Some homotopical aspects of de Rham theory

dc.contributor.advisorQuintero Vélez, Alexanderspa
dc.contributor.advisorArias Abad, Camilospa
dc.contributor.authorVélez Vásquez, Sebastiánspa
dc.date.accessioned2021-02-03T13:31:59Zspa
dc.date.available2021-02-03T13:31:59Zspa
dc.date.issued2020-07-01spa
dc.description.abstractEl estudio de las propiedades topológicas de las variedades suaves desde el punto de vista de formas diferenciales y de las ecuaciones que dichas formas satisfacen es conocido como teoría de de-Rham. Invariantes topológicos de variedades tales como los grupos de cohomología y las clases características se pueden describir naturalmente en el lenguaje de de-Rham. Esta tesis trata con invariantes de tipo categórico que también pueden ser descritos en términos de formas diferenciales. Adoptamos el punto de vista de la teoría de representaciones, donde se estudian grupos mediante sus acciones lineales en espacios vectoriales. En topología, las correspondientes acciones lineales son llamadas sistemas locales infinitos, los cuales son el objeto de estudio de esta tesis. Describimos cómo varios aspectos de la teoría de de-Rham se pueden categorificar, lo que conlleva al estudio de sistemas locales. Una nueva característica que emerge en este contexto es la necesidad de reemplazar la noción de asociatividad estricta por una noción de asociatividad compatible con los métodos de teoría de homotopía. Esta nueva noción de asociatividad está codificada en las estructuras A-infinito, que son estructuras algebraicas donde la asociatividad solo se cumple salvo una secuencia infinita de homotopías.spa
dc.description.abstractThe study of topological properties of manifolds from the point of view differential forms and the equations they satisfy is known as de Rham theory. Topological invariants of manifolds such as cohomology groups and characteristic classes can be naturally described in de Rham's language. This thesis deals with more categorical invariants of manifolds that can also be studied via differential forms. We take the point of view of representation theory, where one studies groups via their linear actions on vector spaces. In topology, the corresponding linear actions are called infinity local systems, and are the subject of this thesis. We describe how various aspects of de Rham theory can be categorified to the study of these representations of spaces. One new aspect that emerges is the need to replace the strict notion of associativity by a version of associativity which is more compatible with the methods of homotopy theory. This is the notion of A-infinity structures, which are algebraic structures where associativity only holds up to an infinite sequence of homotopies.spa
dc.description.degreelevelDoctoradospa
dc.description.sponsorshipColcienciasspa
dc.format.extent92spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/79048
dc.language.isoengspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de matemáticasspa
dc.publisher.programMedellín - Ciencias - Doctorado en Ciencias - Matemáticasspa
dc.relation.referencesArias Abad, C., and Schatz, F. The A-infinity de rham theorem and integration of representations up to homotopy. International Mathematics Research Notices 2013 (07 2012).spa
dc.relation.referencesArias Abad, C., and Schatz, F. Higher holonomies: Comparing two constructions. Differential Geometry and its Applications 40 (04 2014).spa
dc.relation.referencesArias Abad, C., and Schatz, F. Flat Z-graded Connections and Loop Spaces. International Mathematics Research Notices 2018, 4 (12 2016), 961-1008.spa
dc.relation.referencesAschieri, P., Cantini, L., and Jurco, B. Nonabelian bundle gerbes, their differential geometry and gauge theory. Communications in Mathematical Physics 254 (12 2003).spa
dc.relation.referencesBaez, J., and Schreiber, U. Higher gauge theory.spa
dc.relation.referencesBen-Zvi, D., and Nadler, D. Loop spaces and connections. Journal of Topology (02 2010).spa
dc.relation.referencesBlock, J., and Smith, A. The higher Riemann-Hilbert correspondence. Advances in Mathematics 252 (02 2014), 382-405.spa
dc.relation.referencesBrav, C., and Dyckerhoff, T. Relative calabi-yau structures. Compositio Mathematica 155 (06 2016).spa
dc.relation.referencesBreen, L., and Messing, W. Differential geometry of gerbes. Advances in Mathematics 198 (12 2005), 732-846.spa
dc.relation.referencesChen, K.-T. Iterated path integrals. Bulletin of The American Mathematical Society 83 (09 1977).spa
dc.relation.referencesFaria Martins, J., and Picken, R. The fundamental gray 3-groupoid of a smooth manifold and local 3-dimensional holonomy based on a 2-crossed module. Differential Geometry and its Applications 29 (07 2009).spa
dc.relation.referencesGreub, W., Halperin, S., and Vanstone, R. Connections, curvature and cohomology ii. Lie groups, principal bundles and characteristic glasses (01 1973).spa
dc.relation.referencesGugenheim, V. On chen's iterated integrals. Illinois Journal of Mathematics 21 (09 1977).spa
dc.relation.referencesHolstein, J. Morita cohomology. Mathematical Proceedings of the Cambridge Philosophical Society 158 (03 2014).spa
dc.relation.referencesIgusa, K. Iterated integrals of superconnections, 2009.spa
dc.relation.referencesKeller, B. Introduction to A-infi nity algebras and modules, 1999.spa
dc.relation.referencesLaurent-Gengoux, C., Stienon, M., and Xu, P. Non abelian differentiable gerbes. Advances in Mathematics 220 (03 2009), 1357-1427.spa
dc.relation.referencesMalm, E. J. String topology and the based loop space, 2011.spa
dc.relation.referencesMurray, M. K. Bundle gerbes. Journal of the London Mathematical Society 54, 2 (1996), 403{416.spa
dc.relation.referencesQuillen, D. Superconnections and the chern character. Topology 24 (12 1985), 89-95.spa
dc.relation.referencesRivera, M., and Zeinalian, M. The colimit of an infinity-local system as a twisted tensor product, 2018.spa
dc.relation.referencesSchommer-Pries, C. Central extensions of smooth 2-groups and a fi nite-dimensional string 2-group. Geometry & Topology 15 (11 2009).spa
dc.relation.referencesArias Abad, C., Quintero Vélez, A., and Vélez Vásquez, S. An A-infinity version of the poincaré lemma. Pacifi c Journal of Mathematics 302, 2 (Nov 2019), 385-412spa
dc.relation.referencesSchreiber, U., and Waldorf, K. Connections on non-abelian gerbes and their holonomy. Theory and Applications of Categories 28 (08 2008).spa
dc.relation.referencesStasheff, J. Homotopy associativity of h-spaces i. Transactions of the American Mathematical Society 108 (01 1963), 275-292.spa
dc.relation.referencesStasheff, J. Homotopy associativity of h-spaces ii. Transactions of the American Mathematical Society 108 (08 1963), 275.spa
dc.relation.referencesWaldorf, K. A global perspective to connections on principal 2-bundles. Forum Mathematicum (08 2016).spa
dc.relation.referencesWaldorf, K. Parallel transport in principal 2-bundles, 2017.spa
dc.relation.referencesWockel, C. Principal 2-bundles and their gauge 2-groups. Forum Mathematicum 23 (10 2009).spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc510 - Matemáticas::514 - Topologíaspa
dc.subject.ddc510 - Matemáticas::516 - Geometríaspa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.proposalde Rham cohomologyeng
dc.subject.proposalcohomología de de Rhamspa
dc.subject.proposallocal systemseng
dc.subject.proposalsistemas localesspa
dc.subject.proposalparallel transporteng
dc.subject.proposaltransporte paralelospa
dc.subject.proposalcorrespondencia de Riemann-Hilbertspa
dc.subject.proposalRiemann-Hilbert correspondenceeng
dc.subject.proposalintegrales iteradasspa
dc.subject.proposaliterated integraleng
dc.subject.proposalrepresentation theoryeng
dc.subject.proposalteoría de representaciónspa
dc.subject.proposalestructuras A-infinitospa
dc.subject.proposalA-infinity structureeng
dc.subject.proposalgrupoide infinitospa
dc.subject.proposalinfinite groupoideng
dc.subject.proposalrepresentación salvo homotopíaspa
dc.subject.proposalrepresentation up to homotopyeng
dc.subject.proposalflat connectioneng
dc.subject.proposalconexión planaspa
dc.subject.proposalhomotopyeng
dc.subject.proposalhomotopíaspa
dc.subject.proposalholonomíaspa
dc.subject.proposalholonomyeng
dc.subject.proposalprincipal 2-bundleeng
dc.subject.proposal2-fibrado principalspa
dc.titleSome homotopical aspects of de Rham theoryspa
dc.title.alternativeAlgunos aspectos homotópicos de la teoría de de Rhamspa
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1128404872.2020.pdf
Tamaño:
1.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias - Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
3.87 KB
Formato:
Item-specific license agreed upon to submission
Descripción: