112, no. May, pp. 775–787, 2019, doi: 10.1016/j.rser.2019.06.030.spa
dc.relation.referencesC. Wulf, J. Linßen, and P. Zapp, “Review of power-to-gas projects in Europe,” Energy Procedia, vol. 155, pp. 367–378, 2018, doi: 10.1016/j.egypro.2018.11.041.spa
dc.relation.referencesJ. C. Navarro, M. A. Centeno, O. H. Laguna, and J. A. Odriozola, “Policies and motivations for the CO2 valorization through the sabatier reaction using structured catalysts. A review of the most recent advances,” Catalysts, vol. 8, no. 12, pp. 1–25, 2018, doi: 10.3390/catal8120578.spa
dc.relation.referencesC. Vogt et al., “Unravelling structure sensitivity in CO2 hydrogenation over nickel,” Nat Catal, vol. 1, no. 2, pp. 127–134, 2018, doi: 10.1038/s41929-017-0016-y.spa
dc.relation.referencesR. P. Ye et al., “Engineering Ni/SiO2 catalysts for enhanced CO2 methanation,” Fuel, vol. 285, p. 119151, Feb. 2021, doi: 10.1016/J.FUEL.2020.119151.spa
dc.relation.referencesL. Pastor-Pérez, E. Le Saché, C. Jones, S. Gu, H. Arellano-Garcia, and T. R. Reina, “Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity,” Catal Today, vol. 317, pp. 108–113, Nov. 2018, doi: 10.1016/J.CATTOD.2017.11.035.spa
dc.relation.referencesK. Stangeland, D. Y. Kalai, H. Li, and Z. Yu, “Active and stable Ni based catalysts and processes for biogas upgrading: The effect of temperature and initial methane concentration on CO2 methanation,” Appl Energy, vol. 227, pp. 206–212, Oct. 2018, doi: 10.1016/J.APENERGY.2017.08.080.spa
dc.relation.referencesC. Vogt, M. Monai, G. J. Kramer, and B. M. Weckhuysen, “The renaissance of the Sabatier reaction and its applications on Earth and in space,” Nat Catal, vol. 2, no. 3, pp. 188–197, 2019, doi: 10.1038/s41929-019-0244-4.spa
dc.relation.referencesS. Patel, “WindGas Falkenhagen: Pioneering Green Gas Production,” News & Technology for the Global Energy Industry. Accessed: Jun. 25, 2023. [Online]. Available: https://www.powermag.com/windgas-falkenhagen-pioneering-green-gas-production/spa
dc.relation.referencesC. J. Quarton and S. Samsatli, “Power-to-gas for injection into the gas grid: What can we learn from real-life projects, economic assessments and systems modelling?,” Renewable and Sustainable Energy Reviews, vol. 98, no. August, pp. 302–316, 2018, doi: 10.1016/j.rser.2018.09.007.spa
dc.relation.referencesM. Younas, L. Loong Kong, M. J. K. Bashir, H. Nadeem, A. Shehzad, and S. Sethupathi, “Recent Advancements, Fundamental Challenges, and Opportunities in Catalytic Methanation of CO 2,” Energy and Fuels, vol. 30, no. 11, pp. 8815–8831, 2016, doi: 10.1021/acs.energyfuels.6b01723.spa
dc.relation.referencesJ. M. Valverde, P. E. Sanchez-Jimenez, and L. A. Perez-Maqueda, “Ca-looping for postcombustion CO2 capture: A comparative analysis on the performances of dolomite and limestone,” Appl Energy, vol. 138, pp. 202–215, Jan. 2015, doi: 10.1016/J.APENERGY.2014.10.087.spa
dc.relation.referencesL. M. Marques, S. M. Mota, P. Teixeira, C. I. C. Pinheiro, and H. A. Matos, “Ca-looping process using wastes of marble powders and limestones for CO2 capture from real flue gas in the cement industry,” Journal of CO2 Utilization, vol. 71, p. 102450, May 2023, doi: 10.1016/J.JCOU.2023.102450.spa
dc.relation.referencesN. Arshad and A. Alhajaj, “Process synthesis for amine-based CO2 capture from combined cycle gas turbine power plant,” Energy, vol. 274, p. 127391, Jul. 2023, doi: 10.1016/J.ENERGY.2023.127391.spa
dc.relation.referencesM. Díaz, M. Alonso, G. Grasa, and J. R. Fernández, “The Ca-Cu looping process using natural CO2 sorbents in a packed bed: Operation strategies to accommodate activity decay,” Chem Eng Sci, vol. 273, p. 118659, Jun. 2023, doi: 10.1016/J.CES.2023.118659.spa
dc.relation.referencesC. Ortiz, J. M. Valverde, R. Chacartegui, L. A. Pérez-Maqueda, and P. Gimenez-Gavarrell, “Scaling-up the calcium-looping process for co2 capture and energy storage,” KONA Powder and Particle Journal, vol. 38, pp. 189–208, 2021, doi: 10.14356/kona.2021005.spa
dc.relation.referencesA. M. Kierzkowska, L. V. Poulikakos, M. Broda, and C. R. Müller, “Synthesis of calcium-based, Al2O3-stabilized sorbents for CO2 capture using a co-precipitation technique,” International Journal of Greenhouse Gas Control, vol. 15, pp. 48–54, 2013, doi: 10.1016/j.ijggc.2013.01.046.spa
dc.relation.referencesR. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.spa
dc.relation.referencesM. Heidari, M. Tahmasebpoor, S. B. Mousavi, and C. Pevida, “CO2 capture activity of a novel CaO adsorbent stabilized with (ZrO2+Al2O3+CeO2)-based additive under mild and realistic calcium looping conditions,” Journal of CO2 Utilization, vol. 53, p. 101747, Nov. 2021, doi: 10.1016/J.JCOU.2021.101747.spa
dc.relation.referencesS. Schiebahn, T. Grube, M. Robinius, V. Tietze, B. Kumar, and D. Stolten, “Power to gas: Technological overview, systems analysis and economic assessment for a case study in Germany,” Int J Hydrogen Energy, vol. 40, no. 12, pp. 4285–4294, 2015, doi: 10.1016/j.ijhydene.2015.01.123.spa
dc.relation.referencesT. Schaaf, J. Grünig, M. R. Schuster, T. Rothenfluh, and A. Orth, “Methanation of CO2 - storage of renewable energy in a gas distribution system,” Energy Sustain Soc, vol. 4, no. 1, pp. 1–14, 2014, doi: 10.1186/s13705-014-0029-1.spa
dc.relation.referencesP. Frontera, A. Macario, M. Ferraro, and P. L. Antonucci, “Supported catalysts for CO2 methanation: A review,” Catalysts, vol. 7, no. 2, pp. 1–28, 2017, doi: 10.3390/catal7020059.spa
dc.relation.referencesJ. Blamey, E. J. Anthony, J. Wang, and P. S. Fennell, “The calcium looping cycle for large-scale CO2 capture,” Progress in Energy and Combustion Science, vol. 36, no. 2. pp. 260–279, Apr. 2010. doi: 10.1016/j.pecs.2009.10.001.spa
dc.relation.referencesS. Calderón et al., “Achieving CO2 reductions in Colombia: Effects of carbon taxes and abatement targets,” Energy Econ, vol. 56, pp. 575–586, 2014, doi: 10.1016/j.eneco.2015.05.010.spa
dc.relation.referencesJ. J. Bravo-Suárez, R. V. Chaudhari, and B. Subramaniam, “Design of heterogeneous catalysts for fuels and chemicals processing: An overview,” ACS Symposium Series, vol. 1132, pp. 3–68, 2013, doi: 10.1021/bk-2013-1132.ch001.spa
dc.relation.referencesS. Hao, H. Huang, Y. Ma, Z. Zhang, and Z. Zheng, “Sensitive characterizations of natural dolomite by terahertz time-domain spectroscopy,” Opt Commun, vol. 456, no. September 2019, p. 124524, 2020, doi: 10.1016/j.optcom.2019.124524.spa
dc.relation.referencesP. Chaiprasert and T. Vitidsant, “Effects of promoters on biomass gasification using nickel/dolomite catalyst,” Korean Journal of Chemical Engineering, vol. 26, no. 6, pp. 1545–1549, Nov. 2009, doi: 10.1007/s11814-009-0259-7.spa
dc.relation.referencesS. Stendardo, L. Di Felice, K. Gallucci, and P. U. Foscolo, “CO2 capture with calcined dolomite: The effect of sorbent particle size,” Biomass Convers Biorefin, vol. 1, no. 3, pp. 149–161, Sep. 2011, doi: 10.1007/s13399-011-0018-y.spa
dc.relation.referencesM. Younas, M. Sohail, L. L. Kong, M. J. K. Bashir, and S. Sethupathi, “Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems,” International Journal of Environmental Science and Technology, vol. 13, no. 7, pp. 1839–1860, 2016, doi: 10.1007/s13762-016-1008-1.spa
dc.relation.referencesH. Yang et al., “Progress in carbon dioxide separation and capture: A review,” Journal of Environmental Sciences, vol. 20, no. 1, pp. 14–27, 2008, doi: 10.1016/S1001-0742(08)60002-9.spa
dc.relation.referencesL. M. Guardela Contreras, “Evolution of climate change policy in Colombia,” Vniversitas, vol. 69, pp. 1–17, 2020, doi: 10.11144/JAVERIANA.VJ69.EPCC.spa
dc.relation.references“Colombia CO2 emissions.” [Online]. Available: https://www.worldometers.info/co2-emissions/colombia-co2-emissions/spa
dc.relation.referencesT. Heyd, “Covid-19 and climate change in the times of the Anthropocene,” Anthropocene Review, vol. 8, no. 1, pp. 21–36, 2021, doi: 10.1177/2053019620961799.spa
dc.relation.referencesJ. P. RODRIGUEZ, M. A. RUIZ-OCHOA, and A. MENESES, “Revisión de los factores de emisión en las metodologías de huella de carbono en Colombia,” Espacios, vol. 41, no. 47, pp. 74–84, 2020, doi: 10.48082/espacios-a20v41n47p06.spa
dc.relation.referencesM. Bailera, P. Lisbona, L. M. Romeo, and S. Espatolero, “Power to Gas projects review: Lab, pilot and demo plants for storing renewable energy and CO2,” Renewable and Sustainable Energy Reviews, vol. 69, no. November 2016, pp. 292–312, 2017, doi: 10.1016/j.rser.2016.11.130.spa
dc.relation.referencesS. González Arranz, “Power To Gas Y Metanación Subterránea,” pp. 115–117, 2020, [Online]. Available: https://oa.upm.es/63477/1/TFG_SERGIO_GONZALEZ_ARRANZ.pdfspa
dc.relation.referencesM. Ozturk and I. Dincer, “A comprehensive review on power-to-gas with hydrogen options for cleaner applications,” Int J Hydrogen Energy, vol. 46, no. 62, pp. 31511–31522, 2021, doi: 10.1016/j.ijhydene.2021.07.066.spa
dc.relation.referencesE. Vidal and C. Fontalvo, “Alternativa para la generación de gas natural sintético a partir de una fuente de energía renovable mediante tecnología ‘Power to Gas’ en Colombia,” Revista Fuentes el Reventón Energético, vol. 16, no. 1, pp. 71–79, 2018, doi: 10.18273/revfue.v16n1-2018006.spa
dc.relation.referencesA. Porta, L. Falbo, C. G. Visconti, L. Lietti, C. Bassano, and P. Deiana, “Synthesis of Ru-based catalysts for CO 2 methanation and experimental assessment of intraporous transport limitations,” Catal Today, no. January, pp. 0–1, 2019, doi: 10.1016/j.cattod.2019.01.042.spa
dc.relation.referencesS. Höpfner, “New Audi e-gas offer as standard: 80 percent lower CO2 emissions,” 2017.spa
dc.relation.referencesM. Götz et al., “Renewable Power-to-Gas: A technological and economic review,” Renew Energy, vol. 85, pp. 1371–1390, 2016, doi: 10.1016/j.renene.2015.07.066.spa
dc.relation.referencesA. Catarina Faria, C. V. Miguel, and L. M. Madeira, “Thermodynamic analysis of the CO2 methanation reaction with in situ water removal for biogas upgrading,” Journal of CO2 Utilization, vol. 26, no. May, pp. 271–280, 2018, doi: 10.1016/j.jcou.2018.05.005.spa
dc.relation.referencesJ. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, 2012, doi: 10.1039/c2ra00632d.spa
dc.relation.referencesP. Collet et al., “Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology,” Appl Energy, vol. 192, pp. 282–295, 2017, doi: 10.1016/j.apenergy.2016.08.181.spa
dc.relation.referencesA. Bolt, I. Dincer, and M. Agelin-Chaab, “A critical review of synthetic natural gas production techniques and technologies,” J Nat Gas Sci Eng, vol. 84, no. October, p. 103670, 2020, doi: 10.1016/j.jngse.2020.103670.spa
dc.relation.referencesY. Fu, L. Cai, R. Yan, and Y. Guan, “Thermodynamic analysis of the biomass gasification Allam cycle,” Fuel, vol. 350, p. 128781, Oct. 2023, doi: 10.1016/J.FUEL.2023.128781.spa
dc.relation.referencesM. V. Konishcheva et al., “On the Mechanism of CO and CO2 Methanation Over Ni/CeO2 Catalysts,” Top Catal, vol. 59, no. 15–16, pp. 1424–1430, Sep. 2016, doi: 10.1007/s11244-016-0650-7.spa
dc.relation.referencesM. A. A. Aziz, A. A. Jalil, S. Triwahyono, and A. Ahmad, “CO2 methanation over heterogeneous catalysts: Recent progress and future prospects,” Green Chemistry, vol. 17, no. 5. Royal Society of Chemistry, pp. 2647–2663, May 01, 2015. doi: 10.1039/c5gc00119f.spa
dc.relation.referencesO. Ojeda-Niño, J. Gallego, and C. E. Daza, “Pr-promoted Ni exsolution from Ni–Mg–Al (O) as catalysts for syngas production by dry reforming of methane,” Results in Engineering, vol. 17, p. 100821, Mar. 2023, doi: 10.1016/J.RINENG.2022.100821.spa
dc.relation.referencesA. Serrano-Lotina and L. Daza, “Influence of the operating parameters over dry reforming of methane to syngas,” Int J Hydrogen Energy, vol. 39, no. 8, pp. 4089–4094, Mar. 2014, doi: 10.1016/J.IJHYDENE.2013.05.135.spa
dc.relation.referencesD. Sun and D. S. A. Simakov, “Thermal management of a Sabatier reactor for CO2 conversion into CH4: Simulation-based analysis,” Journal of CO2 Utilization, vol. 21, no. June, pp. 368–382, 2017, doi: 10.1016/j.jcou.2017.07.015.spa
dc.relation.referencesM. C. Seemann, T. J. Schildhauer, and S. M. A. Biollaz, “Fluidized bed methanation of wood-derived producer gas for the production of synthetic natural gas,” Ind Eng Chem Res, vol. 49, no. 15, pp. 7034–7038, 2010, doi: 10.1021/ie100510m.spa
dc.relation.referencesY. Ren, W. Mo, J. Guo, Q. Liu, X. Fan, and S. Zhang, “Research Progress of Carbon Deposition on Ni-Based Catalyst for CO2 -CH4 Reforming,” 2023.spa
dc.relation.referencesA. M. Gambelli, B. Castellani, A. Nicolini, and F. Rossi, “Gas hydrate formation as a strategy for CH4/CO2 separation: Experimental study on gaseous mixtures produced via Sabatier reaction,” J Nat Gas Sci Eng, vol. 71, no. August, p. 102985, 2019, doi: 10.1016/j.jngse.2019.102985.spa
dc.relation.referencesS. Eckle, H. G. Anfang, and R. J. Behm, “Reaction intermediates and side products in the methanation of CO and CO2 over supported Ru catalysts in H2-rich reformate gases,” Journal of Physical Chemistry C, vol. 115, no. 4, pp. 1361–1367, Feb. 2011, doi: 10.1021/jp108106t.spa
dc.relation.referencesZ. Refaat et al., “Efficient CO2 methanation using nickel nanoparticles supported mesoporous carbon nitride catalysts,” Sci Rep, vol. 13, no. 1, p. 4855, Dec. 2023, doi: 10.1038/s41598-023-31958-1.spa
dc.relation.referencesJ. Gao et al., “A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas,” RSC Adv, vol. 2, no. 6, pp. 2358–2368, Mar. 2012, doi: 10.1039/c2ra00632d.spa
dc.relation.referencesB. Miao, S. S. K. Ma, X. Wang, H. Su, and S. H. Chan, “Catalysis mechanisms of CO2 and CO methanation,” Catalysis Science and Technology, vol. 6, no. 12. Royal Society of Chemistry, pp. 4048–4058, 2016. doi: 10.1039/c6cy00478d.spa
dc.relation.referencesM. Y. Shahul Hamid, S. Triwahyono, A. A. Jalil, N. W. Che Jusoh, S. M. Izan, and T. A. Tuan Abdullah, “Tailoring the Properties of Metal Oxide Loaded/KCC-1 toward a Different Mechanism of CO2 Methanation by in Situ IR and ESR,” Inorg Chem, vol. 57, no. 10, pp. 5859–5869, May 2018, doi: 10.1021/acs.inorgchem.8b00241.spa
dc.relation.referencesC. R. Kwawu, A. Aniagyei, R. Tia, and E. Adei, “A DFT investigation of the mechanisms of CO2 and CO methanation on Fe (111),” Mater Renew Sustain Energy, vol. 9, no. 1, Mar. 2020, doi: 10.1007/s40243-020-0164-x.spa
dc.relation.referencesP. Schlexer, H. Y. T. Chen, and G. Pacchioni, “CO2 Activation and Hydrogenation: A Comparative DFT Study of Ru10/TiO2 and Cu10/TiO2 Model Catalysts,” Catal Letters, vol. 147, no. 8, pp. 1871–1881, Aug. 2017, doi: 10.1007/s10562-017-2098-1.spa
dc.relation.referencesA. Solis-Garcia and J. C. Fierro-Gonzalez, “ Mechanistic Insights into the CO 2 Methanation Catalyzed by Supported Metals: A Review ,” J Nanosci Nanotechnol, vol. 19, no. 6, pp. 3110–3123, Feb. 2019, doi: 10.1166/jnn.2019.16606.spa
dc.relation.referencesE. Baraj, S. Vagaský, T. Hlinčik, K. Ciahotný, and V. Tekáč, “Reaction mechanisms of carbon dioxide methanation,” Chemical Papers, vol. 70, no. 4. De Gruyter Open Ltd, pp. 395–403, Apr. 01, 2016. doi: 10.1515/chempap-2015-0216.spa
dc.relation.referencesA. Borgschulte et al., “Sorption enhanced CO2 methanation,” Physical Chemistry Chemical Physics, vol. 15, no. 24, pp. 9620–9625, Jun. 2013, doi: 10.1039/c3cp51408k.spa
dc.relation.referencesL. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.spa
dc.relation.referencesS. Sharma et al., “Mechanistic Insights into CO2 Methanation over Ru-Substituted CeO2,” Journal of Physical Chemistry C, vol. 120, no. 26, pp. 14101–14112, Jul. 2016, doi: 10.1021/acs.jpcc.6b03224.spa
dc.relation.referencesP. Riani, E. Spennati, M. V. Garcia, V. S. Escribano, G. Busca, and G. Garbarino, “Ni/Al2O3 catalysts for CO2 methanation: Effect of silica and nickel loading,” Int J Hydrogen Energy, no. xxxx, 2023, doi: 10.1016/j.ijhydene.2023.01.002.spa
dc.relation.referencesH. Muroyama et al., “Carbon dioxide methanation over Ni catalysts supported on various metal oxides,” J Catal, vol. 343, pp. 178–184, 2016, doi: 10.1016/j.jcat.2016.07.018.spa
dc.relation.referencesH. Takano, Y. Kirihata, K. Izumiya, N. Kumagai, H. Habazaki, and K. Hashimoto, “Highly active Ni/Y-doped ZrO2 catalysts for CO2 methanation,” Appl Surf Sci, vol. 388, pp. 653–663, 2016, doi: 10.1016/j.apsusc.2015.11.187.spa
dc.relation.referencesL. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, no. May, pp. 200–210, 2017, doi: 10.1016/j.jcou.2017.07.014.spa
dc.relation.referencesC. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, no. May 2017, pp. 181–189, 2018, doi: 10.1016/j.cattod.2017.08.060.spa
dc.relation.referencesJ. C. Matsubu, V. N. Yang, and P. Christopher, “Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity,” J Am Chem Soc, vol. 137, no. 8, pp. 3076–3084, 2015, doi: 10.1021/ja5128133.spa
dc.relation.referencesT. A. Le, T. W. Kim, S. H. Lee, and E. D. Park, “Effects of Na content in Na/Ni/SiO2 and Na/Ni/CeO2 catalysts for CO and CO2 methanation,” Catal Today, vol. 303, no. September 2017, pp. 159–167, 2018, doi: 10.1016/j.cattod.2017.09.031.spa
dc.relation.referencesC. Liang et al., “Methanation of CO2 over Ni/Al2O3 modified with alkaline earth metals: Impacts of oxygen vacancies on catalytic activity,” Int J Hydrogen Energy, vol. 44, no. 16, pp. 8197–8213, 2019, doi: 10.1016/j.ijhydene.2019.02.014.spa
dc.relation.referencesM. R. Abukhadra, A. S. Mohamed, A. M. El-Sherbeeny, A. T. A. Soliman, and A. E. E. Abd Elgawad, “Sonication induced transesterification of castor oil into biodiesel in the presence of MgO/CaO nanorods as a novel basic catalyst: Characterization and optimization,” Chemical Engineering and Processing - Process Intensification, vol. 154, p. 108024, Aug. 2020, doi: 10.1016/J.CEP.2020.108024.spa
dc.relation.referencesD. Murguía-Ortiz et al., “Na-CaO/MgO dolomites used as heterogeneous catalysts in canola oil transesterification for biodiesel production,” Mater Lett, vol. 291, p. 129587, May 2021, doi: 10.1016/J.MATLET.2021.129587.spa
dc.relation.referencesN. D. Charisiou et al., “Ni supported on CaO-MgO-Al2O3 as a highly selective and stable catalyst for H2 production via the glycerol steam reforming reaction,” Int J Hydrogen Energy, vol. 44, no. 1, pp. 256–273, Jan. 2019, doi: 10.1016/J.IJHYDENE.2018.02.165.spa
dc.relation.referencesK. N. Papageridis et al., “Promoting effect of CaO-MgO mixed oxide on Ni/γ-Al2O3 catalyst for selective catalytic deoxygenation of palm oil,” Renew Energy, vol. 162, pp. 1793–1810, Dec. 2020, doi: 10.1016/J.RENENE.2020.09.133.spa
dc.relation.referencesA. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.spa
dc.relation.referencesA. I. Tsiotsias et al., “A comparative study of Ni catalysts supported on Al2O3, MgO–CaO–Al2O3 and La2O3–Al2O3 for the dry reforming of ethane,” Int J Hydrogen Energy, vol. 47, no. 8, pp. 5337–5353, Jan. 2022, doi: 10.1016/J.IJHYDENE.2021.11.194.spa
dc.relation.referencesI. F. Macías-Quiroga, J. A. Rengifo-Herrera, S. M. Arredondo-López, A. Marín-Flórez, and N. R. Sanabria-González, “Research Trends on Pillared Interlayered Clays (PILCs) Used as Catalysts in Environmental and Chemical Processes: Bibliometric Analysis,” Scientific World Journal, vol. 2022, 2022, doi: 10.1155/2022/5728678.spa
dc.relation.referencesC. Mebrahtu, S. Abate, S. Perathoner, S. Chen, and G. Centi, “CO2 methanation over Ni catalysts based on ternary and quaternary mixed oxide: A comparison and analysis of the structure-activity relationships,” Catal Today, vol. 304, pp. 181–189, Apr. 2018, doi: 10.1016/j.cattod.2017.08.060.spa
dc.relation.referencesF. Derekaya, A. B. Köprülü, and Y. S. Kilinç, “Investigation of CO Methanation with Different Carbon-Supported Ni-, Fe-, and Co-Containing Catalysts,” Arab J Sci Eng, Jul. 2023, doi: 10.1007/s13369-022-07594-8.spa
dc.relation.referencesА. G. Dyachenko et al., “Preparation and characterization of Ni–Co/SiO2 nanocomposite catalysts for CO2 methanation,” Applied Nanoscience (Switzerland), vol. 12, no. 3, pp. 349–359, Mar. 2022, doi: 10.1007/s13204-020-01650-1.spa
dc.relation.referencesP. Shafiee, S. M. Alavi, and M. Rezaei, “Investigation of the effect of cobalt on the Ni–Al2O3 catalyst prepared by the mechanochemical method for CO2 methanation,” Research on Chemical Intermediates, vol. 48, no. 5, pp. 1923–1938, May 2022, doi: 10.1007/s11164-022-04700-1.spa
dc.relation.referencesM. Guo and G. Lu, “The regulating effects of cobalt addition on the catalytic properties of silica-supported Ni–Co bimetallic catalysts for CO2 methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 113, no. 1, pp. 101–113, Oct. 2014, doi: 10.1007/s11144-014-0732-0.spa
dc.relation.referencesI. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50, pp. 271–304, 2016, doi: 10.1016/j.ijggc.2016.04.002.spa
dc.relation.referencesM. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, Sep. 2014, doi: 10.1016/j.catcom.2014.05.022.spa
dc.relation.referencesY. Ma, J. Liu, M. Chu, J. Yue, Y. Cui, and G. Xu, “Enhanced Low-Temperature Activity of CO2 Methanation Over Ni/CeO2 Catalyst,” Catal Letters, vol. 152, no. 3, pp. 872–882, Mar. 2022, doi: 10.1007/s10562-021-03677-7.spa
dc.relation.referencesL. Zhang, L. Bian, Z. Li, and R. Xia, “The promoter action of CeO2 for the Ni/Al2O3-catalyzed methanation of CO2,” Kinetics and Catalysis, vol. 56, no. 3, pp. 329–334, May 2015, doi: 10.1134/S0023158415030143.spa
dc.relation.referencesL. Zhou, Q. Wang, L. Ma, J. Chen, J. Ma, and Z. Zi, “CeO2 Promoted Mesoporous Ni/γ-Al2O3 Catalyst and its Reaction Conditions for CO2 Methanation,” Catal Letters, vol. 145, no. 2, pp. 612–619, Feb. 2015, doi: 10.1007/s10562-014-1426-y.spa
dc.relation.referencesD. Wang et al., “Development of tethered dual catalysts: synergy between photo- And transition metal catalysts for enhanced catalysis,” Chem Sci, vol. 11, no. 24, pp. 6256–6267, 2020, doi: 10.1039/d0sc02703k.spa
dc.relation.referencesK. L. Skubi, T. R. Blum, and T. P. Yoon, “Dual Catalysis Strategies in Photochemical Synthesis,” Chem Rev, vol. 116, no. 17, pp. 10035–10074, 2016, doi: 10.1021/acs.chemrev.6b00018.spa
dc.relation.referencesQ. Zheng, R. Farrauto, and A. Chau Nguyen, “Adsorption and Methanation of Flue Gas CO2 with Dual Functional Catalytic Materials: A Parametric Study,” Ind Eng Chem Res, vol. 55, no. 24, pp. 6768–6776, 2016, doi: 10.1021/acs.iecr.6b01275.spa
dc.relation.referencesE. Meza-Fuentes and M. do C. Rangel, “Síntesis de catalizadores de Ni/ZnO/Al2O3 para la reacción WGS a tráves del estudio de las propiedades estructurales y catalíticas de Ni/ZnO y M/Al2O3,” Revista Colombiana de Química, vol. 40, no. 1, pp. 105–123, 2011.spa
dc.relation.referencesT. Zhang et al., “The dual-active-site tandem catalyst containing Ru single atoms and Ni nanoparticles boosts CO2 methanation,” Appl Catal B, vol. 323, p. 122190, Apr. 2023, doi: 10.1016/J.APCATB.2022.122190.spa
dc.relation.referencesJ. A. Onrubia-Calvo, A. Bermejo-López, S. Pérez-Vázquez, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Applicability of LaNiO3-derived catalysts as dual function materials for CO2 capture and in-situ conversion to methane,” Fuel, vol. 320, p. 123842, Jul. 2022, doi: 10.1016/J.FUEL.2022.123842.spa
dc.relation.referencesJ. V. Veselovskaya, P. D. Parunin, O. V. Netskina, and A. G. Okunev, “A Novel Process for Renewable Methane Production: Combining Direct Air Capture by K2CO3/Alumina Sorbent with CO2 Methanation over Ru/Alumina Catalyst,” Top Catal, vol. 61, no. 15–17, pp. 1528–1536, Oct. 2018, doi: 10.1007/s11244-018-0997-z.spa
dc.relation.referencesL. Proaño, E. Tello, M. A. Arellano-Trevino, S. Wang, R. J. Farrauto, and M. Cobo, “In-situ DRIFTS study of two-step CO2 capture and catalytic methanation over Ru,‘Na2O’/Al2O3 Dual Functional Material,” Appl Surf Sci, vol. 479, pp. 25–30, Jun. 2019, doi: 10.1016/J.APSUSC.2019.01.281.spa
dc.relation.referencesJ. M. Gregg, D. L. Bish, S. E. Kaczmarek, and H. G. Machel, “Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: A review,” Sedimentology, vol. 62, no. 6, pp. 1749–1769, 2015, doi: 10.1111/sed.12202.spa
dc.relation.referencesL. M. Correia et al., “Characterization and application of dolomite as catalytic precursor for canola and sunflower oils for biodiesel production,” Chemical Engineering Journal, vol. 269, pp. 35–43, 2015, doi: 10.1016/j.cej.2015.01.097.spa
dc.relation.referencesS. Manocha and F. Ponchon, “Management of lime in steel,” Metals (Basel), vol. 8, no. 9, pp. 1–16, 2018, doi: 10.3390/met8090686.spa
dc.relation.referencesJ. Pesonen et al., “Use of calcined dolomite as chemical precipitant in the simultaneous removal of ammonium and phosphate from synthetic wastewater and from agricultural sludge,” ChemEngineering, vol. 3, no. 2, pp. 1–12, 2019, doi: 10.3390/chemengineering3020040.spa
dc.relation.referencesG. Ondrasek et al., “Biomass bottom ash & dolomite similarly ameliorate an acidic low-nutrient soil, improve phytonutrition and growth, but increase Cd accumulation in radish,” Science of the Total Environment, vol. 753, 2021, doi: 10.1016/j.scitotenv.2020.141902.spa
dc.relation.referencesK. Wang, X. Hu, P. Zhao, and Z. Yin, “Natural dolomite modified with carbon coating for cyclic high-temperature CO2 capture,” Appl Energy, vol. 165, pp. 14–21, 2016, doi: 10.1016/j.apenergy.2015.12.071.spa
dc.relation.referencesT. Xu et al., “Syngas production via chemical looping reforming biomass pyrolysis oil using NiO / dolomite as oxygen carrier , catalyst or sorbent,” Energy Convers Manag, vol. 198, no. May, p. 111835, 2019, doi: 10.1016/j.enconman.2019.111835.spa
dc.relation.referencesM. Shaaban, “Properties of concrete with binary binder system of calcined dolomite powder and rice husk ash,” Heliyon, vol. 7, no. 2, p. e06311, Feb. 2021, doi: 10.1016/J.HELIYON.2021.E06311.spa
dc.relation.referencesX. Guo et al., “Carbon Dioxide Methanation over Nickel-Based Catalysts Supported on Various Mesoporous Material,” Energy and Fuels, vol. 32, no. 3, pp. 3681–3689, 2018, doi: 10.1021/acs.energyfuels.7b03826.spa
dc.relation.referencesX. Guo et al., “Highly Active Ni-Based Catalyst Derived from Double Hydroxides Precursor for Low Temperature CO2 Methanation,” Ind Eng Chem Res, vol. 57, no. 28, pp. 9102–9111, 2018, doi: 10.1021/acs.iecr.8b01619.spa
dc.relation.referencesY. Jiang, T. Huang, L. Dong, Z. Qin, and H. Ji, “Ni/bentonite catalysts prepared by solution combustion method for CO2 methanation,” Chin J Chem Eng, vol. 26, no. 11, pp. 2361–2367, 2018, doi: 10.1016/j.cjche.2018.03.029.spa
dc.relation.referencesM. Gabrovska, R. Edreva-Kardjieva, D. Crişan, P. Tzvetkov, M. Shopska, and I. Shtereva, “Ni-Al layered double hydroxides as catalyst precursors for CO2 removal by methanation,” Reaction Kinetics, Mechanisms and Catalysis, vol. 105, no. 1, pp. 79–99, 2012, doi: 10.1007/s11144-011-0378-0.spa
dc.relation.referencesE. S. Gnanakumar et al., “Highly efficient nickel-niobia composite catalysts for hydrogenation of CO2 to methane,” Chem Eng Sci, vol. 194, pp. 2–9, 2019, doi: 10.1016/j.ces.2018.08.038.spa
dc.relation.referencesM. A. A. Aziz, A. A. Jalil, S. Triwahyono, R. R. Mukti, Y. H. Taufiq-Yap, and M. R. Sazegar, “Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation,” Appl Catal B, vol. 147, pp. 359–368, 2014, doi: 10.1016/j.apcatb.2013.09.015.spa
dc.relation.referencesH. Lu et al., “Mesoporous zirconia-modified clays supported nickel catalysts for CO and CO2 methanation,” Int J Hydrogen Energy, vol. 39, no. 33, pp. 18894–18907, 2014, doi: 10.1016/j.ijhydene.2014.09.076.spa
dc.relation.referencesM. Guo and G. Lu, “The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2 catalysts,” Catal Commun, vol. 54, pp. 55–60, 2014, doi: 10.1016/j.catcom.2014.05.022.spa
dc.relation.referencesL. Xu et al., “CO2 methanation over Co–Ni bimetal-doped ordered mesoporous Al2O3 catalysts with enhanced low-temperature activities,” Int J Hydrogen Energy, vol. 43, no. 36, pp. 17172–17184, 2018, doi: 10.1016/j.ijhydene.2018.07.106.spa
dc.relation.referencesM. R. Shamsuddin et al., “Insight into CO2 reforming of CH4 via NiO/dolomite catalysts for production of H2 rich syngas,” Int J Energy Res, vol. 45, no. 10, pp. 15463–15480, 2021, doi: 10.1002/er.6816.spa
dc.relation.referencesM. R. Shamsuddin et al., “Promoting dry reforming of methaneviabifunctional NiO/dolomite catalysts for production of hydrogen-rich syngas,” RSC Adv, vol. 11, no. 12, pp. 6667–6681, 2021, doi: 10.1039/d0ra09246k.spa
dc.relation.referencesI. Martínez et al., “Review and research needs of Ca-Looping systems modelling for post-combustion CO2 capture applications,” International Journal of Greenhouse Gas Control, vol. 50. Elsevier Ltd, pp. 271–304, Jul. 01, 2016. doi: 10.1016/j.ijggc.2016.04.002.spa
dc.relation.referencesC. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, p. 116521, Feb. 2020, doi: 10.1016/J.FUEL.2019.116521.spa
dc.relation.referencesX. Zhang et al., “The properties characterization and strengthening-toughening mechanism of Al2O3-CA6-MA-Ni multi-phase composites prepared by adding calcined dolomite,” Mater Charact, vol. 186, no. January, 2022, doi: 10.1016/j.matchar.2022.111810.spa
dc.relation.referencesJ. Yang Lim, J. McGregor, A. J. Sederman, and J. S. Dennis, “Kinetic studies of CO2 methanation over a Ni/γ-Al2O3 catalyst using a batch reactor,” Chem Eng Sci, vol. 141, pp. 28–45, Feb. 2016, doi: 10.1016/j.ces.2015.10.026.spa
dc.relation.referencesN. Schreiter, J. Kirchner, and S. Kureti, “A DRIFTS and TPD study on the methanation of CO2 on Ni/Al2O3 catalyst,” Catal Commun, vol. 140, p. 105988, Jun. 2020, doi: 10.1016/J.CATCOM.2020.105988.spa
dc.relation.referencesC. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, May 2020, doi: 10.1016/j.apcatb.2019.118546.spa
dc.relation.referencesH. Mysore Prabhakara, E. A. Bramer, and G. Brem, “Role of dolomite as an in-situ CO2 sorbent and deoxygenation catalyst in fast pyrolysis of beechwood in a bench scale fluidized bed reactor,” Fuel Processing Technology, vol. 224, no. August, p. 107029, 2021, doi: 10.1016/j.fuproc.2021.107029.spa
dc.relation.referencesX. Zou et al., “Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation,” J Colloid Interface Sci, vol. 620, pp. 77–85, 2022, doi: 10.1016/j.jcis.2022.04.001.spa
dc.relation.referencesVibha et al., “Crystal structure determination, XRD peak profile analysis and morphological study of double perovskite SrNdFeTiO6,” Mater Today Proc, no. xxxx, 2022, doi: 10.1016/j.matpr.2022.11.364.spa
dc.relation.referencesF. Hu et al., “Reduced graphene oxide supported Ni-Ce catalysts for CO2 methanation: The support and ceria promotion effects,” Journal of CO2 Utilization, vol. 34, pp. 676–687, 2019, doi: 10.1016/j.jcou.2019.08.020.spa
dc.relation.referencesP. Ptáček, F. Šoukal, and T. Opravil, “Thermal decomposition of ferroan dolomite: A comparative study in nitrogen, carbon dioxide, air and oxygen,” Solid State Sci, vol. 122, no. November, 2021, doi: 10.1016/j.solidstatesciences.2021.106778.spa
dc.relation.referencesC. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg-Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, 2010, doi: 10.1016/j.fuel.2009.10.010.spa
dc.relation.referencesP. Xu, Z. Zhou, C. Zhao, and Z. Cheng, “Catalytic performance of Ni/CaO-Ca5Al6O14 bifunctional catalyst extrudate in sorption-enhanced steam methane reforming,” Catal Today, vol. 259, pp. 347–353, Nov. 2016, doi: 10.1016/j.cattod.2015.05.026.spa
dc.relation.referencesS. Castilho, A. Kiennemann, M. F. Costa Pereira, and A. P. Soares Dias, “Sorbents for CO2 capture from biogenesis calcium wastes,” Chemical Engineering Journal, vol. 226, pp. 146–153, Jun. 2013, doi: 10.1016/j.cej.2013.04.017.spa
dc.relation.referencesM. Muñoz, S. Moreno, and R. Molina, “Promoting effect of Ce and Pr in Co catalysts for hydrogen production via oxidative steam reforming of ethanol,” Catal Today, vol. 213, pp. 33–41, Sep. 2013, doi: 10.1016/J.CATTOD.2013.04.037.spa
dc.relation.referencesC. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol (OSRE) reaction,” MethodsX, vol. 10, p. 102169, Jan. 2023, doi: 10.1016/J.MEX.2023.102169.spa
dc.relation.referencesE. Osorio-Restrepo, M. Cañón-Alvarado, and C. E. Daza, “Ce-promoted Ni/Ca-Al(O) coprecipitated catalysts with efficient synthetic natural gas generation at low temperatures,” Fuel, vol. 351, p. 128916, Nov. 2023, doi: 10.1016/J.FUEL.2023.128916.spa
dc.relation.referencesA. Cárdenas-Arenas, H. S. Cortés, E. Bailón-García, A. Davó-Quiñonero, D. Lozano-Castelló, and A. Bueno-López, “Active, selective and stable NiO-CeO2 nanoparticles for CO2 methanation,” Fuel Processing Technology, vol. 212, Feb. 2021, doi: 10.1016/j.fuproc.2020.106637.spa
dc.relation.referencesC. Rodríguez, S. Moreno, and R. Molina, “Operando DRIFT-MS for studying the oxidative steam reforming of ethanol ( OSRE ) reaction,” MethodsX, vol. 10, no. April, p. 102169, Jan. 2023, doi: 10.1016/j.mex.2023.102169.spa
dc.relation.referencesH. Sun et al., “XAS/DRIFTS/MS spectroscopy for time-resolved operando study of integrated carbon capture and utilisation process,” Sep Purif Technol, vol. 298, Oct. 2022, doi: 10.1016/j.seppur.2022.121622.spa
dc.relation.referencesD. Silva, N. A. Debacher, A. Borges De Castilhos Junior, F. Rohers, and S. Catarina, “CARACTERIZAÇÃO FÍSICO-QUÍMICA E MICROESTRUTURAL DE CONCHAS DE MOLUSCOS BIVALVES PROVENIENTES DE CULTIVOS DA REGIÃO LITORÂNEA DA ILHA DE SANTA CATARINA PHYSICAL CHEMISTRY AND MICRO STRUCTURAL CHARACTERIZATION OF SHELLS OF BIVALVE MOLLUSKS FROM SEA FARMER AROUND THE SANTA CATARINA ISLAND. Samples of shells of oysters and mussels from sea farm around the,” 2010.spa
dc.relation.referencesX. Wang et al., “In-situ High-Temperature XRD and FTIR for Calcite, Dolomite and Magnesite: Anharmonic Contribution to the Thermodynamic Properties,” Journal of Earth Science, vol. 30, no. 5, pp. 964–976, 2019, doi: 10.1007/s12583-019-1236-7.spa
dc.relation.referencesY. Maor, M. B. Toffolo, Y. Feldman, J. Vardi, H. Khalaily, and Y. Asscher, “Dolomite in archaeological plaster: An FTIR study of the plaster floors at Neolithic Motza, Israel,” J Archaeol Sci Rep, vol. 48, p. 103862, Apr. 2023, doi: 10.1016/J.JASREP.2023.103862.spa
dc.relation.referencesN. Sachdeva, N. Shrivastava, and S. Shrivastava, “Mineralogical, pozzolanic and microscopic characterization of dolomite mine overburden,” Mater Today Proc, May 2023, doi: 10.1016/J.MATPR.2023.04.465.spa
dc.relation.referencesK. Sasaki, X. Qiu, Y. Hosomomi, S. Moriyama, and T. Hirajima, “Effect of natural dolomite calcination temperature on sorption of borate onto calcined products,” Microporous and Mesoporous Materials, vol. 171, pp. 1–8, 2013, doi: 10.1016/j.micromeso.2012.12.029.spa
dc.relation.referencesP. Wang and Y. Shen, “Catalytic pyrolysis of cellulose and chitin with calcined dolomite – Pyrolysis kinetics and products analysis,” Fuel, vol. 312, no. December 2021, 2022, doi: 10.1016/j.fuel.2021.122875.spa
dc.relation.referencesR. Xu et al., “Strengthening performance of Al-stabilized, CaO-based CO2 sorbent pellets by the combination of impregnated layer solution combustion and graphite-moulding,” Sep Purif Technol, vol. 315, p. 123757, Jun. 2023, doi: 10.1016/J.SEPPUR.2023.123757.spa
dc.relation.referencesI. Zamboni, Y. Zimmermann, A. Kiennemann, and C. Courson, “Improvement of steam reforming of toluene by CO2 capture using Fe/CaO–Ca12Al14O33 bi-functional materials,” Int J Hydrogen Energy, vol. 40, no. 15, pp. 5297–5304, Apr. 2015, doi: 10.1016/J.IJHYDENE.2015.01.065.spa
dc.relation.referencesA. Djaidja, S. Libs, A. Kiennemann, and A. Barama, “Characterization and activity in dry reforming of methane on NiMg/Al and Ni/MgO catalysts,” Catal Today, vol. 113, no. 3–4, pp. 194–200, Apr. 2006, doi: 10.1016/J.CATTOD.2005.11.066.spa
dc.relation.referencesA. Intiso, F. Rossi, A. Proto, and R. Cucciniello, “The fascinating world of mayenite (Ca12Al14O33) and its derivatives,” Rendiconti Lincei, vol. 32, no. 4, pp. 699–708, 2021, doi: 10.1007/s12210-021-01025-w.spa
dc.relation.referencesM. Olszak-Humienik and M. Jablonski, “Thermal behavior of natural dolomite,” J Therm Anal Calorim, vol. 119, no. 3, pp. 2239–2248, 2015, doi: 10.1007/s10973-014-4301-6.spa
dc.relation.referencesY. Buyang et al., “Dolomite catalyst for fast pyrolysis of waste cooking oil into hydrocarbon fuel,” S Afr J Chem Eng, vol. 45, pp. 60–72, Jul. 2023, doi: 10.1016/J.SAJCE.2023.04.007.spa
dc.relation.referencesM. Thommes et al., “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” Pure and Applied Chemistry, vol. 87, no. 9–10, pp. 1051–1069, 2015, doi: 10.1515/pac-2014-1117.spa
dc.relation.referencesM. Husmann, C. Zuber, V. Maitz, T. Kienberger, and C. Hochenauer, “Comparison of dolomite and lime as sorbents for in-situ H2S removal with respect to gasification parameters in biomass gasification,” Fuel, vol. 181, pp. 131–138, Oct. 2016, doi: 10.1016/J.FUEL.2016.04.124.spa
dc.relation.referencesY. Che, C. Zhang, J. Song, X. Shang, X. Chen, and J. He, “The silicothermic reduction of magnesium in flowing argon and numerical simulation of novel technology,” Journal of Magnesium and Alloys, vol. 8, no. 3, pp. 752–760, Sep. 2020, doi: 10.1016/J.JMA.2019.12.006.spa
dc.relation.referencesT. Hidayat, M. Y. Siregar, I. Santoso, and Z. Zulhan, “The effects of reductant and additive on the magnesium extraction from calcined dolomite via metallothermic reduction under vacuum condition,” Vacuum, vol. 202, p. 111196, Aug. 2022, doi: 10.1016/J.VACUUM.2022.111196.spa
dc.relation.referencesN. Stevulova, I. Schwarzova, A. Estokova, and M. Holub, “MgO-based cement as an inorganic binder for hemp hurds composites,” Chemical Technology, vol. 67, no. 1, pp. 24–29, 2016, doi: 10.5755/j01.ct.67.1.15000.spa
dc.relation.referencesK. Praserttaweeporn, T. Vitidsant, and W. Charusiri, “Ni-modified dolomite for the catalytic deoxygenation of pyrolyzed softwood and non-wood to produce bio-oil,” Results in Engineering, vol. 14, no. May, p. 100461, 2022, doi: 10.1016/j.rineng.2022.100461.spa
dc.relation.referencesR. S. R. M. Hafriz et al., “Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil,” Renew Energy, vol. 178, pp. 128–143, Nov. 2021, doi: 10.1016/J.RENENE.2021.06.074.spa
dc.relation.referencesC. E. Daza, J. Gallego, J. A. Moreno, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni/Mg/Al/Ce mixed oxides,” Catal Today, vol. 133–135, no. 1–4, pp. 357–366, Apr. 2008, doi: 10.1016/J.CATTOD.2007.12.081.spa
dc.relation.referencesC. E. Daza, F. Mondragón, S. Moreno, and R. Molina, “CO2 reforming of methane over Ni-Mg-Al-Ce mixed oxides derived from hydrotalcites: Mg/Ni ratio effect | Reformado de metano con CO2 sobre óxidos mixtos Ni-Mg-Al-Ce derivados de hidrotalcitas: Efecto de la relación Mg/Ni,” Revista Facultad de Ingenieria, no. 57, pp. 66–74, 2011.spa
dc.relation.referencesC. E. Daza, J. Gallego, F. Mondragón, S. Moreno, and R. Molina, “High stability of Ce-promoted Ni/Mg–Al catalysts derived from hydrotalcites in dry reforming of methane,” Fuel, vol. 89, no. 3, pp. 592–603, Mar. 2010, doi: 10.1016/J.FUEL.2009.10.010.spa
dc.relation.referencesJ. G. Seo, M. H. Youn, J. S. Chung, and I. K. Song, “Effect of calcination temperature of mesoporous nickel–alumina catalysts on their catalytic performance in hydrogen production by steam reforming of liquefied natural gas (LNG),” Journal of Industrial and Engineering Chemistry, vol. 16, no. 5, pp. 795–799, Sep. 2010, doi: 10.1016/J.JIEC.2010.05.010.spa
dc.relation.referencesA. C. Faria, R. Trujillano, V. Rives, C. V. Miguel, A. E. Rodrigues, and L. M. Madeira, “Cyclic operation of CO2 capture and conversion into methane on Ni-hydrotalcite based dual function materials (DFMs),” Journal of CO2 Utilization, vol. 72, p. 102476, Jun. 2023, doi: 10.1016/J.JCOU.2023.102476.spa
dc.relation.referencesL. Wei et al., “Influence of nickel precursors on the properties and performance of Ni impregnated zeolite 5A and 13X catalysts in CO2 methanation,” Catal Today, vol. 362, pp. 35–46, Feb. 2021, doi: 10.1016/J.CATTOD.2020.05.025.spa
dc.relation.referencesY. Varun, I. Sreedhar, and S. A. Singh, “Role of Ni, La impregnation and substitution in Co3O4-ZrO2 catalysts for catalytic hydrogen combustion,” J Environ Chem Eng, vol. 10, no. 5, p. 108384, Oct. 2022, doi: 10.1016/J.JECE.2022.108384.spa
dc.relation.referencesG. Allaedini, S. M. Tasirin, and P. Aminayi, “Synthesis of Fe-Ni-Ce trimetallic catalyst nanoparticles via impregnation and co-precipitation and their application to dye degradation,” Chemical Papers, vol. 70, no. 2, pp. 231–242, Oct. 2015, doi: 10.1515/chempap-2015-0190.spa
dc.relation.referencesC. Zhou, P. Yrjas, and K. Engvall, “Reaction mechanisms for H2O-enhanced dolomite calcination at high pressure,” Fuel Processing Technology, vol. 217, p. 106830, Jun. 2021, doi: 10.1016/J.FUPROC.2021.106830.spa
dc.relation.referencesZ. Gao, L. Cui, and H. Ma, “Selective methanation of CO over Ni/Al2O3 catalyst: Effects of preparation method and Ru addition,” Int J Hydrogen Energy, vol. 41, no. 12, pp. 5484–5493, Apr. 2016, doi: 10.1016/J.IJHYDENE.2016.02.085.spa
dc.relation.referencesX. Guo et al., “Promotion of CO2 methanation at low temperature over hydrotalcite-derived catalysts-effect of the tunable metal species and basicity,” Int J Hydrogen Energy, vol. 46, no. 1, pp. 518–530, Jan. 2021, doi: 10.1016/j.ijhydene.2020.09.193.spa
dc.relation.referencesL. Xu et al., “CO2 methanation over Ca doped ordered mesoporous Ni-Al composite oxide catalysts: The promoting effect of basic modifier,” Journal of CO2 Utilization, vol. 21, pp. 200–210, Oct. 2017, doi: 10.1016/j.jcou.2017.07.014.spa
dc.relation.referencesQ. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.spa
dc.relation.referencesY. Hu et al., “MxOy (M = Mg, Zr, La, Ce) modified Ni/CaO dual functional materials for combined CO2 capture and hydrogenation,” Int J Hydrogen Energy, Nov. 2022, doi: 10.1016/J.IJHYDENE.2022.11.045.spa
dc.relation.referencesA. Cruz-Hernández, B. Alcántar-Vázquez, J. Arenas, and H. Pfeiffer, “Structural and microstructural analysis of different CaO–NiO composites and their application as CO2 or CO–O2 captors,” Reaction Kinetics, Mechanisms and Catalysis, vol. 119, no. 2, pp. 445–455, Dec. 2016, doi: 10.1007/s11144-016-1066-x.spa
dc.relation.referencesL. Proaño, M. A. Arellano-Treviño, R. J. Farrauto, M. Figueredo, C. Jeong-Potter, and M. Cobo, “Mechanistic assessment of dual function materials, composed of Ru-Ni, Na2O/Al2O3 and Pt-Ni, Na2O/Al2O3, for CO2 capture and methanation by in-situ DRIFTS,” Appl Surf Sci, vol. 533, p. 147469, Dec. 2020, doi: 10.1016/J.APSUSC.2020.147469.spa
dc.relation.referencesB. Shao et al., “Synergistic promotions between CO2 capture and in-situ conversion on Ni-CaO composite catalyst,” Nat Commun, vol. 14, no. 1, Dec. 2023, doi: 10.1038/s41467-023-36646-2.spa
dc.relation.referencesY. Feng, W. Yang, and W. Chu, “Effect of Ca modification on the catalytic performance of Ni/AC for CO2 methanation,” Integrated Ferroelectrics, vol. 172, no. 1, pp. 40–48, Jun. 2016, doi: 10.1080/10584587.2016.1175333.spa
dc.relation.referencesN. Bette, J. Thielemann, M. Schreiner, and F. Mertens, “Methanation of CO2 over a (Mg,Al)Ox Supported Nickel Catalyst Derived from a (Ni,Mg,Al)-Hydrotalcite-like Precursor,” ChemCatChem, vol. 8, no. 18, pp. 2903–2906, Sep. 2016, doi: 10.1002/cctc.201600469.spa
dc.relation.referencesA. Rajabzadeh Nobakht, M. Rezaei, S. M. Alavi, E. Akbari, M. Varbar, and J. Hafezi-Bakhtiari, “CO2 methanation over NiO catalysts supported on CaO–Al2O3: Effect of CaO:Al2O3 molar ratio and nickel loading,” Int J Hydrogen Energy, Jun. 2023, doi: 10.1016/J.IJHYDENE.2023.06.172.spa
dc.relation.referencesZ. Boukha, A. Bermejo-López, B. Pereda-Ayo, J. A. González-Marcos, and J. R. González-Velasco, “Study on the promotional effect of lanthana addition on the performance of hydroxyapatite-supported Ni catalysts for the CO2 methanation reaction,” Appl Catal B, vol. 314, p. 121500, Oct. 2022, doi: 10.1016/J.APCATB.2022.121500.spa
dc.relation.referencesZ. Taherian, V. Shahed Gharahshiran, Y. Orooji, H. Karimi-Maleh, and A. Khataee, “The study of CO2 reforming of methane over Ce/Sm-promoted NiCaAl catalysts,” Process Safety and Environmental Protection, vol. 174, pp. 235–242, Jun. 2023, doi: 10.1016/J.PSEP.2023.03.046.spa
dc.relation.referencesU. Sikander, S. Sufian, and M. A. Salam, “A review of hydrotalcite based catalysts for hydrogen production systems,” International Journal of Hydrogen Energy, vol. 42, no. 31. Elsevier Ltd, pp. 19851–19868, Aug. 03, 2017. doi: 10.1016/j.ijhydene.2017.06.089.spa
dc.relation.referencesH. Liu et al., “La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures,” Fuel, vol. 182, pp. 8–16, Oct. 2016, doi: 10.1016/J.FUEL.2016.05.073.spa
dc.relation.referencesD. Zhang et al., “Coal char supported Ni catalysts prepared for CO2 methanation by hydrogenation,” Int J Hydrogen Energy, vol. 48, no. 39, pp. 14608–14621, May 2023, doi: 10.1016/J.IJHYDENE.2023.01.042.spa
dc.relation.referencesQ. Xue, Z. Li, B. Yan, Y. Wang, and G. Luo, “Inhibition of sintering and coking by post-coating group IIA metal oxides on trace-Rh-promoted Ni-based catalysts for high-temperature steam reforming,” J Catal, vol. 417, pp. 164–177, Jan. 2023, doi: 10.1016/J.JCAT.2022.12.005.spa
dc.relation.referencesM. González-Castaño, J. González-Arias, L. F. Bobadilla, E. Ruíz-López, J. A. Odriozola, and H. Arellano-García, “In-situ DRIFTS steady-state study of CO2 and CO methanation over Ni-promoted catalysts,” Fuel, vol. 338, no. December 2022, 2023, doi: 10.1016/j.fuel.2022.127241.spa
dc.relation.referencesH. L. Huynh et al., “Promoting effect of Fe on supported Ni catalysts in CO2 methanation by in situ DRIFTS and DFT study,” J Catal, vol. 392, pp. 266–277, Dec. 2020, doi: 10.1016/j.jcat.2020.10.018.spa
dc.relation.referencesV. V. González-Rangulan, I. Reyero, F. Bimbela, F. Romero-Sarria, M. Daturi, and L. M. Gandía, “CO2 Methanation over Nickel Catalysts: Support Effects Investigated through Specific Activity and Operando IR Spectroscopy Measurements,” Catalysts, vol. 13, no. 2, Feb. 2023, doi: 10.3390/catal13020448.spa
dc.relation.referencesA. Solis-Garcia, J. F. Louvier-Hernandez, A. Almendarez-Camarillo, and J. C. Fierro-Gonzalez, “Participation of surface bicarbonate, formate and methoxy species in the carbon dioxide methanation catalyzed by ZrO2-supported Ni,” Appl Catal B, vol. 218, pp. 611–620, Dec. 2017, doi: 10.1016/J.APCATB.2017.06.063.spa
dc.relation.referencesL. P. L. Gonçalves et al., “In situ investigation of the CO2 methanation on carbon/ceria-supported Ni catalysts using modulation-excitation DRIFTS,” Appl Catal B, vol. 312, p. 121376, Sep. 2022, doi: 10.1016/J.APCATB.2022.121376.spa
dc.relation.referencesA. Cárdenas-Arenas et al., “Design of active sites in Ni/CeO2 catalysts for the methanation of CO2: tailoring the Ni-CeO2 contact,” Appl Mater Today, vol. 19, p. 100591, Jun. 2020, doi: 10.1016/J.APMT.2020.100591.spa
dc.relation.referencesC. Cerdá-Moreno, A. Chica, S. Keller, C. Rautenberg, and U. Bentrup, “Ni-sepiolite and Ni-todorokite as efficient CO2 methanation catalysts: Mechanistic insight by operando DRIFTS,” Appl Catal B, vol. 264, p. 118546, May 2020, doi: 10.1016/J.APCATB.2019.118546.spa
dc.relation.referencesP. A. U. Aldana et al., “Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy,” Catal Today, vol. 215, pp. 201–207, Oct. 2013, doi: 10.1016/J.CATTOD.2013.02.019.spa
dc.relation.referencesW. Gac, W. Zawadzki, M. Rotko, G. Słowik, and M. Greluk, “CO2 Methanation in the Presence of Ce-Promoted Alumina Supported Nickel Catalysts: H2S Deactivation Studies,” Top Catal, vol. 62, no. 5–6, pp. 524–534, Jun. 2019, doi: 10.1007/s11244-019-01148-3.spa
dc.relation.referencesX. Han et al., “Mechanism studies concerning carbon deposition effect of CO methanation on Ni-based catalyst through DFT and TPSR methods,” Int J Hydrogen Energy, vol. 41, no. 20, pp. 8401–8411, Jun. 2016, doi: 10.1016/j.ijhydene.2016.03.160.spa
dc.relation.referencesY. Wang, Y. Xu, Q. Liu, J. Sun, S. Ji, and Z. jun Wang, “Enhanced low-temperature activity for CO2 methanation over NiMgAl/SiC composite catalysts,” Journal of Chemical Technology and Biotechnology, vol. 94, no. 12, pp. 3780–3786, Dec. 2019, doi: 10.1002/jctb.6078.spa
dc.relation.referencesT. T. M. Nguyen, L. Wissing, and M. S. Skjøth-Rasmussen, “High temperature methanation: Catalyst considerations,” in Catalysis Today, Oct. 2013, pp. 233–238. doi: 10.1016/j.cattod.2013.03.035.spa
dc.relation.referencesQ. Pan, J. Peng, T. Sun, S. Wang, and S. Wang, “Insight into the reaction route of CO2 methanation: Promotion effect of medium basic sites,” Catal Commun, vol. 45, pp. 74–78, Feb. 2014, doi: 10.1016/J.CATCOM.2013.10.034.spa
dc.relation.referencesY. Cui et al., “CO2 methanation over the Ni-based catalysts supported on the hollow ZSM-5 zeolites: Effects of the hollow structure and alkaline treatment,” Fuel, vol. 334, p. 126783, Feb. 2023, doi: 10.1016/J.FUEL.2022.126783.spa
dc.relation.referencesX. Wang, Y. Hong, H. Shi, and J. Szanyi, “Kinetic modeling and transient DRIFTS–MS studies of CO2 methanation over Ru/Al2O3 catalysts,” J Catal, vol. 343, pp. 185–195, Nov. 2016, doi: 10.1016/J.JCAT.2016.02.001.spa
dc.relation.referencesS. Wang, Q. Pan, J. Peng, and S. Wang, “In situ FTIR spectroscopic study of the CO2 methanation mechanism on Ni/Ce0.5Zr0.5O2,” Catal Sci Technol, vol. 4, no. 2, pp. 502–509, 2014, doi: 10.1039/c3cy00868a.spa
dc.relation.referencesC. Liang et al., “Methanation of CO2 over nickel catalysts: Impacts of acidic/basic sites on formation of the reaction intermediates,” Fuel, vol. 262, Feb. 2020, doi: 10.1016/j.fuel.2019.116521.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::546 - Química inorgánicaspa
dc.subject.lembCatalisisspa
dc.subject.lembCatalysiseng
dc.subject.lembGases de combustión - mediciónspa
dc.subject.lembFlue gases - meausurementeng
dc.subject.lembContaminación - mediconesspa
dc.subject.lembPollution - measurementeng
dc.subject.proposalMetanación de CO2spa
dc.subject.proposalDolomitaspa
dc.subject.proposalCatalizadores dualesspa
dc.subject.proposalCaptura de CO2spa
dc.subject.proposalDRIFTspa
dc.subject.proposalCO2 methanation,eng
dc.subject.proposalDolomiteeng
dc.subject.proposalDual catalystseng
dc.subject.proposalCO2 captureeng
dc.subject.proposalDRIFTeng
dc.titleDesarrollo de catalizadores duales a base de dolomita para la captura y transformación de CO2 en metanospa
dc.title.translatedDevelopment of dual catalysts based on dolomite for the capture and transformation of CO2 into methaneeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1010211502.2023.pdf
Tamaño:
3.81 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: