Aplicación del sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textil

dc.contributor.advisorSanabria González, Nancy Rocío
dc.contributor.advisorMacías Quiroga, Iván Fernando
dc.contributor.authorGiraldo Loaiza, Camila
dc.contributor.cvlacGiraldo Loaiza, Camila [0002026813]spa
dc.contributor.researchgroupProcesos Químicos Cataliticos y Biotecnológicosspa
dc.date.accessioned2024-03-19T20:03:32Z
dc.date.available2024-03-19T20:03:32Z
dc.date.issued2024-02
dc.descriptiongraficas, tablasspa
dc.description.abstractEn esta tesis de maestría se investigó la aplicación del esquema secuencial intercambio catiónico (SAC) – intercambio aniónico (SBA) – oxidación (Co/Al-PILC-BAP) para el tratamiento de un agua residual proveniente de una industria textil (ARnD) de la región, contaminada con el colorante negro ácido 194 (NA-194). La tesis se desarrolló en el marco de la Convocatoria 852-2019 “Convocatoria de Proyectos Conectando Conocimiento 2019” del Ministerio de Ciencia, Tecnología e Innovación – Minciencias. La arcilla utilizada en este trabajo correspondió a un mineral esmectítico obtenido de una mina con explotación comercial, ubicada en el municipio de Armero-Guayabal en el departamento de Tolima – Colombia. Las técnicas implementadas para la caracterización del material después de la pilarización con aluminio e impregnación con cobalto incluyeron mediciones de espectrometría infrarroja por transformada de Fourier (FT-IR), fluorescencia de rayos X (FRX), difracción de rayos X (DRX), espectroscopía fotoelectrónica de rayos X (XPS), y sortometría de N2 a 77 K. Con los resultados se identificaron cambios químicos, estructurales y texturales del material, y se estableció que el cobalto impregnado en el soporte presenta un estado de oxidación +2. Estas modificaciones resultan prometedoras para la obtención de catalizadores con aplicación en procesos de oxidación basados en la activación de H2O2 con NaHCO3. En cuanto al tratamiento de intercambio iónico, variables como el pH, tiempo de contacto, capacidad de intercambio y reúso y regeneración fueron analizadas en la configuración implementada (1) SAC-(2) SBA. Se alcanzaron remociones de iones Ca2+, Mg2+, SO42-, Cl-, y del colorante NA-194 (de naturaleza aniónica) superiores al 98%, así mismo, el tratamiento influyó en la remoción de carbono total (CT), demanda química de oxígeno (DQO) y demanda biológica de oxígeno (DBO5), permitiendo alcanzar disminuciones del 11.29, 42.15 y 23.93%, correspondientes a valores finales de 1625 ± 98 mg C/L, 826 ± 50 mg O2/L y 302 ± 23 mg O2/L, respectivamente. El tratamiento de oxidación con el sistema Co/Al-PILC-BAP se estudió evaluando el efecto en las dosis de H2O2 y NaHCO3 sobre las remociones de CT y DQO mediante la metodología de superficie de respuesta (MSR) basada en un diseño central compuesto (DCC). Los datos presentaron un buen ajuste a modelos de regresión de segundo orden y tras la validación experimental los errores en las respuestas predichas y experimental para un enfoque multiobjetivo fueron menores al 6.51%. La velocidad de degradación de CT y DQO bajo las condiciones óptimas de reacción establecidas en el diseño experimental se ajustó en ambos casos a la ecuación empírica de Behnajaday-Modirshahla-Ghanbery (BMG) con remoción del 15.36 y 39.85%, correspondientes a valores finales de 1385 ± 58 mg C/L y 505 ± 58 mg O2/L, respectivamente. Aunque no se alcanzan los estándares de calidad para la disposición del ARnD contemplados en la Resolución 0631 de 2015 del Ministerio de Ambiente y Desarrollo Sostenible para las actividades de fabricación de productos textiles, la relación DBO5/DQO de 0.59 obtenida con la aplicación del sistema Co/Al-PILC-BAP indica que, bajo las condiciones óptimas del tratamiento, el ARnD pasó a ser fácilmente biodegradable y permitiría la aplicación posterior de un tratamiento biológico. Adicionalmente las pruebas de fitotoxicidad en condiciones controladas permitieron identificar disminución en la toxicidad. El análisis económico básico de la tecnología implementada teniendo en cuenta el requerimiento de materias primas, agua y energía en las diferentes etapas del proceso indicó que la aplicación del sistema SAC-SBA-Co/Al-PILC-BAP tiene un costo 152.24 USD/m3 de ARnD. La remoción de los colorantes en el agua y la degradación de materia orgánica es un desafío para la ingeniería química, dada la variedad, complejidad y naturaleza recalcitrante, de allí que no exista una tecnología específica que sea aplicable a los diferentes sectores industriales. Además, las propuestas para el tratamiento de aguas coloreadas se realizan con moléculas modelo, y las aguas residuales industriales son un matriz muy compleja y poco estudiada. Se espera que el estudio del tratamiento con estructuras complejas y altamente tóxicas como el NA-194, pueda ser extrapolable al tratamiento de otros contaminantes orgánicos (Texto tomado de la fuente)spa
dc.description.abstractIn this master thesis, the application of the sequential scheme cation exchange (SAC) - anion exchange (SBA) - oxidation (Co/Al-PILC-BAP) for the treatment of a wastewater from a textile industry (ARnD) in the region, contaminated with acid black dye 194 (NA-194), was investigated. The thesis was developed in the framework 852-2019 "Conectando Conocimiento 2019" of the Ministry of Science, Technology and Innovation - Minciencias. The clay used in this work corresponded to a smectite mineral obtained from a mine with commercial exploitation, located in the municipality of Armero-Guayabal in the department of Tolima - Colombia. The techniques implemented for the characterization of the material after pillarization with aluminum and impregnation with cobalt included Fourier transform infrared spectrometry (FT-IR), X-ray fluorescence (XRF), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and N2 sortometry at 77 K. With the results, chemical, structural and textural changes of the material were identified, and it was established that the cobalt impregnated in the support presents a +2 oxidation state. These modifications are promising for obtaining catalysts with application in oxidation processes based on the activation of H2O2 with NaHCO3. Regarding the ion exchange treatment, variables such as pH, contact time, exchange capacity and reuse and regeneration were analyzed in the implemented configuration (1) SAC-(2) SBA. Removal of Ca2+, Mg2+, SO42-, Cl-, and NA-194 ions (of anionic nature) was achieved more than 98%, likewise, the treatment influenced the removal of total carbon (TC), chemical oxygen demand (COD) and biological oxygen demand (BOD5), allowing to achieve decreases of 11. 29, 42.15 and 23.93%, corresponding to final values of 1625 ± 98 mg C/L, 826 ± 50 mg O2/L and 302 ± 23 mg O2/L, respectively. The oxidation treatment with the Co/Al-PILC-BAP system was studied by evaluating the effect of H2O2 and NaHCO3 doses on TC and COD removals using the response surface methodology (RSM) based on a central composite design (CCD). The data presented a good fit to second order regression models and after experimental validation the errors in the predicted and experimental responses for a multi-objective approach were less than 6.51%. The degradation rate of TC and COD under the optimal reaction conditions established in the experimental design was adjusted in both cases to the empirical Behnajaday-Modirshahla-Ghanbery (BMG) equation with removals of 15.36 and 39.85%, corresponding to final values of 1385 ± 58 mg C/L and 505 ± 58 mg O2/L, respectively. Although the quality standards for the disposal of ARnD contemplated in Resolution 0631 of 2015 of the Ministry of Environment and Sustainable Development for textile manufacturing activities are not met, the BOD5/DQO ratio of 0.59 obtained with the application of the Co/Al-PILC-BAP system indicates that, under optimal treatment conditions, ARnD became readily biodegradable and would allow the subsequent application of biological treatment. In addition, phytotoxicity tests under controlled conditions identified a decrease in toxicity. The basic economic analysis of the technology implemented, considering the requirement of raw materials, water and energy in the different stages of the process, indicated that the application of the SAC-SBA-Co/Al-PILC-BAP system has a cost of 152.24 USD/m3 of ARnD. The removal of colorants in water and the degradation of organic matter is a challenge for chemical engineering, given the variety, complexity and recalcitrant nature, hence there is no specific technology that is applicable to the different industrial sectors. Moreover, proposals for the treatment of colored water are made with model molecules, and industrial wastewater is a very complex and little studied matrix. It is expected that the study of the treatment with complex and highly toxic structures such as NA-194 can be extrapolated to the treatment of other organic pollutants.eng
dc.description.curricularareaQuímica Y Procesos.Sede Manizalesspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ingeniería - Ingeniería Químicaspa
dc.description.sponsorshipMinisterio de Ciencia, Tecnología e Innovación – Mincienciasspa
dc.format.extentviii, 149 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85822
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Manizalesspa
dc.publisher.facultyFacultad de Ingeniería y Arquitecturaspa
dc.publisher.placeManizales, Colombiaspa
dc.publisher.programManizales - Ingeniería y Arquitectura - Maestría en Ingeniería - Ingeniería Químicaspa
dc.relation.referencesUNESCO, Informe Mundial de las Naciones Unidas sobre el Desarrollo de los Recursos Hídricos in: Agua y cambio climático: Paris, Francia, 2020.spa
dc.relation.referencesOrganización de las Naciones Unidas (ONU), Informe de los objetivos de desarrollo sostenible: New York: Naciones Unidas, 2020.spa
dc.relation.referencesiagua, Aguas residuales industriales: El modelo de outsourcing para su gestión, 2017. Disponible en: https://www.iagua.es/blogs/carlos-cosin/aguas-residuales-industriales-modelo-outsourcing-gestion.spa
dc.relation.referencesP.A.E. González, D.M.A. Soto, and A.J. Mora, "Sector textil colombiano y su influencia en la economía del país". Punto de vista, vol. 9, no. 13, 2018.spa
dc.relation.referencesNoticias ONU, El costo ambiental de estar a la moda, 2019. Disponible en: https://news.un.org/es/story/2019/04/1454161.spa
dc.relation.referencesM. Doble and A. Kruthiventi, "Chapter 9 - Industrial Examples". In: Green Chemistry and Engineering. pp. 245-296, 2007.spa
dc.relation.referencesR. Al-Tohamy, S.S. Ali, F. Li, K.M. Okasha, Y.A. Mahmoud, T. Elsamahy, H. Jiao, Y. Fu, and J. Sun, "A critical review on the treatment of dye-containing wastewater: Ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety". Ecotoxicology and Environmental Safety, vol. 231, pp. Article ID 113160, 2022.spa
dc.relation.referencesV. Chandanshive, S. Kadam, N. Rane, B.-H. Jeon, J. Jadhav, and S.J.C. Govindwar, "In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds". vol. 252, pp. Article ID 126513, 2020.spa
dc.relation.referencesL. Hossain and M.S. Khan, "Water footprint management for sustainable growth in the bangladesh apparel sector". Water, vol. 12, no. 10, pp. 2760, 2020.spa
dc.relation.referencesA. Gürses, M. Açıkyıldız, K. Güneş, and M.S. Gürses, "Colorants in Health and Environmental Aspects". In: Dyes and Pigments. pp. 69-83, Springer Cham: India, Jaipur, 2016.spa
dc.relation.referencesRevista Digital CECAN E3, La industria textil, un sector importante en la economía de Colombia, 2019. Disponible en: https://cecane3.com/la-industria-textil-un-sector-importante-en-la-economia-de-colombia/.spa
dc.relation.referencesBizVibe, Global textile industry factsheet 2020: Top 10 largest textile producing countries and top 10 textile exporters in the world, 2022. Disponible en: https://blog.bizvibe.com/blog/top-10-largest-textile-producing-countries.spa
dc.relation.referencesH. Instruments, Importancia de la medida de color en el agua de consumo humano, 2018. Disponible en: https://www,aguasresiduales,info/revista/blog/importancia-de-la-medida-de-color-en-el-agua-de-consumo-humano.spa
dc.relation.referencesE. Rápó and S. Tonk, "Factors affecting synthetic dye adsorption; desorption studies: A review of results from the last five years (2017–2021)". Molecules, vol. 26, no. 17, 2021.spa
dc.relation.referencesV. Katheresan, J. Kansedo, and S.Y. Lau, "Efficiency of various recent wastewater dye removal methods: A review". Journal of Environmental Chemical Engineering, vol. 6, no. 4, pp. 4676-4697, 2018.spa
dc.relation.referencesH.B. Slama, A.C. Bouket, Z. Pourhassan, F.N. Alenezi, A. Silini, H. Cherif-Silini, T. Oszako, L. Luptakova, P. Golińska, and L. Belbahri, "Diversity of synthetic dyes from textile industries, discharge impacts and treatment methods". Applied Sciences, vol. 11, no. 14, 2021.spa
dc.relation.referencesJ. Abdi, M. Vossoughi, N.M. Mahmoodi, and I. Alemzadeh, "Synthesis of metal-organic framework hybrid nanocomposites based on GO and CNT with high adsorption capacity for dye removal". Chemical Engineering Journal, vol. 326, pp. 1145-1158, 2017.spa
dc.relation.referencesF.D. Chequer, G.R. De Oliveira, E.A. Ferraz, J.C. Cardoso, M.B. Zanoni, and D.P. De Oliveira, "Chapter 6 - Textile dyes: Dyeing Process and Environmental Impact". In: Eco-Friendly Textile Dyeing and Finishing. pp. 151-176, 2013.spa
dc.relation.referencesC.V. Nachiyar, S.K.R. Namasivayam, R.R. Kumar, and M. Sowjanya, "Bioremediation of textile effluent containing mordant black 17 by bacterial consortium CN-1". Journal of Water Process Engineering, vol. 4, pp. 196-200, 2014.spa
dc.relation.referencesJ.N. Chakraborty, "Chapter 32 - Waste-Water Problem in Textile Industry". In: Fundamentals and Practices in Colouration of Textiles. J.N. Chakraborty (Ed), pp. 381-408, Woodhead Publishing India, 2010.spa
dc.relation.referencesT. Shindhal, P. Rakholiya, S. Varjani, A. Pandey, H.H. Ngo, W. Guo, H.Y. Ng, and M.J. Taherzadeh, "A critical review on advances in the practices and perspectives for the treatment of dye industry wastewater". Bioengineered, vol. 12, no. 1, pp. 70-87, 2021.spa
dc.relation.referencesS.C. Ameta, "Chapter 1 - Introduction". In: Advanced Oxidation Processes for Waste Water Treatment: Emerging Green Chemical Technology. R. Ameta and S.C. Ameta (Eds), pp. 1-12: Academic press, , 2018.spa
dc.relation.referencesX. Domènech, M.I. Litter, and W.F. Jardim, "Procesos Avanzados de Oxidación para la Eliminación de Contaminantes". In: Eliminación de Contaminantes por Fotocatálisis Heterogénea. pp. 3-26, 2001.spa
dc.relation.referencesH. Pan, Y. Gao, N. Li, Y. Zhou, Q. Lin, and J. Jiang, "Recent advances in bicarbonate-activated hydrogen peroxide system for water treatment". Chemical Engineering Journal, vol. 408, pp. Article ID 127332, 2021.spa
dc.relation.referencesA. Jawad, Z. Chen, and G. Yin, "Bicarbonate activation of hydrogen peroxide: A new emerging technology for wastewater treatment". Chinese Journal of Catalysis, vol. 37, no. 6, pp. 810-825, 2016.spa
dc.relation.referencesS. Benkhaya, S. M' rabet, and A. El Harfi, "A review on classifications, recent synthesis and applications of textile dyes". Inorganic Chemistry Communications, vol. 115, pp. Article ID 107891, 2020.spa
dc.relation.referencesG. Mishra and M. Tripathy, "A critical review of the treatments for decolourization of textile effluent". Colourage, vol. 40, no. 10, pp. 35-38, 1993.spa
dc.relation.referencesJ. Vidal, L. Villegas, J.M. Peralta-Hernández, and R. Salazar González, "Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode". Journal of Environmental Science and Health, Part A, vol. 51, no. 4, pp. 289-296, 2016.spa
dc.relation.referencesK. Wojciechowski, L. Szuster, J. Rutowicz, and A. Kaminska, "Dyeing properties of CI Acid Blue 193 and the non‐equivalent properties of CI Acid Black 194 produced by different manufacturers". Coloration Technology, vol. 130, no. 3, pp. 215-220, 2014.spa
dc.relation.referencesR. Sebastiano, N. Contiello, S. Senatore, P.G. Righetti, and A. Citterio, "Analysis of commercial acid black 194 and related dyes by micellar electrokinetic chromatography". Dyes and Pigments, vol. 94, no. 2, pp. 258-265, 2012.spa
dc.relation.referencesJ.A. Vidal-Fuentes, Eliminación del colorante Negro Ácido 194 desde aguas residuales textiles mediante electrocoagulación: Universidad de Santiago de Chile: Santiago, Chile. pp. 91, 2013.spa
dc.relation.referencesR. Kishor, D. Purchase, G.D. Saratale, R.G. Saratale, L.F.R. Ferreira, M. Bilal, R. Chandra, and R.N. Bharagava, "Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety". Journal of Environmental Chemical Engineering, vol. 9, no. 2, pp. Article ID 105012, 2021.spa
dc.relation.referencesS. Samsami, M. Mohamadizaniani, M.-H. Sarrafzadeh, E.R. Rene, and M. Firoozbahr, "Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives". Process Safety and Environmental Protection, vol. 143, pp. 138-163, 2020.spa
dc.relation.referencesT. Robinson, G. McMullan, R. Marchant, and P. Nigam, "Remediation of dyes in textile effluent: A critical review on current treatment technologies with a proposed alternative". Bioresource Technology, vol. 77, no. 3, pp. 247-255, 2001.spa
dc.relation.referencesY. Deng and R. Zhao, "Advanced oxidation processes (AOPs) in wastewater treatment". Current Pollution Reports, vol. 1, no. 3, pp. 167-176, 2015.spa
dc.relation.referencesA. Babuponnusami and K. Muthukumar, "A review on Fenton and improvements to the Fenton process for wastewater treatment". Journal of Environmental Chemical Engineering, vol. 2, no. 1, pp. 557-572, 2014.spa
dc.relation.referencesG. Centi and S. Perathoner, "Chapter 10 - Advanced Oxidation Processes in Water Treatment". In: Handbook of Advanced Methods and Processes in Oxidation Catalysis. Imperial College Press: London, UK, 2014.spa
dc.relation.referencesS. Matavos-Aramyan and M. Moussavi, "Advances in Fenton and Fenton based oxidation processes for industrial effluent contaminants control: A review". International Journal of Environmental Sciences and Nature Resources no. 4, pp. Article ID 555594, 2017.spa
dc.relation.referencesE. Neyens and J. Baeyens, "A review of classic Fenton’s peroxidation as an advanced oxidation technique". Journal of Hazardous Materials, vol. 98, no. 1, pp. 33-50, 2003.spa
dc.relation.referencesJ.A. Garrido-Cardenas, B. Esteban-García, A. Agüera, J.A. Sánchez-Pérez, and F. Manzano-Agugliaro, "Wastewater treatment by advanced oxidation process and their worldwide research trends". Journal of Environmental Research and Public Health, vol. 17, no. 1, pp. 170, 2020.spa
dc.relation.referencesA. Silva, S.B. Monge, C. Bengoa, A. Torres-Pinto, and R.S. Ribeiro, Manual Técnico sobre Procesos de Oxidación Avanzada aplicados al Tratamiento de Aguas Residuales Industriales. pp. 60, Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo: España, 2018.spa
dc.relation.referencesA. Mirzaei, Z. Chen, F. Haghighat, and L. Yerushalmi, "Removal of pharmaceuticals from water by homo/heterogeneous Fenton-type processes – A review". Chemosphere, vol. 174, pp. 665-688, 2017.spa
dc.relation.referencesM.-h. Zhang, H. Dong, L. Zhao, D.-x. Wang, and D. Meng, "A review on Fenton process for organic wastewater treatment based on optimization perspective". Science of the Total Environment, vol. 670, pp. 110-121, 2019.spa
dc.relation.referencesP.K. Pandis, C. Kalogirou, E. Kanellou, C. Vaitsis, M.G. Savvidou, G. Sourkouni, A.A. Zorpas, and C. Argirusis, "Key points of advanced oxidation processes (AOPs) for wastewater, organic pollutants and pharmaceutical waste treatment: A mini review". ChemEngineering, vol. 6, no. 1, pp. 8, 2022.spa
dc.relation.referencesD. Meyerstein, "Re-examining Fenton and Fenton-like reactions". Nature Reviews Chemistry, vol. 5, no. 9, pp. 595-597, 2021.spa
dc.relation.referencesS. Perathoner and G. Centi, "Chapter 7 - Catalytic Wastewater Treatment Using Pillared Clays". In: Pillared Clays and Related Catalysts. A. Gil, et al. (Eds), pp. 167-200, Springer New York, 2010.spa
dc.relation.referencesJ.G. Carriazo, L.F. Bossa-Benavides, and E. Castillo, "Actividad catalítica de metales de transición en la descomposición de peróxido de hidrógeno". Química Nova, vol. 35, no. 6, pp. 1101-1106, 2012.spa
dc.relation.referencesM. Strlic, J. Kolar, V.-S. Selih, D. Kocar, and B.J.A.C.S. Pihlar, "A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH". vol. 50, no. 4, pp. 619-632, 2003.spa
dc.relation.referencesH. Yao, Y. Xie, Y. Jing, Y. Wang, and G. Luo, "Controllable preparation and catalytic performance of heterogeneous Fenton-like α-Fe2O3/crystalline glass microsphere catalysts". Industrial and Engineering Chemistry Research, vol. 56, no. 46, pp. 13751-13759, 2017.spa
dc.relation.referencesI.F. Macias-Quiroga, P.A. Henao-Aguirre, A. Marin-Florez, S.M. Arredondo-Lopez, and N.R. Sanabria-Gonzalez, "Bibliometric analysis of advanced oxidation processes (AOPs) in wastewater treatment: global and Ibero-American research trends". Environmental Science and Pollution Research, vol. 28, no. 19, pp. 23791-23811, 2021.spa
dc.relation.referencesR.C. Francis, A. Luukkonen, F.K. Attiogbe, and D.P. Kamdem, "Bicarbonate anion and TAED as activators in peroxide bleaching of a mechanical pulp". Cellulose Chemistry and Technology, vol. 54, no. 3-4, pp. 319-326, 2020.spa
dc.relation.referencesX. Long, C. Xu, and S. Fu. Low-temperature and near-neutral bleaching of cotton with the TAED-activated peroxide system. In American Association of Textile Chemists and Colorists International Conference, AATCC. 2013. Greenville, SC.spa
dc.relation.referencesX. Luo, X. Sui, J. Yao, X. Fei, J. Du, C. Sun, Z. Xiang, C. Xu, and S. Wang, "Performance modelling of the TBCC-activated peroxide system for low-temperature bleaching of cotton using response surface methodology". Cellulose, vol. 22, no. 5, pp. 3491-3499, 2015.spa
dc.relation.referencesX. Luo, D. Shao, X. Wang, C. Xu, and W. Gao, "Whitening citric acid treated cotton fabrics by a TBCC-activated peroxide post-bleaching". Cellulose, vol. 27, no. 9, pp. 5367-5376, 2020.spa
dc.relation.referencesC. Xu, D. Hinks, C. Sun, and Q. Wei, "Establishment of an activated peroxide system for low-temperature cotton bleaching using N-[4-(triethylammoniomethyl)benzoyl]butyrolactam chloride". Carbohydrate Polymers, vol. 119, pp. 71-77, 2015.spa
dc.relation.referencesD. Yu, M. Wu, J. Lin, and J. Zhu, "Economical low-temperature bleaching of cotton fabric using an activated peroxide system coupling cupric ions with bicarbonate". Fibers and Polymers, vol. 19, no. 9, pp. 1898-1907, 2018.spa
dc.relation.referencesV.L. Voeikov, D.O. Ming Ha, O.G. Mukhitova, N.D. Vilenskaya, S.I. Malishenko, and A.S. Bogachuk, "Activated bicarbonate solutions as models of confined ontic open system and prototypes of living respiring systems". International Journal of Design and Nature and Ecodynamics, vol. 5, no. 1, pp. 30-38, 2010.spa
dc.relation.referencesJ. Wu, H. Xiao, T. Wang, T. Hong, B. Fu, D. Bai, Z. He, S. Peng, X. Xing, J. Hu, P. Guo, and X. Zhou, "N6-Hydroperoxymethyladenosine: A new intermediate of chemical oxidation of N6-methyladenosine mediated by bicarbonate-activated hydrogen peroxide". Chemical Science, vol. 6, no. 5, pp. 3013-3017, 2015.spa
dc.relation.referencesM.L. Liu, X.L. Cheng, L.X. Zhao, and J.M. Lin, "On-line preparation of peroxymonocarbonate and its application for the study of energy transfer chemiluminescence to lanthanide inorganic coordinate complexes". Luminescence, vol. 21, no. 3, pp. 179-185, 2006.spa
dc.relation.referencesB.-T. Zhang, L. Kuang, Y. Teng, M. Fan, and Y. Ma, "Application of percarbonate and peroxymonocarbonate in decontamination technologies". Journal of Environmental Sciences, vol. 105, pp. 100-115, 2021.spa
dc.relation.referencesX. Cheng, L. Liang, J. Ye, N. Li, B. Yan, and G. Chen, "Influence and mechanism of water matrices on H2O2-based Fenton-like oxidation processes: A review". Science of the Total Environment, pp. 164086, 2023.spa
dc.relation.referencesD.E. Richardson, H. Yao, K.M. Frank, and D.A. Bennett, "Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate". Journal of the American Chemical Society, vol. 122, no. 8, pp. 1729-1739, 2000.spa
dc.relation.referencesI.F. Macías-Quiroga, A. Pérez-Flórez, J.S. Arcila, G.I. Giraldo-Goméz, and N.R. Sanabria-Gonzalez, "Synthesis and characterization of Co/Al-PILCs for the oxidation of an azo dye using the bicarbonate-activated hydrogen peroxide system". Catalysis Letters, vol. 152, no. 7, pp. 1905-1916, 2022.spa
dc.relation.referencesI.F. Macías-Quiroga, E.F. Rojas-Méndez, G.I. Giraldo-Gómez, and N.R. Sanabria-González, "Experimental data of a catalytic decolorization of ponceau 4R dye using the Cobalt (II)/NaHCO3/H2O2 system in aqueous solution". Data in Brief, vol. 30, pp. Article ID 105463, 2020.spa
dc.relation.referencesS. Yang, P. Wang, X. Yang, L. Shan, W. Zhang, X. Shao, and R. Niu, "Degradation efficiencies of azo dye acid orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide". Journal of Hazardous Materials, vol. 179, no. 1-3, pp. 552-558, 2010.spa
dc.relation.referencesC.W. Luo, J. Ma, J. Jiang, Y.Z. Liu, Y. Song, Y. Yang, Y.H. Guan, and D.J. Wu, "Simulation and comparative study on the oxidation kinetics of atrazine by UV/H2O2, UV/HSO5- and UV/S2O82-". Water Research, vol. 80, pp. 99-108, 2015.spa
dc.relation.referencesL. Zhou, W. Song, Z.Q. Chen, and G.C. Yin, "Degradation of organic pollutants in wastewater by bicarbonate-activated hydrogen peroxide with a supported cobalt catalyst". Environmental Science & Technology, vol. 47, no. 8, pp. 3833-3839, 2013.spa
dc.relation.referencesM. Jiang, J. Lu, Y. Ji, and D. Kong, "Bicarbonate-activated persulfate oxidation of acetaminophen". Water Research, vol. 116, pp. 324-331, 2017.spa
dc.relation.referencesH. Yao and D.E. Richardson, "Bicarbonate surfoxidants: Micellar oxidations of aryl sulfides with bicarbonate-activated hydrogen peroxide". Journal of the American Chemical Society, vol. 125, no. 20, pp. 6211-6221, 2003.spa
dc.relation.referencesA. Jawad, X. Lu, Z. Chen, and G. Yin, "Degradation of chlorophenols by supported Co-Mg-Al layered double hydrotalcite with bicarbonate activated hydrogen peroxide". Journal of Physical Chemistry A, vol. 118, no. 43, pp. 10028-10035, 2014.spa
dc.relation.referencesA. Xu, X. Li, H. Xiong, and G. Yin, "Efficient degradation of organic pollutants in aqueous solution with bicarbonate-activated hydrogen peroxide". Chemosphere, vol. 82, no. 8, pp. 1190-1195, 2011.spa
dc.relation.referencesB. Balagam and D.E. Richardson, "The mechanism of carbon dioxide catalysis in the hydrogen peroxide N-oxidation of amines". Inorganic Chemistry, vol. 47, no. 3, pp. 1173-1178, 2008.spa
dc.relation.referencesJ. Basiri Parsa and S. Hagh Negahdar, "Treatment of wastewater containing acid blue 92 dye by advanced ozone-based oxidation methods". Separation and Purification Technology, vol. 98, pp. 315-320, 2012.spa
dc.relation.referencesH. Kan, H. Soklun, Z. Yang, R. Wu, J. Shen, G. Qu, and T. Wang, "Purification of dye wastewater using bicarbonate activated hydrogen peroxide: Reaction process and mechanisms". Separation and Purification Technology, vol. 232, pp. Article ID 115974, 2020.spa
dc.relation.referencesX. Li, Z. Xiong, X. Ruan, D. Xia, Q. Zeng, and A. Xu, "Kinetics and mechanism of organic pollutants degradation with cobalt–bicarbonate–hydrogen peroxide system: Investigation of the role of substrates". Applied Catalysis A: General, vol. 411, pp. 24-30, 2012.spa
dc.relation.referencesA. Răducan, M. Puiu, P. Oancea, C. Colbea, A. Velea, B. Dinu, A.M. Mihăilescu, and T. Galaon, "Fast decolourization of indigo carmine and crystal violet in aqueous environments through micellar catalysis". Separation and Purification Technology, vol. 210, pp. 698-709, 2019.spa
dc.relation.referencesE.V. Bakhmutova-Albert, H. Yao, D.E. Denevan, and D.E. Richardson, "Kinetics and mechanism of peroxymonocarbonate formation". Journal of Inorganic Chemistry, vol. 49, no. 24, pp. 11287-11296, 2010.spa
dc.relation.referencesUR-FRESH, Ozone vs Hydroxyl Radicals and the FreshStart AOP. Efficacy and Safety in the Elimination of Pollutants, 2014. Disponible en: https://www.urfresh.com/wp-content/uploads/2014/01/Ozone-vs-Hydrox-Rads.pdf.spa
dc.relation.referencesN.A. Urbina-Suarez, C.J. Salcedo-Pabón, G.L. López-Barrera, J.B. García-Martínez, A.F. Barajas-Solano, and F. Machuca-Martínez, "Using the response surface methodology to treat tannery wastewater with the bicarbonate-peroxide system". ChemEngineering, vol. 7, no. 4, pp. 62, 2023.spa
dc.relation.referencesY. Li, L. Li, Z.-X. Chen, J. Zhang, L. Gong, Y.-X. Wang, H.-Q. Zhao, and Y. Mu, "Carbonate-activated hydrogen peroxide oxidation process for azo dye decolorization: Process, kinetics, and mechanisms". Chemosphere, vol. 192, pp. 372-378, 2018.spa
dc.relation.referencesA. Răducan, D. Bogdan, T. Galaon, and P. Oancea, "Oxidative removal of Fast Green FCF and ponceaux 4R dyes by H2O2/NaHCO3, UV and H2O2/UV processes: A comparative study". Journal of Photochemistry Photobiology A: Chemistry, vol. 431, pp. 114040, 2022.spa
dc.relation.referencesM. Puiu, T. Galaon, L. Bondilǎ, A. Rǎducan, and D. Oancea, "Feed-back action of nitrite in the oxidation of nitrophenols by bicarbonate-activated peroxide system". Applied Catalysis A: General, vol. 516, pp. 90-99, 2016.spa
dc.relation.referencesS. Zhao, H. Xi, Y. Zuo, Q. Wang, Z. Wang, and Z. Yan, "Bicarbonate-activated hydrogen peroxide and efficient decontamination of toxic sulfur mustard and nerve gas simulants". Journal of Hazardous Materials, vol. 344, pp. 136-145, 2018.spa
dc.relation.referencesH. Fakhraian and F. Valizadeh, "Activation of hydrogen peroxide via bicarbonate, sulfate, phosphate and urea in the oxidation of methyl phenyl sulfide". Journal of Molecular Catalysis A: Chemical, vol. 333, no. 1-2, pp. 69-72, 2010.spa
dc.relation.referencesS. Zhao, H. Xi, Y. Zuo, S. Han, Y. Zhu, Z. Li, L. Yuan, Z. Wang, and C. Liu, "Rapid activation of basic hydrogen peroxide by borate and efficient destruction of toxic industrial chemicals (TICs) and chemical warfare agents (CWAs)". Journal of Hazardous Materials, vol. 367, pp. 91-98, 2019.spa
dc.relation.referencesG.W. Wagner, "Hydrogen peroxide-based decontamination of chemical warfare agents". Main Group Chemistry, vol. 9, no. 3-4, pp. 257-263, 2010.spa
dc.relation.referencesS. Zhao, Y. Zhu, H. Xi, M. Han, D. Li, Y. Li, and H. Zhao, "Detoxification of mustard gas, nerve agents and simulants by peroxomolybdate in aqueous H2O2 solution: Reactive oxygen species and mechanisms". Journal of Environmental Chemical Engineering, vol. 8, no. 5, pp. Article ID 104221, 2020.spa
dc.relation.referencesH. Yao and D.E. Richardson, "Epoxidation of alkenes with bicarbonate-activated hydrogen peroxide". Journal of the American Chemical Society, vol. 122, no. 13, pp. 3220-3221, 2000.spa
dc.relation.referencesT. Wang, Q. Wang, H. Soklun, G. Qu, T. Xia, X. Guo, H. Jia, and L. Zhu, "A green strategy for simultaneous Cu (II)-EDTA decomplexation and Cu precipitation from water by bicarbonate-activated hydrogen peroxide/chemical precipitation". Chemical Engineering Journal, vol. 370, pp. 1298-1309, 2019.spa
dc.relation.referencesG. Chatel, C. Goux-Henry, A. Mirabaud, T. Rossi, N. Kardos, B. Andrioletti, and M. Draye, "H2O2/NaHCO3-mediated enantioselective epoxidation of olefins in NTf2-based ionic liquids and under ultrasound". Journal of Catalysis, vol. 291, pp. 127-132, 2012.spa
dc.relation.referencesW. Hu, S. Chen, D. Wu, J. Zheng, and X. Ye, "Ultrasonic-assisted citrus pectin modification in the bicarbonate-activated hydrogen peroxide system: Chemical and microstructural analysis". Ultrasonics Sonochemistry, vol. 58, pp. Article ID 104576, 2019.spa
dc.relation.referencesW. Xu, B. Wang, F. Yan, Y. Zeng, S. Liu, W. Fang, L. Chen, X. Yan, and Y. Li, "A novel, green strategy based on bicarbonate activated hydrogen peroxide system for triazine hindered amines nitroxide radicalization for halogen‐free flame retardants". Journal of Vinyl Additive Technology, vol. 28, no. 3, pp. 530-541, 2022.spa
dc.relation.referencesG. Chatel, C. Goux-Henry, N. Kardos, J. Suptil, B. Andrioletti, and M. Draye, "Ultrasound and ionic liquid: An efficient combination to tune the mechanism of alkenes epoxidation". Ultrasonics Sonochemistry, vol. 19, no. 3, pp. 390-394, 2012.spa
dc.relation.referencesH.H. Monfared, V. Aghapoor, M. Ghorbanloo, and P. Mayer, "Highly selective olefin epoxidation with the bicarbonate activation of hydrogen peroxide in the presence of manganese (III) meso-tetraphenylporphyrin complex: Optimization of effective parameters using the Taguchi method". Applied Catalysis A: General, vol. 372, no. 2, pp. 209-216, 2010.spa
dc.relation.referencesC. Dong, Y. Yang, X. Hu, Y. Cho, G. Jang, Y. Ao, L. Wang, J. Shen, J.H. Park, and K. Zhang, "Self-cycled photo-Fenton-like system based on an artificial leaf with a solar-to-H2O2 conversion efficiency of 1.46%". Nature Communications, vol. 13, no. 1, pp. Article ID 4982, 2022.spa
dc.relation.referencesL.H. Xin, C.X. Yan, M.H. Nie, Y.M. Zhang, Y.L. Yuan, M.J. Ding, and P. Wang, "Degradation of bisphenol a by Fenton-like system using trace copper ions combined with bicarbonate in water". China Environmental Science, vol. 43, no. 3, pp. 1186-1196, 2023.spa
dc.relation.referencesA. Xu, X. Li, S. Ye, G. Yin, and Q. Zeng, "Catalyzed oxidative degradation of methylene blue by in situ generated cobalt (II)-bicarbonate complexes with hydrogen peroxide". Applied Catalysis B: Environmental, vol. 102, no. 1, pp. 37-43, 2011b.spa
dc.relation.referencesH. Dong, X. Feng, Y. Guo, Z. Jia, X. Zhang, A. Xu, and X. Li, "Bicarbonate activated hydrogen peroxide with cobalt nanoparticles embedded in nitrogen-doped carbon nanotubes for highly efficient organic dye degradation". Colloids and Surfaces A: Physicochemical Engineering Aspects, vol. 630, pp. Article ID 127645, 2021.spa
dc.relation.referencesA. Jawad, Y. Li, X. Lu, Z. Chen, W. Liu, and G. Yin, "Controlled leaching with prolonged activity for Co–LDH supported catalyst during treatment of organic dyes using bicarbonate activation of hydrogen peroxide". Journal of Hazardous Materials, vol. 289, pp. 165-173, 2015.spa
dc.relation.referencesX. Guo, H. Li, and S. Zhao, "Fast degradation of acid orange II by bicarbonate-activated hydrogen peroxide with a magnetic S-modified CoFe2O4 catalyst". Journal of the Taiwan Institute of Chemical Engineers, vol. 55, pp. 90-100, 2015.spa
dc.relation.referencesT.-J. Jiang, C. Xie, H.-D. Peng, B. Lei, Q.-Q. Chen, G. Li, and C.-W. Luo, "Oxygen doped graphitic carbon nitride nanosheets for the degradation of organic pollutants by activating hydrogen peroxide in the presence of bicarbonate in the dark". RSC Advances, vol. 11, no. 1, pp. 296-306, 2021.spa
dc.relation.referencesE. Oguz and B. Keskinler, "Removal of colour and COD from synthetic textile wastewaters using O3, PAC, H2O2 and HCO3−". Journal of Hazardous Materials, vol. 151, no. 2-3, pp. 753-760, 2008.spa
dc.relation.referencesY. Li, L. Guo, D. Huang, A. Jawad, Z. Chen, J. Yang, W. Liu, Y. Shen, M. Wang, and G. Yin, "Support-dependent active species formation for CuO catalysts: Leading to efficient pollutant degradation in alkaline conditions". Journal of Hazardous Materials, vol. 328, pp. 56-62, 2017.spa
dc.relation.referencesA. Jawad, Y. Li, L. Guo, A. Khan, Z. Chen, J. Wang, J. Yang, W. Liu, and G. Yin, "Bimetallic synergistic degradation of chlorophenols by CuCoOx–LDH catalyst in bicarbonate-activated hydrogen peroxide system". RSC Advances, vol. 6, no. 76, pp. 72643-72653, 2016.spa
dc.relation.referencesX. Xu, D. Tang, J. Cai, B. Xi, Y. Zhang, L. Pi, and X. Mao, "Heterogeneous activation of peroxymonocarbonate by chalcopyrite (CuFeS2) for efficient degradation of 2, 4-dichlorophenol in simulated groundwater". Applied Catalysis B: Environmental, vol. 251, pp. 273-282, 2019.spa
dc.relation.referencesL. Pi, N. Yang, W. Han, W. Xiao, D. Wang, Y. Xiong, M. Zhou, H. Hou, and X. Mao, "Heterogeneous activation of peroxymonocarbonate by Co-Mn oxides for the efficient degradation of chlorophenols in the presence of a naturally occurring level of bicarbonate". Chemical Engineering Journal, vol. 334, pp. 1297-1308, 2018.spa
dc.relation.referencesY. Li, A. Jawad, A. Khan, X. Lu, Z. Chen, W. Liu, and G. Yin, "Synergistic degradation of phenols by bimetallic CuO–Co3O4@ γ-Al2O3 catalyst in H2O2/HCO3− system". Chinese Journal of Catalysis, vol. 37, no. 6, pp. 963-970, 2016.spa
dc.relation.referencesX. Liu, Q. Xia, J. Zhou, B. Li, S. Zhao, L. Chen, A. Khan, X. Li, and A. Xu, "Morphology-dependent activation of hydrogen peroxide with Cu2O for tetracycline hydrochloride degradation in bicarbonate aqueous solution". Journal of Environmental Sciences, vol. 137, pp. 567-579, 2024.spa
dc.relation.referencesS. Dinda, M.G. Drew, and R. Bhattacharyya, "Oxo-rhenium (V) complexes with bidentate phosphine ligands: Synthesis, crystal structure and catalytic potentiality in epoxidation of olefins using hydrogen peroxide activated bicarbonate as oxidant". Catalysis Communications, vol. 10, no. 5, pp. 720-724, 2009.spa
dc.relation.referencesR. Karcz, B.D. Napruszewska, A. Michalik, J. Kryściak-Czerwenka, D. Duraczyńska, and E.M. Serwicka, "Fine crystalline Mg-Al hydrotalcites as catalysts for baeyer-villiger oxidation of cyclohexanone with H2O2". Catalysts, vol. 11, no. 12, pp. Article ID 1493, 2021.spa
dc.relation.referencesL. Duan, Y. Chen, K. Zhang, H. Luo, J. Huang, and A. Xu, "Catalytic degradation of acid orange 7 with hydrogen peroxide using CoxOy-N/GAC catalysts in a bicarbonate aqueous solution". RSC advances, vol. 5, no. 102, pp. 84303-84310, 2015.spa
dc.relation.referencesC.B. Molina, J.A. Casas, A.H. Pizarro, and J.J. Rodriguez, "Chapter 16 - Pillared clays as green chemistry catalysts: Application to wastewater treatment". In: Clay: Types, Properties and Uses J.P. Humphrey and D.E. Boyd (Eds), pp. 435-474, Nova: Hauppauge, NY, US, 2011.spa
dc.relation.referencesJ.T. Kloprogge, S. Komarneni, J.E.J.C. Amonette, and C. Minerals, "Synthesis of smectite clay minerals: A critical review". Clays and Clay Minerals, vol. 47, no. 5, pp. 529-554, 1999.spa
dc.relation.referencesJ.T.J.J.o.P.M. Kloprogge, "Synthesis of smectites and porous pillared clay catalysts: A review". Journal of Porous Materials, vol. 5, no. 1, pp. 5-41, 1998.spa
dc.relation.referencesI.F. Macías-Quiroga, J.A. Rengifo-Herrera, S.M. Arredondo-López, A. Marín-Flórez, and N.R. Sanabria-González, "Research trends on pillared interlayered clays (PILCs) used as catalysts in environmental and chemical processes: bibliometric analysis". The Scientific World Journal, vol. 2022, 2022.spa
dc.relation.referencesJ.A. Alexander, M.A. Ahmad Zaini, A. Surajudeen, E.U. Aliyu, and A.U. Omeiza, "Surface modification of low-cost bentonite adsorbents—A review". Particulate Science Technology, vol. 37, no. 5, pp. 538-549, 2019.spa
dc.relation.referencesP. Cañizares, J.L. Valverde, M.R. Kou, and C.B. Molina, "Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study". Microporous and Mesoporous Materials, vol. 29, no. 3, pp. 267-281, 1999.spa
dc.relation.referencesI.F. Macías-Quiroga, G.I. Giraldo-Gómez, and N.R. Sanabria-González, "Characterization of colombian clay and its potential use as adsorbent". The Scientific World Journal, vol. 2018, pp. Article ID 5969178, 2018.spa
dc.relation.referencesJ.A. Camacho-Gómez and C.M. Celada-Arango, Definición de zonas potenciales para esmectitas en los departamentos del Valle del Cauca, Tolima y Caldas, Instituto Colombiano de Geología y Minería - Ingeominas, Ministerio de Minas y Energía: Bogotá D.C., Colombia, 2004.spa
dc.relation.referencesO. Sivrikaya, B. Uzal, and Y.E. Ozturk, "Practical charts to identify the predominant clay mineral based on oxide composition of clayey soils". Applied Clay Science, vol. 135, pp. 532-537, 2017.spa
dc.relation.referencesS. Barakan and V. Aghazadeh, "The advantages of clay mineral modification methods for enhancing adsorption efficiency in wastewater treatment: a review". Environmental Science Pollution Research, vol. 28, pp. 2572-2599, 2021.spa
dc.relation.referencesI.F. Macías-Quiroga, Arcillas pilarizadas con cobalto (Al-Co-PILC) como catalizadores para la degradación de colorantes empleando el sistema HCO3-/H2O2, in: Tesis de Doctorado en Ingeniería - Ingeniería Química: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia, 2021.spa
dc.relation.referencesF. Bergaya and G. Lagaly, "Chapter 1 - General introduction: Clays, clay minerals, and clay science". In: Developments in clay science. pp. 1-18, Elsevier: Amsterdam, Netherlands, 2006.spa
dc.relation.referencesN.R. Sanabria-González, Evaluación de los efectos fisicoquímicos y catalíticos en el proceso de síntesis de arcillas pilarizadas (PILC’s) en estado sólido y su viabilidad en la obtención de extrusados, Tesis de doctorado en Ciencias Química: Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia sede Bogotá: Bogotá D.C., Colombia, 2009.spa
dc.relation.referencesM.F. Brigatti, E. Galan, and B.K.G. Theng, "Chapter 2 - Structure and mineralogy of clay minerals". In: Developments in clay science. pp. 21-81, Elsevier, 2013.spa
dc.relation.referencesD.J. Greenland and M.H.B. Hayes, The chemistry of soil processes. John Wiley & Sons Ltd.: New York, 1981.spa
dc.relation.referencesB. Karpiński and M. Szkodo, "Clay minerals–mineralogy and phenomenon of clay swelling in oil & gas industry". Advances in Materials Science, vol. 15, no. 1, pp. 37-55, 2015.spa
dc.relation.referencesN. Worasith and B.A. Goodman, "Clay mineral products for improving environmental quality". Applied Clay Science, vol. 242, pp. 106980, 2023.spa
dc.relation.referencesR. Mackenzie, "The classification and nomenclature of clay minerals". Clay Minerals Bulletin, vol. 4, no. 21, pp. 52-66, 1959.spa
dc.relation.referencesJ. Cecilia, C. García‐Sancho, E. Vilarrasa‐García, J. Jiménez‐Jiménez, and E. Rodriguez‐Castellón, "Synthesis, characterization, uses and applications of porous clays heterostructures: A review". The Chemical Record, vol. 18, no. 7-8, pp. 1085-1104, 2018.spa
dc.relation.referencesZ. Ding, J.T. Kloprogge, R.L. Frost, G.Q. Lu, and H.Y. Zhu, "Porous clays and pillared clays-based catalysts. Part 2: A review of the catalytic and molecular sieve applications". Journal of Porous Materials, vol. 8, no. 4, pp. 273-293, 2001.spa
dc.relation.referencesR.F. Giese and C.J. Van Oss, Colloid and surface properties of clays and related minerals, M. Dekker (Ed). CRC press: New York, 2002.spa
dc.relation.referencesS. Pergher, A. Corma, and V. Fornes, "Materiales laminares pilareados: Preparación y propiedades". Química nova, vol. 22, no. 5, pp. 693-709, 1999.spa
dc.relation.referencesH. Najafi, S. Farajfaed, S. Zolgharnian, S.H. Mirak, N. Asasian-Kolur, and S. Sharifian, "A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes". Process Safety and Environmental Protection, vol. 147, pp. 8-36, 2021.spa
dc.relation.referencesA. Alvarado, R. Mata, and M. Chinchilla, "Arcillas identificadas en suelos de Costa Rica a nivel generalizado durante el período 1931-2014: II. Mineralogía de arcillas en suelos con características vérticas y oxídico caoliníticas". Agronomía Costarricense, vol. 38, no. 1, pp. 75-106, 2014.spa
dc.relation.referencesM. Gülcan, Y. Özcan, and C. Küçükuysal, "An experimental study on the mineralogical characterization of the Saribeyli, kaolin deposit (çanakkale, nw turkey)". Mugla Journal of Science Technology, vol. 3, no. 1, pp. 4-8, 2017.spa
dc.relation.referencesH.H. Murray, Applied clay mineralogy: occurrences, processing and applications of kaolins, bentonites, palygorskitesepiolite, and common clays. Elsevier, 2006.spa
dc.relation.referencesM.A. Vicente, A. Gil, and F. Bergaya, "Chapter 10.5 - Pillares Clays and Clay Minerals". In: Developments in Clay Science. pp. 523-557, Elsevier: Amsterdam, Netherlands, 2013.spa
dc.relation.referencesC.C. Harvey and G. Lagaly, "Chapter 4.2 - Industrial Applications". In: Developments in Clay Science. pp. 451-490, Elsevier: Amsterdam, Netherlands, 2013.spa
dc.relation.referencesP. Cool and E.F. Vansant, "Chapter 4 - Pillared clays: Preparation, characterization and applications". In: Synthesis. M. Sieves (Ed), pp. 278-281, Springer: Berlin, Heidelberg, 1998.spa
dc.relation.referencesA. Perez, M. Montes, R. Molina, and S. Moreno, "Modified clays as catalysts for the catalytic oxidation of ethanol". Applied Clay Science, vol. 95, pp. 18-24, 2014.spa
dc.relation.referencesA. Gil, L.M. Gandia, and M.A. Vicente, "Recent advances in the synthesis and catalytic applications of pillared clays". Catalysis Reviews, vol. 42, no. 1-2, pp. 145-212, 2000.spa
dc.relation.referencesA. Álvarez-Moreno, S. Moreno-Guáqueta, and R. Molina-Gallego, "Efecto del tamaño de agregado de arcilla en la oxidación de fenol en medio acuoso diluido". Revista de la Facultad de Minas. Universidad Nacional de Colombia. Sede Medellín, vol. 77, no. 162, pp. 57-66, 2010.spa
dc.relation.referencesL. Allouche, C. Huguenard, and F. Taulelle, "3QMAS of three aluminum polycations: space group consistency between NMR and XRD". Journal of Physics and Chemistry of Solids, vol. 62, no. 8, pp. 1525-1531, 2001.spa
dc.relation.referencesC. Feng, H. Tang, and D. Wang, "Differentiation of hydroxyl-aluminum species at lower OH/Al ratios by combination of 27Al NMR and Ferron assay improved with kinetic resolution". Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 305, no. 1-3, pp. 76-82, 2007.spa
dc.relation.referencesF. Figueras, "Pillared clays as catalysts". Catalysis Reviews Science Engineering, vol. 30, no. 3, pp. 457-499, 1988.spa
dc.relation.referencesN. Marín-González, Oxidación catalítica en medio heterogéneo de un colorante azoico empleando el sistema peróxido activado con bicarbonato, in: Tesis de Maestría en Ingeniería - Ingeniería Química: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia, 2022.spa
dc.relation.referencesS. Murcia Mascarós, "Capítulo 10 - Difracción de Rayos X". In: Técnicas de Análisis y Caracterización de Materiales. pp. 395-438, Consejo Superior de Investigaciones Científicas - CSIC: Madrid, 2002.spa
dc.relation.referencesM. Alexandre and P. Dubois, "Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials". Materials Science and Engineering, vol. 28, no. 1-2, pp. 1-63, 2000.spa
dc.relation.referencesP. Tepmatee and P. Siriphannon, "Effect of preparation method on structure and adsorption capacity of aluminum pillared montmorillonite". Materials Research Bulletin, vol. 48, no. 11, pp. 4856-4866, 2013.spa
dc.relation.referencesT.J. Pinnavaia, M.-S. Tzou, S.D. Landau, and R.H. Raythatha, "On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum". Journal of Molecular Catalysis, vol. 27, no. 1-2, pp. 195-212, 1984.spa
dc.relation.referencesP. Yuan, F. Annabi-Bergaya, Q. Tao, M. Fan, Z. Liu, J. Zhu, H. He, and T. Chen, "A combined study by XRD, FTIR, TG and HRTEM on the structure of delaminated Fe-intercalated/pillared clay". Journal of Colloid and Interface Science, vol. 324, no. 1-2, pp. 142-149, 2008.spa
dc.relation.referencesP. Munnik, P.E. De Jongh, and K.P. De Jong, "Recent developments in the synthesis of supported catalysts". Chemical Reviews, vol. 115, no. 14, pp. 6687-6718, 2015.spa
dc.relation.referencesM. Che and L. Bonneviot, "The change of properties of transition metal ions and the role of the support as a function of catalyst preparation". Studies in Surface Science and Catalysis, vol. 44, pp. 147-158, 1989.spa
dc.relation.referencesL.A. Shah, M. Farooq, F.M. Carvalho, M.G. da Silva Valenzuela, and F.R. Valenzuela Díaz, "Investigation of mineralogy and porosity of two pakistani bentonites and its corresponding purified bentonites". Arabian Journal for Science and Engineering, vol. 43, no. 1, pp. 373-382, 2018.spa
dc.relation.referencesL.S. Cheng and R.T. Yang, "Tailoring micropore dimensions in pillared clays for enhanced gas adsorption". Microporous Materials, vol. 8, no. 3-4, pp. 177-186, 1997.spa
dc.relation.referencesF. Bertella and S.B.C. Pergher, "Reuse of pillaring agent in sequential bentonite pillaring processes". Materials, vol. 10, no. 7, 2017.spa
dc.relation.referencesY. Cardona, S.A. Korili, and A. Gil, "Understanding the formation of Al13 and Al30 polycations to the development of microporous materials based on Al13 and Al30 PILC montmorillonites: A review". Applied Clay Science, vol. 203, 2021.spa
dc.relation.referencesG. Fu, L.F. Nazar, and A.D. Bain, "Aging processes of alumina sol–gels: Characterization of new aluminum polyoxycations by 27Al NMR spectroscopy". Chemistry of Materials, vol. 3, no. 4, pp. 602-610, 1991.spa
dc.relation.referencesJ. Carriazo, E. Guelou, J. Barrault, J. Tatibouët, and S. Moreno, "Catalytic wet peroxide oxidation of phenol over Al–Cu or Al–Fe modified clays". Applied Clay Science, vol. 22, no. 6, pp. 303-308, 2003.spa
dc.relation.referencesN.R. Sanabria-González, M.A. Centeno, R. Molina, and S. Moreno, "Pillared clays with Al-Fe and Al-Ce-Fe in concentrated medium: Synthesis and catalytic activity". Applied Catalysis A: General, vol. 356, no. 2, pp. 243-249, 2009.spa
dc.relation.referencesJ. Russell and A. Fraser, "Chapter 2: Infrared Methods". In: Clay Mineralogy: Spectroscopic and Chemical Determinative Methods. pp. 11-67, Springer, 1994.spa
dc.relation.referencesS. Petit, "Chapter 12.6 - Fourier Transform Infrared Spectroscopy". In: Developments in Clay Science. pp. 909-918, Elsevier: Amsterdam, Netherlands, 2006.spa
dc.relation.referencesP. Djomgoue and D. Njopwouo, "FT-IR spectroscopy applied for surface clays characterization". Journal of Surface Engineered Materials Advanced Technology, vol. 3, no. 04, pp. 275, 2013.spa
dc.relation.referencesM.H. Ravari, A. Sarrafi, and M. Tahmooresic, "Synthesizing and characterizing the mixed Al, Cu-pillared and copper doped Al-pillared bentonite for electrocatalytic reduction of CO2". South African Journal of Chemical Engineering, vol. 31, no. 1, pp. 1-6, 2020.spa
dc.relation.referencesJ. Carriazo, R. Molina, and S. Moreno, "Caracterización estructural y textural de una bentonita colombiana". Revista Colombiana de Química, vol. 36, no. 2, pp. 213-225, 2007.spa
dc.relation.referencesJ. Carriazo, R. Molina, and S. Moreno, "Caracterización térmica y espectrocópica de arcillas pilarizadas con soluciones polihidroxocatiónicas de Al, Ce, Fe ". Revista Colombiana de Química, vol. 37, no. 2, 2008.spa
dc.relation.referencesA. Naumkin, A. Kraut-Vass, S. Gaarenstroom, and C. Powell, NIST X-ray Photoelectron Spectroscopy Database. Measurement Services Division of the National Institute of Standards and Technology (NIST) 20899. Standard Reference Database 20, Version 4.1 (2012).spa
dc.relation.referencesG.O. Ihekweme, J.N. Shondo, K.I. Orisekeh, G.M. Kalu-Uka, I.C. Nwuzor, and A.P. Onwualu, "Characterization of certain Nigerian clay minerals for water purification and other industrial applications". Heliyon, vol. 6, no. 4, pp. Article ID e03783, 2020.spa
dc.relation.referencesH. Seyama, M. Soma, and B.K. Theng, "Chapter 2.5 - X-Ray Photoelectron Spectroscopy". In: Developments in Clay Science. pp. 161-176, Elsevier: Amsterdam, Netherlands, 2006.spa
dc.relation.referencesS. Vargas-Villanueva, D.A. Torres-Ceron, S. Amaya-Roncancio, I. Arellano-Ramírez, J.S. Riva, and E. Restrepo-Parra, "Study of the incorporation of S in TiO2/SO42− coatings produced by PEO process through XPS and DFT". Applied Surface Science, vol. 599, pp. Article ID 153811, 2022.spa
dc.relation.referencesN. McIntyre and M. Cook, "X-ray photoelectron studies on some oxides and hydroxides of cobalt, nickel, and copper". Analytical chemistry, vol. 47, no. 13, pp. 2208-2213, 1975.spa
dc.relation.referencesM.C. Biesinger, B.P. Payne, A.P. Grosvenor, L.W. Lau, A.R. Gerson, and R.S.C. Smart, "Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni". Applied Surface Science, vol. 257, no. 7, pp. 2717-2730, 2011.spa
dc.relation.referencesG. Martin, A. Botchkarev, A. Rockett, and H. Morkoc, "Valence‐band discontinuities of wurtzite GaN, AlN, and InN heterojunctions measured by x‐ray photoemission spectroscopy". Applied Physics Letters, vol. 68, no. 18, pp. 2541-2543, 1996.spa
dc.relation.referencesC. Hinnen, D. Imbert, J. Siffre, and P. Marcus, "An in situ XPS study of sputter-deposited aluminium thin films on graphite". Applied Surface Science, vol. 78, no. 3, pp. 219-231, 1994.spa
dc.relation.referencesG. McGuire, G.K. Schweitzer, and T.A. Carlson, "Core electron binding energies in some Group IIIA, VB, and VIB compounds". Inorganic Chemistry, vol. 12, no. 10, pp. 2450-2453, 1973.spa
dc.relation.referencesN. Gunasekaran, S. Rajadurai, J. Carberry, N. Bakshi, and C. Alcock, "Surface characterization and catalytic properties of La1−xAxMO3 perovskite type oxides. Part I. Studies on La0.95Ba0.05MO3 (M= Mn, Fe or Co) oxides". Solid State Ionics, vol. 73, no. 3-4, pp. 289-295, 1994.spa
dc.relation.referencesN. Kumar and K. Biswas, "Cryomilling: An environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles". Journal of Materials Research Technology, vol. 8, no. 1, pp. 63-74, 2019.spa
dc.relation.referencesT. Song, Q. Liu, J. Liu, W. Yang, R. Chen, X. Jing, K. Takahashi, and J. Wang, "Fabrication of super slippery sheet-layered and porous anodic aluminium oxide surfaces and its anticorrosion property". Applied Surface Science, vol. 355, pp. 495-501, 2015.spa
dc.relation.referencesM. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S. Sing, "Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)". Pure and Applied Chemistry, vol. 87, no. 9-10, pp. 1051-1069, 2015.spa
dc.relation.referencesK.V. Kumar, S. Gadipelli, B. Wood, K.A. Ramisetty, A.A. Stewart, C.A. Howard, D.J. Brett, and F. Rodriguez-Reinoso, "Characterization of the adsorption site energies and heterogeneous surfaces of porous materials". Journal of Materials Chemistry A, vol. 7, no. 17, pp. 10104-10137, 2019.spa
dc.relation.referencesG. Leofanti, M. Padovan, G. Tozzola, and B. Venturelli, "Surface area and pore texture of catalysts". Catalysis Today, vol. 41, no. 1-3, pp. 207-219, 1998.spa
dc.relation.referencesM. Remy, A.V. Coelho, and G. Poncelet, "Surface area and microporosity of 1.8 nm pillared clays from the nitrogen adsorption isotherm". Microporous Materials, vol. 7, no. 6, pp. 287-297, 1996.spa
dc.relation.referencesJ. De Boer, B. Lippens, B. Linsen, J. Broekhoff, A. Van den Heuvel, and T. Osinga, "Thet-curve of multimolecular N2-adsorption". Journal of Colloid and Interface Science, vol. 21, no. 4, pp. 405-414, 1966.spa
dc.relation.referencesR.J. Dombrowski, C.M. Lastoskie, and D.R. Hyduke, "The Horvath–Kawazoe method revisited". Colloids Surfaces A: Physicochemical and Engineering Aspects, vol. 187, pp. 23-39, 2001.spa
dc.relation.referencesS.J. Gregg and K. Sing, "Adsorption, Surface Area and Porosity". Academic Press: London, UK, pp. 41-61, 1982.spa
dc.relation.referencesF.J. Ariza-Pineda, Informe de avance N°1 Joven Investigador. Revisión bibliográfica, in: Proyecto Minciencias: Tecnologías alternativas para el tratamiento de aguas residuales de la industria textil: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia, 2021.spa
dc.relation.referencesR.B. Baird, A.D. Eaton, and E.W. Rice, Standard Methods for the Examination of Water and Wastewater. 23 ed., American Public Health Association.: Washington, DC, 2017.spa
dc.relation.referencesJ.N. Chakraborty, "Chapter 32 - Wastewater problem in textile industry". In: Fundamentals and Practices in Colouration of Textiles. pp. 381-408, Woodhead Publishing: India, 2010.spa
dc.relation.referencesB. Reyna-Ávila, El intercambio iónico, su descripción y comportamiento químico, in: Proyecto de Investigación para obtener el Título de Ingeniero Químico Industrial: Escuela Superior de Ingeniería Química e Industrias Extracticvas, Instituto Politécnico Nacional, México, D. F, 2014.spa
dc.relation.referencesS. Al-Asheh and A. Aidan, "Chapter 8 - A comprehensive method of ion exchange resins regeneration and its optimization for water treatment". In: Promising Techniques for Wastewater Treatment and Water Quality Assessment. pp. 163-176, IntechOpen: London, UK, 2021.spa
dc.relation.referencesF.A. Basualto-Pedreros, Extracción de sulfato mediante resinas de intercambio iónico para su aplicación al tratamiento de aguas de relaves, in: Informe para optar al Título de Ingeniero Civil Metalúrgico: Departamento de Ingeniería Metalúrgica, Universidad de Concepción, Chile, 2019.spa
dc.relation.referencesA.A. Zagorodni, "Chapter 2 - Ion Exchangers, their Structure and Major Properties". In: Ion Exchange Materials. A.A. Zagorodni (Ed), pp. 9-54, Elsevier: Oxford, 2007.spa
dc.relation.referencesR.M. Wheaton and L.J. Lefevre, Dowex Ion Exchange Resins: Fundamentals of Ion Exchange: Dow Liquid Separations, 2000.spa
dc.relation.referencesT.V. Arden, "Chapter 2 - The Ion Exchange Process". In: Water Purification by Ion Exchange. pp. 13-26, Springer Science & Business Media: New York, USA, 2012.spa
dc.relation.referencesL. Romero, Capítulo 3 - Curso Tratamiento de Agua. pp. 37, 2017. Disponible en: https://datospdf.com/download/curso-tratamiento-de-agua-cap-3-_5a4bc9c3b7d7bcb74fcb472d_pdf.spa
dc.relation.referencesM. Wawrzkiewicz and Z. Hubicki, "Chapter 2 - Anion exchange resins as effective sorbents for removal of acid, reactive, and direct dyes from textile wastewaters". In: Ion Exchange: Studies and Applications. A. Kilislioglu (Ed), pp. 37-72, Istanbul University, Turkey, 2015.spa
dc.relation.referencesS.B. Applebaum, "Chapter 2 - Survey of the impurities in water, their harmful effects in industry, and methods of removing them ". In: Demineralization by ion exchange in water treatment and chemical processing of other liquids. Elsevier: New York and London, 1968.spa
dc.relation.referencesN.G.N. Chandrasekara and R. Pashley, "Study of a new process for the efficient regeneration of ion exchange resins". Desalination, vol. 357, pp. 131-139, 2015.spa
dc.relation.referencesInamuddin and M. Luqman, "Chapter 1 - Introduction to Ion Exchange Processes". In: Ion Exchange Technology I: Theory and Materials. M. Mahmoud-Nasef and Z. Ujang (Eds), pp. 1-40, Springer Science & Business Media, 2012.spa
dc.relation.referencesM. Wawrzkiewicz, "Comparison of the efficiency of Amberlite IRA 478RF for acid, reactive, and direct dyes removal from aqueous media and wastewaters". Industrial & Engineering Chemistry Research, vol. 51, no. 23, pp. 8069-8078, 2012.spa
dc.relation.referencesM. Wawrzkiewicz and A. Kucharczyk, "Adsorptive removal of direct azo dyes from textile wastewaters using weakly basic anion exchange resin". International Journal of Molecular Sciences, vol. 24, no. 5, pp. Article ID 4886, 2023.spa
dc.relation.referencesM. Wawrzkiewicz, Z. Hubicki, and E. Polska-Adach, "Strongly basic anion exchanger Lewatit MonoPlus SR-7 for acid, reactive, and direct dyes removal from wastewaters". Separation Science Technology, vol. 53, no. 7, pp. 1065-1075, 2018.spa
dc.relation.referencesM.A. Kamboh, I.B. Solangi, S. Sherazi, and S. Memon, "Synthesis and application of p-tert-butylcalix[8]arene immobilized material for the removal of azo dyes". Journal of Hazardous Materials, vol. 186, no. 1, pp. 651-658, 2011.spa
dc.relation.referencesF.A.A. Villa and A.H. Anaguano, "Determinación del punto de carga cero y punto isoeléctrico de dos residuos agrícolas y su aplicación en la remoción de colorantes". Revista de Investigación Agraria y Ambiental, vol. 4, no. 2, pp. 27-37, 2013.spa
dc.relation.referencesM. Wawrzkiewicz and Z. Hubicki, "Anion exchange resins of tri-n-butyl ammonium functional groups for dye baths and textile wastewater treatment". Solvent Extraction Ion Exchange, vol. 34, no. 6, pp. 558-575, 2016.spa
dc.relation.referencesB. Bindhu, H. Shaji, K. Kuruvila, M. Nazerine, and S. Shaji, "Removal of total hardness using low cost adsorbents". IOP Conference Series: Materials Science and Engineering, vol. 1114, no. 1, pp. Article ID 012089, 2021.spa
dc.relation.referencesB. Meroufel, O. Benali, M. Benyahia, Y. Benmoussa, and M. Zenasni, "Adsorptive removal of anionic dye from aqueous solutions by Algerian kaolin: Characteristics, isotherm, kinetic and thermodynamic studies". Journal of Energy and Environment, vol. 4, no. 3, pp. 482-491, 2013.spa
dc.relation.referencesS. Ismadji, F.E. Soetaredjo, and A. Ayucitra, "Chapter 4 - The Equilibrium Studies in the Adsorption of Hazardous Substances Using Clay Minerals ". In: Clay Materials for Environmental Remediation. pp. 57-92, Springer, 2015.spa
dc.relation.referencesD. Figueroa, A. Moreno, and A. Hormaza, "Equilibrio, termodinámica y modelos cinéticos en la adsorción de Rojo 40 sobre tuza de maíz". Ingenierías Universidad de Medellín, vol. 14, no. 26, pp. 105-120, 2015.spa
dc.relation.referencesLewatit®, catálogo resina MonoPlus S 108 H. Tratamiento de intercambio catiónico. pp. 4, 2012. Disponible en: https://www.lenntech.com/Data-sheets/Lewatit-MonoPlus-S-108-ES-L.pdf.spa
dc.relation.referencesLewatit®, catálogo resina MonoPlus M 500 OH. Tratamiento de intercambio aniónico. pp. 4, 2012. Disponible en: https://www.lenntech.com/Data-sheets/Lewatit-MonoPlus-M-500-SP-L.pdf.spa
dc.relation.referencesR. Huang, Q. Zhang, H. Yao, X. Lu, Q. Zhou, and D. Yan, "Ion-exchange resins for efficient removal of colorants in bis (hydroxyethyl) terephthalate". ACS omega, vol. 6, no. 18, pp. 12351-12360, 2021.spa
dc.relation.referencesNanocolor®, DQO 160 (REF. 985 026). Demanda Química de Oxígeno. pp. 2, 2018. Disponible en: https://es.vwr.com/assetsvc/asset/es_ES/id/27171989/contents/ifu_nanocolor-cod-160-tube-test-with-barcode.pdf.spa
dc.relation.referencesG. Darmograi, B. Prelot, A. Geneste, L.-C. De Menorval, and J. Zajac, "Removal of three anionic orange-type dyes and Cr (VI) oxyanion from aqueous solutions onto strongly basic anion-exchange resin. The effect of single-component and competitive adsorption". Colloids Surfaces A: Physicochemical Engineering Aspects, vol. 508, pp. 240-250, 2016.spa
dc.relation.referencesM. Wawrzkiewicz, "Anion-exchange resins for CI Direct Blue 71 removal from aqueous solutions and wastewaters: Effects of basicity and matrix composition and structure". Industrial & Engineering Chemistry Research, vol. 53, no. 29, pp. 11838-11849, 2014.spa
dc.relation.referencesMinisterio de Ambiente y Desarrollo Sostenible, Resolución 0631 de 2015. Por la cual se establecen los parámetros y los valores límites máximos permisibles en los vertimientos puntuales a cuerpos de aguas superficiales y a los sistemas de alcantarillado público y se dictan otras disposiciones, Ministerio de Ambiente y Desarrollo Sostenible: Colombia, Bogotá D.C., 2015. Disponible en: https://www.minambiente.gov.co/documento-normativa/resolucion-631-de-2015/.spa
dc.relation.referencesM. Fathy, T.A. Moghny, A.E. Awadallah, and A.-H.A. El-Bellihi, "Study the adsorption of sulfates by high cross-linked polystyrene divinylbenzene anion-exchange resin". Applied Water Science, vol. 7, pp. 309-313, 2017.spa
dc.relation.referencesM. Fathy, T.A. Moghny, A.E. Awadallah, and A.-H.A. El-Bellihi, "Adsorption kinetics of sulfates by anion exchange resin containing pristine multiwalled carbon nano tubes". Global Journal of Research in Engineering, vol. 14, no. 1, 2014.spa
dc.relation.referencesK.Y. Mora-Bonilla, Degradación del colorante rojo allura en solución acuosa mediante un proceso avanzado de oxidación, in: Tesis de Maestría en Ingeniería - Ingeniería Ambiental: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia, 2020.spa
dc.relation.referencesA.-R.A. Giwa, I.A. Bello, A.B. Olabintan, O.S. Bello, and T.A. Saleh, "Kinetic and thermodynamic studies of fenton oxidative decolorization of methylene blue". Heliyon, vol. 6, no. 8, pp. Article ID e04454, 2020.spa
dc.relation.referencesS. Hashemian, "Fenton-like oxidation of Malachite green solutions: Kinetic and thermodynamic study". Journal of Chemistry, vol. 2013, pp. Article ID 809318, 2013.spa
dc.relation.referencesH.S. Fogler, Elementos de Ingeniería de las Reacciones Químicas. Tercera Edición ed., Pearson educación, México, Naucalpan de Juarez, 2001.spa
dc.relation.referencesC. Lopez-Lopez, J. Martín-Pascual, M. Martínez-Toledo, M. Muñío, E. Hontoria, and J. Poyatos, "Kinetic modelling of TOC removal by H2O2/UV, photo-Fenton and heterogeneous photocatalysis processes to treat dye-containing wastewater". International Journal of Environmental Science Technology, vol. 12, pp. 3255-3262, 2015.spa
dc.relation.referencesE. Gil-Pavas, A. Betancourt, M. Angulo, I. Dobrosz-Gomez, and M.Á. Gómez-García, "The Box-Benkhen experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter". Water Science Technology, vol. 60, no. 11, pp. 2809-2818, 2009.spa
dc.relation.referencesS.S. Moersidik, R. Nugroho, M. Handayani, and M.A. Pratama, "Optimization and reaction kinetics on the removal of nickel and COD from wastewater from electroplating industry using electrocoagulation and advanced oxidation processes". Heliyon, vol. 6, no. 2, pp. Article ID e03319, 2020.spa
dc.relation.referencesM.D. Nicodemos Ramos, L.A. Sousa, and A. Aguiar, "Effect of cysteine using fenton processes on decolorizing different dyes: A kinetic study". Environmental Technology, vol. 43, no. 1, pp. 70-82, 2022.spa
dc.relation.referencesS.O. Ganiyu, S. Sable, and M.G. El-Din, "Advanced oxidation processes for the degradation of dissolved organics in produced water: A review of process performance, degradation kinetics and pathway". Chemical Engineering Journal, vol. 429, pp. Article ID 132492, 2022.spa
dc.relation.referencesY. Li and H. Cheng, "Chemical kinetic modeling of organic pollutant degradation in fenton and solar photo-fenton processes". Journal of the Taiwan Institute of Chemical Engineers, pp. 175-184, 2021.spa
dc.relation.referencesM. Behnajady, N. Modirshahla, and F. Ghanbary, "A kinetic model for the decolorization of CI acid yellow 23 by fenton process". Journal of Hazardous Materials, vol. 148, no. 1-2, pp. 98-102, 2007.spa
dc.relation.referencesN. Ertugay and F.N. Acar, "Removal of COD and color from Direct Blue 71 azo dye wastewater by Fenton’s oxidation: Kinetic study". Arabian Journal of Chemistry, vol. 10, pp. S1158-S1163, 2017.spa
dc.relation.referencesP. Nazari, P. Tootoonchian, and S.R. Setayesh, "Efficient degradation of AO7 by ceria-delafossite nanocomposite with non-inert support as a synergistic catalyst in electro-Fenton process". Environmental Pollution, vol. 252, pp. 749-757, 2019.spa
dc.relation.referencesN. Nimra, M. Yaseen, Z.A. Rehan, M. Zahid, R.A. Shakoor, A. Jilani, J. Iqbal, S. Rasul, and I. Shahid, "Coal fly ash supported CoFe2O4 nanocomposites: Synergetic fenton-like and photocatalytic degradation of methylene blue". Environmental Research, vol. 206, pp. Article ID 112280, 2022.spa
dc.relation.referencesJ.H. Ramirez, A.M. Silva, M.A. Vicente, C.A. Costa, and L.M. Madeira, "Degradation of acid orange 7 using a saponite-based catalyst in wet hydrogen peroxide oxidation: kinetic study with the Fermi's equation". Applied Catalysis B: Environmental, vol. 101, no. 3-4, pp. 197-205, 2011.spa
dc.relation.referencesP.A. Henao-Aguirre, I.F. Macías-Quiroga, G.I. Giraldo-Gómez, and N.R. Sanabria-González, "Catalytic oxidation of ponceau 4R in aqueous solution using iron-impregnated Al-pillared bentonite: Optimization of the process". Bulletin of Chemical Reaction Engineering Catalysis, vol. 16, no. 3, pp. 491-506, 2021.spa
dc.relation.referencesF. Ay, E.C. Catalkaya, and F.J.J.o.H.M. Kargi, "A statistical experiment design approach for advanced oxidation of direct red azo-dye by photo-Fenton treatment". vol. 162, no. 1, pp. 230-236, 2009.spa
dc.relation.referencesH. Gutiérrez-Pulido and R. De la Vara-Salazar, "Capítulo 1 - Introducción al diseño de experimentos". In: Análisis y diseño de experimentos. pp. 2-14, McGraw-Hill Interamericana: México, 2012.spa
dc.relation.referencesJ.H. Ramirez, C.A. Costa, and L.M. Madeira, "Experimental design to optimize the degradation of the synthetic dye orange II using fenton's reagent". Catalysis Today, vol. 107-108, pp. 68-76, 2005.spa
dc.relation.referencesH. Gutiérrez-Pulido and R. De la Vara-Salazar, "Capítulo 12 - Optimización de procesos con metodología de superficie de respuesta". In: Análisis y diseño de experimentos. pp. 384-420, McGraw-Hill Interamericana: México, 2012.spa
dc.relation.referencesH. Gutiérrez-Pulido and R. De la Vara-Salazar, "Capítulo 6 - Diseño factorial 2k". In: Análisis y diseño de experimentos. pp. 384-420, McGraw-Hill Interamericana: México, 2012.spa
dc.relation.referencesH. Gutiérrez-Pulido and R. De la Vara-Salazar, "Capítulo 11 - Análisis de regresión". In: Análisis y diseño de experimentos. pp. 384-420, McGraw-Hill Interamericana: México, 2012.spa
dc.relation.referencesF.J. Ariza-Pineda, Informe de avance N°3 Joven Investigador. Ensayos preliminares de oxidación, in: Proyecto Minciencias: Tecnologías alternativas para el tratamiento de aguas residuales de la industria textil: Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia sede Manizales: Manizales, Colombia, 2022.spa
dc.relation.referencesI. Talinli and G. Anderson, "Interference of hydrogen peroxide on the standard COD test". Water Research, vol. 26, no. 1, pp. 107-110, 1992.spa
dc.relation.referencesY. Wang, W. Li, and A. Irini, "A novel and quick method to avoid H2O2 interference on COD measurement in Fenton system by Na2SO3 reduction and O2 oxidation". Water Science Technology, vol. 68, no. 7, pp. 1529-1535, 2013.spa
dc.relation.referencesM.C. Sobrero and A. Ronco, "Capitulo 4 - Ensayo de toxicidad aguda con semillas de lechuga Lactuca sativa L". In: Ensayos toxicológicos y métodos de evaluación de calidad de aguas: Estandarización, intercalibración, resultados y aplicaciones. G. Castillo (Ed), pp. 71-80: Instituto Mexicano de Tecnología del Agua: México, 2004.spa
dc.relation.referencesM. Di Salvatore, A. Carafa, and G. Carratu, "Assessment of heavy metals phytotoxicity using seed germination and root elongation tests: A comparison of two growth substrates". Chemosphere, vol. 73, no. 9, pp. 1461-1464, 2008.spa
dc.relation.referencesM.G. Bagur-González, C. Estepa-Molina, F. Martín-Peinado, and S. Morales-Ruano, "Toxicity assessment using Lactuca sativa L. bioassay of the metal (loid)s As, Cu, Mn, Pb and Zn in soluble-in-water saturated soil extracts from an abandoned mining site". Journal of Soils and Sediments, vol. 11, pp. 281-289, 2011.spa
dc.relation.referencesV. Dritsa, F. Rigas, D. Doulia, E. Avramides, and I. Hatzianestis, "Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe". Water, Air and Soil Pollution, vol. 204, pp. 19-27, 2009.spa
dc.relation.referencesE. Gil-Pavas, J. Medina, I. Dobrosz-Gómez, and M.A. Gómez, "Degradación del colorante amarillo 12 de aguas residuales industriales utilizando hierro cero valente, peróxido de hidrógeno y radiación ultravioleta". Información Tecnológica, vol. 27, no. 3, pp. 23-34, 2016.spa
dc.relation.referencesJ. Guillemant, M. Lacoue-Nègre, A. Berlioz-Barbier, F. Albrieux, L.P. de Oliveira, J.-F. Joly, and L. Duponchel, "Towards a new pseudo-quantitative approach to evaluate the ionization response of nitrogen compounds in complex matrices". Scientific Reports, vol. 11, no. 1, pp. 6417, 2021.spa
dc.relation.referencesA.M. Roudi, S. Salem, M. Abedini, A. Maslahati, and M. Imran, "Response surface methodology (RSM)-based prediction and optimization of the Fenton process in landfill leachate decolorization". Processes, vol. 9, no. 12, pp. Article ID 2284, 2021.spa
dc.relation.referencesM.Y. Noordin, V. Venkatesh, S. Sharif, S. Elting, and A. Abdullah, "Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel". Journal of Materials Processing Technology, vol. 145, no. 1, pp. 46-58, 2004.spa
dc.relation.referencesC.S. Santana, M.D.N. Ramos, C.C.V. Velloso, and A. Aguiar, "Kinetic evaluation of dye decolorization by Fenton processes in the presence of 3-hydroxyanthranilic acid". International Journal of Environmental Research Public Health, vol. 16, no. 9, pp. 1-16, 2019.spa
dc.relation.referencesJ.A. González, "Uso e interpretación de los intervalos de confianza". Medicina Clínica Práctica, vol. 4, 2021.spa
dc.relation.referencesR. Candia B and G. Caiozzi A., "Intervalos de Confianza". Revista médica de Chile, vol. 133, pp. 1111-1115, 2005.spa
dc.relation.referencesA.C. Bader, H.J. Hussein, and M.T. Jabar, "BOD: COD ratio as indicator for wastewater and industrial water pollution". International Journal of Special Education, vol. 37, no. 3, pp. 2022, 2022.spa
dc.relation.referencesJ.M. Symons, R.E. McKinney, and H.H. Hassis, "A procedure for determination of the biological treatability of industrial wastes". Water Pollution Control Federation, pp. 841-852, 1960.spa
dc.relation.referencesN.N. Mahamuni and Y.G. Adewuyi, "Advanced oxidation processes (AOPs) involving ultrasound for waste water treatment: A review with emphasis on cost estimation". Ultrasonics Sonochemistry, vol. 17, no. 6, pp. 990-1003, 2010.spa
dc.relation.referencesE. Mousset, W.H. Loh, W.S. Lim, L. Jarry, Z. Wang, and O. Lefebvre, "Cost comparison of advanced oxidation processes for wastewater treatment using accumulated oxygen-equivalent criteria". Water Research, vol. 200, pp. Article ID 117234, 2021.spa
dc.relation.referencesD.A. dos Santos Napoleão, F.S. Cezar Filho, and A. Siqueira, "Economic analysis of Fenton process in the slurry treatment". Journal of Environmental Science, Toxicology and Food Technology, vol. 11, no. 8, pp. 12-16, 2017.spa
dc.relation.referencesM. Priyadarshini, I. Das, M.M. Ghangrekar, and L. Blaney, "Advanced oxidation processes: Performance, advantages, and scale-up of emerging technologies". Journal of Environmental Management, vol. 316, pp. Article ID 115295, 2022.spa
dc.relation.referencesP.H. Nakhate, C.R. Gadipelly, N.T. Joshi, and K.V. Marathe, "Engineering aspects of catalytic ozonation for purification of real textile industry wastewater at the pilot scale". Journal of Industrial and Engineering Chemistry, vol. 69, pp. 77-89, 2019.spa
dc.relation.referencesP. Cañizares, R. Paz, C. Sáez, and M.A. Rodrigo, "Costs of the electrochemical oxidation of wastewaters: A comparison with ozonation and Fenton oxidation processes". Journal of Environmental Management, vol. 90, no. 1, pp. 410-420, 2009.spa
dc.relation.referencesA.M. El‐Dein, J. Libra, and U. Wiesmann, "Cost analysis for the degradation of highly concentrated textile dye wastewater with chemical oxidation H2O2/UV and biological treatment". Journal of Chemical Technology and Biotechnology, vol. 81, no. 7, pp. 1239-1245, 2006.spa
dc.relation.referencesAqua Integral®, Resina de intercambio cationico Lewatit S108 × 25 Litros. Bogotá, Colombia, 2023. Disponible en: https://aquaintegral.co/producto/resina-de-intercambio-cationica-lewatit-s108-x-25-litros/.spa
dc.relation.referencesChemAnalyst, Hydrochloric acid price trend and forecast in top 10 leading countries worldwide, 2023. Disponible en: https://www.chemanalyst.com/Pricing-data/hydrochloric-acid-61.spa
dc.relation.referencesAlibaba, Lewatit-resina aniónica M500, desmineralización de agua industrial, 2023. Disponible en: https://spanish.alibaba.com/product-detail/lewatit-M500-anionic-resin-A600-industrial-1600642281612.html.spa
dc.relation.referencesAqua Integral®, Soda cáustica en escamas CH 98% × 25 kg. Bogotá, Colombia, 2023. Disponible en: https://aquaintegral.co/producto/soda-caustica-en-escamas-ch-98-x-25-kg/.spa
dc.relation.referencesAqua Integral®, Peróxido de hidrógeno al 50% × 30 kg. Bogotá, Colombia, 2023. Disponible en: https://aquaintegral.co/producto/peroxido-de-hidrogeno-al-50-x-30-kg/.spa
dc.relation.referencesINTRATEC, Sodium bicarbonate prices, 2023. Disponible en: https://www.intratec.us/chemical-markets/sodium-bicarbonate-price.spa
dc.relation.referencesAguasManizales, Tarifas. Manizales, Colombia, 2023. Disponible en: https://www.aguasdemanizales.com.co/LinkClick.aspx?fileticket=YgzLEgd-IpM%3D&portalid=1&timestamp=1680190729142.spa
dc.relation.referencesChecGrupo-EPM, Costo unitario y tarifas mercado regulado. Manizales, Colombia, 2023. Disponible en: https://www.chec.com.co/Home/Transparencia/Planeaci%C3%B3n-presupuestos-e-informes/Publicaciones-de-Tarifas.spa
dc.relation.referencesKasalab-blog, Guía para la regeneración de resinas de intercambio iónico. Bogotá, Colombia, 2018. Disponible en: https://www.kasalab.com/como-hacer-la-regeneracion-de-resinas-de-intercambio-ionico-en-un-desionizador-de-agua/.spa
dc.relation.referencesFluidMix, Equipos de agitación y dosificación. Agitador industrial serie VTA. Madrid, España., 2023. Disponible en: https://www.agitadoresfluidmix.com/agitador-industrial-vta/.spa
dc.relation.referencesFluidMix, Equipos de agitación y dosificación. Agitador industrial serie VTS. Madrid, España., 2023. Disponible en: https://www.agitadoresfluidmix.com/agitador-industrial-vts/.spa
dc.relation.referencesA. Amini, Y. Kim, J. Zhang, T. Boyer, and Q. Zhang, "Environmental and economic sustainability of ion exchange drinking water treatment for organics removal". Journal of Cleaner Production, vol. 104, pp. 413-421, 2015.spa
dc.relation.referencesN. Marín-González, C. Giraldo-Loaiza, I.F. Macías-Quiroga, J.D. Rivera-Giraldo, J.A. Castaño, and N.R. Sanabria-González, "Oxidation of Allura Red AC Using the NaHCO3- activated H2O2 System Catalyzed with Cobalt Supported on Al-PILC". ChemEngineering, vol. 8, no. 1, pp. 14, 2024.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalTratamiento de agua residualspa
dc.subject.proposalIndustria textilspa
dc.subject.proposalNegro ácido 194spa
dc.subject.proposalIntercambio iónicospa
dc.subject.proposalProcesos de oxidación avanzadosspa
dc.subject.proposalCo/Al-PILC-BAPspa
dc.subject.proposalDegradación de materia orgánicaspa
dc.subject.proposalWastewater treatmenteng
dc.subject.proposalTextile industryeng
dc.subject.proposalAcid Black 194eng
dc.subject.proposalIon exchangeeng
dc.subject.proposalAdvanced oxidation processeseng
dc.subject.proposalOrganic matter degradationeng
dc.titleAplicación del sistema de oxidación Co/Al-PILC-BAP como tecnología alternativa para el tratamiento de un agua residual proveniente de la industria textilspa
dc.title.translatedApplication of the Co/Al-PILC-BAP oxidation system as an alternative technology for the treatment of wastewater from the textile industryeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentBibliotecariosspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleConvocatoria 852-2019 “Convocatoria de Proyectos Conectando Conocimiento 2019”spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1053867548.2024.pdf
Tamaño:
4.75 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ingeniería - Ingeniería Química

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: