Análisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleo

dc.contributor.advisorOrduz-Peralta, Sergiospa
dc.contributor.advisorHoyos-Madrigal, Bibianspa
dc.contributor.authorBedoya-Cardona, Johann Eveliospa
dc.contributor.corporatenameUniversidad Nacional de Colombia - Sede Medellínspa
dc.contributor.researchgroupBiología Funcionalspa
dc.date.accessioned2020-05-21T21:43:10Zspa
dc.date.available2020-05-21T21:43:10Zspa
dc.date.issued2019-11-29spa
dc.description.abstractUsing surface-active compounds to reduce the interfacial tension between hydrocarbons and water is a mechanism used in Enhanced Oil Recovery. Therefore, substances with a high surfactant activity that cause this reduction are continually being sought, and in this aspect, lipopeptides can be a cost-effective alternative. Molecular simulation techniques allow the analysis of this molecular activity in silico by representing the molecules of a system through an atomic interaction potential. According to the above, the surfactant properties of two lipopeptides produced by bacteria of the genus Bacillus, the iC15 surfactin and the iC13 kurstakin were studied, by Molecular Dynamics simulations. After selecting a suitable interaction potential to represent the molecules, simulations were made to study the effect of monomolecular films of the protonated lipopeptides on the surface tension (ST) of water, and the interfacial tension (IFT) of the hexadecane-water system. The pressure tensor method was used to calculate this tension founding that under this simulation system conditions, a saturated monolayer of iC15 suffocating reduces the ST of water to less than a half, and a similar behavior was observed for the IFT of the hexadecane-water system, checking its surfactant capacity. On the other hand, monolayers of the iC13 kurstakin present an excess of internal pressure which increases the ST of the air-water system and does not influence the IFT of the hexadecane-water, so it is not considered to be promising in Enhanced Oil Recovery.spa
dc.description.abstractEl empleo de compuestos con actividad surfactante para reducir la tensión interfacial entre hidrocarburos y el agua es uno de los mecanismos usados en recobro mejorado de petróleo, por ello continuamente se buscan sustancias con una alta actividad tensoactiva que ocasionen esta reducción, y en dicho aspecto los lipopéptidos pueden ser una alternativa rentable. Adicionalmente, las técnicas de simulación molecular permiten analizar este tipo de actividad molecular in silicio al representar las moléculas de un sistema mediante un potencial de interacción atómica. De acuerdo con lo anterior, mediante este trabajo se evaluaron las propiedades tensoactivas de dos lipopéptidos producidos por bacterias del género Bacillus spp., la surfactina iC15 y la kurstakina iC13 por medio de simulación por Dinámica Molecular. Luego de seleccionar un potencial de interacción adecuado para representar las moléculas se hicieron simulaciones para estudiar el efecto de películas monomoleculares de los lipopéptidos protonados en la tensión superficial (TS) del agua, y en la tensión interfacial (TIF) del sistema hexadecano-agua. Para calcular dicha tensión se usó el método del tensor de presión. Se comprobó que bajo las condiciones de simulación usadas, una monocapa saturada de la surfactina iC15 reduce la TS del agua a menos de la mitad y un comportamiento similar se observó para la TIF del sistema hexadecano-agua, comprobando así su capacidad tensoactiva. Por otra parte se observó que monocapas de la kurstakina iC13 presentan un exceso de presión interna, por lo que aumentan la TS del sistema aire-agua y no presentan un efecto en la TIF del sistema hexadecano-agua, por lo que no se considera que sea promisoria en Recobro Mejorado de Petróleo..spa
dc.description.degreelevelMaestríaspa
dc.format.extent95spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/77546
dc.language.isospaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentEscuela de biocienciasspa
dc.publisher.programMedellín - Ciencias - Maestría en Ciencias - Biotecnologíaspa
dc.relation.referencesAbascal, J. L., & Vega, C. (2005). A general purpose model for the condensed phases of water: TIP4P/2005. The Journal of Chemical Physics, 123(23), 234505. https://doi.org/10.1063/1.2121687spa
dc.relation.referencesAbderrahmani, A., Tapi, A., Nateche, F., Chollet, M., Leclère, V., Wathelet, B., … Jacques, P. (2011). Bioinformatics and molecular approaches to detect NRPS genes involved in the biosynthesis of kurstakin from Bacillus thuringiensis. Applied Microbiology and Biotechnology, 92(3), 571–581. https://doi.org/10.1007/s00253-011-3453-6spa
dc.relation.referencesAbraham, M., Hess, B., Spoel, D. van der, & Lindahl, E. (2015). GROMACS User Manual version 5.0.7. Www.Gromacs.Org. https://doi.org/10.1007/SpringerReference_28001spa
dc.relation.referencesAlejandre, J., & Chapela, G. A. (2010). The surface tension of TIP4P/2005 water model using the Ewald sums for the dispersion interactions. Journal of Chemical Physics, 132(1). https://doi.org/10.1063/1.3279128spa
dc.relation.referencesArima, K., Kakinuma, A., & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus Subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochemical and Biophysical Research Communications, 31(3), 488–494. https://doi.org/10.1016/0006-291X(68)90503-2spa
dc.relation.referencesAveyard, R., & Haydon, D. A. (1965). Thermodynamic properties of aliphatic hydrocarbon/water interfaces. Transactions of the Faraday Society, 61(0), 2255–2261. https://doi.org/10.1039/tf9656102255spa
dc.relation.referencesBéchet, M., Caradec, T., Hussein, W., Abderrahmani, A., Chollet, M., Leclère, V., … Jacques, P. (2012). Structure, biosynthesis, and properties of kurstakins, nonribosomal lipopeptides from Bacillus spp. Applied Microbiology and Biotechnology, 95(3), 593–600. https://doi.org/10.1007/s00253-012-4181-2spa
dc.relation.referencesBerendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. (1987). The missing term in effective pair potentials. Journal of Physical Chemistry, 91(24), 6269–6271. https://doi.org/10.1021/j100308a038spa
dc.relation.referencesBerendsen, H. J. C., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118spa
dc.relation.referencesBerendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction Models for Water in Relation to Protein Hydration BT - Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981 (B. Pullman, ed.). https://doi.org/10.1007/978-94-015-7658-1_21spa
dc.relation.referencesBerger, O., Edholm, O., & Jähnig, F. (1997). Molecular dynamics simulations of a fluid bilayer of dipalmitoylphosphatidylcholine at full hydration, constant pressure, and constant temperature. Biophysical Journal, 72(5), 2002–2013. https://doi.org/10.1016/S0006-3495(97)78845-3spa
dc.relation.referencesBest, R. B., & Mittal, J. (2010). Protein simulations with an optimized water model: Cooperative helix formation and temperature-induced unfolded state collapse. Journal of Physical Chemistry B, 114(46), 14916–14923. https://doi.org/10.1021/jp108618dspa
dc.relation.referencesBest, R. B., Zhu, X., Shim, J., Lopes, P. E. M., Mittal, J., Feig, M., & MacKerell, A. D. (2012). Optimization of the Additive CHARMM All-Atom Protein Force Field Targeting Improved Sampling of the Backbone ϕ, ψ and Side-Chain χ1 and χ2 Dihedral Angles. Journal of Chemical Theory and Computation, 8(9), 3257–3273. https://doi.org/10.1021/ct300400xspa
dc.relation.referencesBiria, D., Maghsoudi, E., Roostaazad, R., Dadafarin, H., Lotfi, S. S., & Amoozegar, M. A. (2010). Purification and characterization of a novel biosurfactant produced by Bacillus licheniformis MS3. World Journal of Microbiology and Biotechnology, 26(5), 871–878. https://doi.org/10.1007/s11274-009-0246-5spa
dc.relation.referencesBonmatin, J.-M., Laprévote, O., & Peypoux, F. (2003). Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity-structure relationships to design new bioactive agents. Combinatorial Chemistry & High Throughput Screening, 6(6), 541–556. https://doi.org/10.2174/138620703106298716spa
dc.relation.referencesBresme, F., Chacón, E., & Tarazona, P. (2010). Force-field dependence on the interfacial structure of oil-water interfaces. Molecular Physics, 108(14), 1887–1898. https://doi.org/10.1080/00268976.2010.496376spa
dc.relation.referencesBussi, G., Donadio, D., & Parrinello, M. (2008). Canonical sampling through velocity-rescaling. https://doi.org/10.1063/1.2408420spa
dc.relation.referencesCampanelli, J. R., & Wang, X. (1999). Dynamic interfacial tension of surfactant mixtures at liquid-liquid interfaces. Journal of Colloid and Interface Science, 213(2), 340–351. https://doi.org/10.1006/jcis.1999.6149spa
dc.relation.referencesHathout, Y., Demirev, P., Fenselau, C., Ho, Y.-P., & Ryzhov, V. (2002). Kurstakins: A New Class of Lipopeptides Isolated from Bacillus t huringiensis. Journal of Natural Products, 63(11), 1492–1496. https://doi.org/10.1021/np000169qspa
dc.relation.referencesGrangemard, I., Wallach, J., Maget-Dana, R., & Peypoux, F. (2001). Lichenysin: A more efficient cation chelator than surfactin. Applied Biochemistry and Biotechnology - Part A Enzyme Engineering and Biotechnology, 90(3), 199–210. https://doi.org/10.1385/ABAB:90:3:199spa
dc.relation.referencesGiner-Casares, J. J., Camacho, L., Martín-Romero, M. T., & Cascales, J. J. L. (2008). A DMPA langmuir monolayer study: From gas to solid phase. An atomistic description by molecular dynamics simulation. Langmuir, 24(5), 1823–1828. https://doi.org/10.1021/la7030297spa
dc.relation.referencesHess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-Hspa
dc.relation.referencesChen, F., & Smith, P. E. (2007). Simulated surface tensions of common water models. Journal of Chemical Physics, 126(22), 126–129. https://doi.org/10.1063/1.2745718spa
dc.relation.referencesCooper, D. G., Macdonald, C. R., Duff, S. J. B., & Kosaric, N. (1981). Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Applied and Environmental Microbiology, 42(3), 408–412.spa
dc.relation.referencesDarden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N·log(N) method for Ewald sums in large systems. The Journal of Chemical Physics. https://doi.org/10.1063/1.464397spa
dc.relation.referencesde Sousa, M., Dantas, I. T., Felix, A. K. N., de Sant’ana, H. B., Melo, V. M. M., & Gonçalves, L. R. B. (2014). Crude glycerol from biodiesel industry as substrate for biosurfactant production by Bacillus subtilis ATCC 6633. Brazilian Archives of Biology and Technology, 57(2), 295–301. https://doi.org/10.1590/S1516-89132014000200019spa
dc.relation.referencesDeleu, M., Razafindralambo, H., Popineau, Y., Jacques, P., Thonart, P., & Paquot, M. (1999). Interfacial and emulsifying properties of lipopeptides from Bacillus subtilis. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 152(1–2), 3–10. https://doi.org/10.1016/S0927-7757(98)00627-Xspa
dc.relation.referencesDickson, C. J., Madej, B. D., Skjevik, Å. A., Betz, R. M., Teigen, K., Gould, I. R., & Walker, R. C. (2014). Lipid14: The amber lipid force field. Journal of Chemical Theory and Computation, 10(2), 865–879. https://doi.org/10.1021/ct4010307spa
dc.relation.referencesDouarche, C., Allain, J. M., & Raspaud, E. (2015). Bacillus subtilis Bacteria Generate an Internal Mechanical Force within a Biofilm. Biophysical Journal, 109(10), 2195–2202. https://doi.org/10.1016/j.bpj.2015.10.004spa
dc.relation.referencesDror, R. O., Dirks, R. M., Grossman, J. P., Xu, H., & Shaw, D. E. (2012). Biomolecular simulation: a computational microscope for molecular biology. Annual Review of Biophysics, 41, 429–452. https://doi.org/10.1146/annurev-biophys-042910-155245spa
dc.relation.referencesDubois, T., Faegri, K., Perchat, S., Lemy, C., Buisson, C., Nielsen-LeRoux, C., … Lereclus, D. (2012). Necrotrophism is a Quorum-sensing-regulated lifestyle in bacillus thuringiensis. PLoS Pathogens, 8(4). https://doi.org/10.1371/journal.ppat.1002629spa
dc.relation.referencesEichenberger, A. P., Huang, W., Riniker, S., & Van Gunsteren, W. F. (2015). Supra-Atomic Coarse-Grained GROMOS Force Field for Aliphatic Hydrocarbons in the Liquid Phase. Journal of Chemical Theory and Computation, 11(7), 2925–2937. https://doi.org/10.1021/acs.jctc.5b00295spa
dc.relation.referencesGang, H., Liu, J., & Mu, B. (2015). Binding structure and kinetics of surfactin monolayer formed at the air/water interface to counterions: A molecular dynamics simulation study. Biochimica et Biophysica Acta - Biomembranes, 1848(10), 1955–1962. https://doi.org/10.1016/j.bbamem.2015.05.016spa
dc.relation.referencesGang, H. Z., Liu, J. F., & Mu, B. Z. (2010a). Interfacial behavior of surfactin at the decane/water interface: A molecular dynamics simulation. Journal of Physical Chemistry B, 114(46), 14947–14954. https://doi.org/10.1021/jp1057379spa
dc.relation.referencesGang, H. Z., Liu, J. F., & Mu, B. Z. (2010b). Molecular dynamics simulation of surfactin derivatives at the decane/water interface at low surface coverage. Journal of Physical Chemistry B, 114(8), 2728–2737. https://doi.org/10.1021/jp909202uspa
dc.relation.referencesHanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4, 17. https://doi.org/10.1186/1758-2946-4-17spa
dc.relation.referencesGang, H. Z., Liu, J. F., & Mu, B. Z. (2011). Molecular dynamics study of surfactin monolayer at the air/water interface. Journal of Physical Chemistry B, 115(44), 12770–12777. https://doi.org/10.1021/jp206350jspa
dc.relation.referencesHashimoto, M., Garstecki, P., Stone, H. A., & Whitesides, G. M. (2008). Interfacial instabilities in a microfluidic Hele-Shaw cell. Soft Matter, 4(7), 1403. https://doi.org/10.1039/b715867jspa
dc.relation.referencesHerzog, F. A., Braun, L., Schoen, I., & Vogel, V. (2016). Improved Side Chain Dynamics in MARTINI Simulations of Protein-Lipid Interfaces. Journal of Chemical Theory and Computation, 12(5), 2446–2458. https://doi.org/10.1021/acs.jctc.6b00122spa
dc.relation.referencesHorta, B. A. C., Fuchs, P. F. J., Van Gunsteren, W. F., & Hünenberger, P. H. (2011). New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters. Journal of Chemical Theory and Computation, 7(4), 1016–1031. https://doi.org/10.1021/ct1006407spa
dc.relation.referencesHuang, J., & Mackerell, A. D. (2013). CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354spa
dc.relation.referencesHumphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/https://doi.org/10.1016/0263-7855(96)00018-5spa
dc.relation.referencesHuszcza, E., & Burczyk, B. (2003). Biosurfactant production by Bacillus coagulans. Journal of Surfactants and Detergents, 6(1), 61–64. https://doi.org/10.1007/s11743-003-0249-2spa
dc.relation.referencesIglesias-Fernández, J., Darré, L., Kohlmeyer, A., Thomas, R. K., Shen, H. H., & Domene, C. (2015). Surfactin at the Water/Air Interface and in Solution. Langmuir, 31(40), 11097–11104. https://doi.org/10.1021/acs.langmuir.5b02305spa
dc.relation.referencesJarosaw Meller. (2001). Molecular Dynamics. Encyclopedia of Life Sciences, 1–8.spa
dc.relation.referencesJorgensen, W. L., & Tirado-Rives, J. (1988). The OPLS Potential Functions for Proteins. Energy Minimizations for Crystals of Cyclic Peptides and Crambin. Journal of the American Chemical Society, 110(6), 1657–1666. https://doi.org/10.1021/ja00214a001spa
dc.relation.referencesJoshi, S. J., Al-Wahaibi, Y. M., Al-Bahry, S. N., Elshafie, A. E., Al-Bemani, A. S., Al-Bahri, A., & Al-Mandhari, M. S. (2016). Production, Characterization, and Application of Bacillus licheniformis W16 Biosurfactant in Enhancing Oil Recovery. Frontiers in Microbiology, 7(November), 1–14. https://doi.org/10.3389/fmicb.2016.01853spa
dc.relation.referencesKakinuma, A., Sugino, H., Isono, M., Tamura, G., & Arima, K. (1969). Determination of Fatty Acid in Surfactin and Elucidation of the Total Structure of Surfactin. Agricultural and Biological Chemistry. https://doi.org/10.1080/00021369.1969.10859409spa
dc.relation.referencesKearns, D. B. (2011). A field guide to bacterial swarming motility. Nat Rev Micro, 8(9), 634–644. https://doi.org/10.1038/nrmicro2405.Aspa
dc.relation.referencesLazar, I., Petrisor, I. G., & Yen, T. F. (2007). Microbial Enhanced Oil Recovery (MEOR). Petroleum Science and Technology, 25(11), 1353–1366. https://doi.org/10.1080/10916460701287714spa
dc.relation.referencesLennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43(5), 461–482. https://doi.org/10.1088/0959-5309/43/5/301spa
dc.relation.referencesLiu, J. F., Mbadinga, S. M., Yang, S. Z., Gu, J. D., & Mu, B. Z. (2015). Chemical structure, property and potential applications of biosurfactants produced by Bacillus subtilis in petroleum recovery and spill mitigation. International Journal of Molecular Sciences, 16(3), 4814–4837. https://doi.org/10.3390/ijms16034814spa
dc.relation.referencesLiu, Q., Lin, J., Wang, W., Huang, H., & Li, S. (2014). Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochemical Engineering Journal, 93(3), 31–37. https://doi.org/10.1016/j.bej.2014.08.023spa
dc.relation.referencesLong, X., He, N., He, Y., Jiang, J., & Wu, T. (2017). Biosurfactant surfactin with pH-regulated emulsification activity for efficient oil separation when used as emulsifier. Bioresource Technology, 241, 200–206. https://doi.org/10.1016/j.biortech.2017.05.120spa
dc.relation.referencesMao, Y., & Zhang, Y. (2012). Thermal conductivity , shear viscosity and specific heat of rigid water models. Chemical Physics Letters, 542, 37–41. https://doi.org/10.1016/j.cplett.2012.05.044spa
dc.relation.referencesMartin, M. G., & Siepmann, J. (1998). Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. The Journal of Physical Chemistry B. https://doi.org/10.1021/jp972543+spa
dc.relation.referencesMendoza, F. N., Lopez-Rendon, R., Lopez-Lemus, J., Cruz, J., & Alejandre, J. (2008). Surface tension of hydrocarbon chains at the liquid-vapour interface. Molecular Physics, 106(8), 1055–1059. https://doi.org/10.1080/00268970802119694spa
dc.relation.referencesMori, T., Miyashita, N., Im, W., Feig, M., & Sugita, Y. (2016). Molecular dynamics simulations of biological membranes and membrane proteins using enhanced conformational sampling algorithms. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1858(7), 1635–1651. https://doi.org/10.1016/j.bbamem.2015.12.032spa
dc.relation.referencesNavpreet, K. W., & Cameotra, S. S. (2015). Lipopeptides: Biosynthesis and Applications. Journal of Microbial & Biochemical Technology, 07(02), 103–107. https://doi.org/10.4172/1948-5948.1000189spa
dc.relation.referencesNerurkar, A. S., & Anuradha S., N. (2010). Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In R. Sen (Ed.), Biosurfactants (pp. 304–315). https://doi.org/10.1007/978-1-4419-5979-9_23spa
dc.relation.referencesNicolas, J. P. (2003). Molecular dynamics simulation of surfactin molecules at the water-hexane interface. Biophysical Journal, 85(3), 1377–1391. https://doi.org/10.1016/S0006-3495(03)74571-8spa
dc.relation.referencesNicolas, J. P., & Smit, B. (2002). Molecular dynamics simulations of the surface tension of n-hexane, n-decane and n-hexadecane. Molecular Physics, 100(15), 2471–2475. https://doi.org/10.1080/00268970210130182spa
dc.relation.referencesNijmeijer, M. J. P., Bakker, A. F., Bruin, C., & Sikkenk, J. H. (1988). A molecular dynamics simulation of the Lennard‐Jones liquid–vapor interface. The Journal of Chemical Physics, 89(6), 3789–3792. https://doi.org/10.1063/1.454902spa
dc.relation.referencesOnaizi, S. A., Nasser, M. S., & Twaiq, F. (2014). Adsorption and thermodynamics of biosurfactant, surfactin, monolayers at the air-buffered liquid interface. Colloid and Polymer Science, 292(7), 1649–1656. https://doi.org/10.1007/s00396-014-3223-yspa
dc.relation.referencesPatel, J., Borgohain, S., Kumar, M., Rangarajan, V., Somasundaran, P., & Sen, R. (2015). Recent developments in microbial enhanced oil recovery. Renewable and Sustainable Energy Reviews, 52, 1539–1558. https://doi.org/10.1016/j.rser.2015.07.135spa
dc.relation.referencesPathak, K. V., & Keharia, H. (2013). Application of extracellular lipopeptide biosurfactant produced by endophytic Bacillus subtilis K1 isolated from aerial roots of banyan (Ficus benghalensis) in microbially enhanced oil recovery (MEOR). Biotech, 4, 41–48. https://doi.org/10.1007/s13205-013-0119-3spa
dc.relation.referencesPérez, A., Luque, F. J., & Orozco, M. (2012). Frontiers in molecular dynamics simulations of DNA. Accounts of Chemical Research. https://doi.org/10.1021/ar2001217spa
dc.relation.referencesPeterson, I. R. (1990). Langmuir-blodgett films. Journal of Physics D: Applied Physics, Vol. 23, pp. 379–395. https://doi.org/10.1088/0022-3727/23/4/001spa
dc.relation.referencesPeypoux, F., Bonmatin, J. M., & Wallach, J. (1999). Recent trends in the biochemistry of surfactin. Applied Microbiology and Biotechnology. https://doi.org/10.1007/s002530051432spa
dc.relation.referencesPeypoux, Françoise, Guinand, M., Michel, G., Delcambe, L., Das, B. C., & Lederer, E. (1978). Structure of Iturine A, a Peptidolipid Antibiotic from Bacillus subtilis. Biochemistry, 17(19), 3992–3996. https://doi.org/10.1021/bi00612a018spa
dc.relation.referencesPrice, N. P. J., Rooney, A. P., Swezey, J. L., Perry, E., & Cohan, F. M. (2007). Mass spectrometric analysis of lipopeptides from Bacillus strains isolated from diverse geographical locations. FEMS Microbiology Letters, 271(1), 83–89. https://doi.org/10.1111/j.1574-6968.2007.00702.xspa
dc.relation.referencesPrince, L. M. (1967). A theory of aqueous emulsions I. Negative interfacial tension at the oil/water interface. Journal of Colloid And Interface Science, 23(2), 165–173. https://doi.org/10.1016/0021-9797(67)90099-9spa
dc.relation.referencesPwaga, S., Iluore, C., Hundseth, Ø., Juárez Perales, F., & Idrees, M. U. (2010). Comparative Study of Different EOR Methods. Trondheim, Norway.spa
dc.relation.referencesRobertson, M. J., Tirado-Rives, J., & Jorgensen, W. L. (2015). Improved Peptide and Protein Torsional Energetics with the OPLS-AA Force Field. Journal of Chemical Theory and Computation, 11(7), 3499–3509. https://doi.org/10.1021/acs.jctc.5b00356spa
dc.relation.referencesRolo, L. I., Cac, A. I., Queimada, J., & Marrucho, I. M. (2002). Surface Tension of Heptane, Decane, Hexadecane, Eicosane, and Some of Their Binary Mixtures. 1442–1445.spa
dc.relation.referencesRosenberg, E., & Ron, E. Z. (1999). High- and low-molecular-mass microbial surfactants. Applied Microbiology and Biotechnology, 52(2), 154–162. https://doi.org/10.1007/s002530051502spa
dc.relation.referencesRossini, F. D. (1964). PHYSICAL PROPERTIES OF n-HEXADECANE, n-DECYLCYCLOPENTANE, 12-DECYLCYCLOHEXANE, I-HEXADECENE AND n-DECYLBENZENE’. 613(8), 440–442.spa
dc.relation.referencesSandoval-Perez, A., Pluhackova, K., & Böckmann, R. A. (2017). Critical Comparison of Biomembrane Force Fields: Protein-Lipid Interactions at the Membrane Interface. Journal of Chemical Theory and Computation, 13(5), 2310–2321. https://doi.org/10.1021/acs.jctc.7b00001spa
dc.relation.referencesSchuler, L. D., Daura, X., & van Gunsteren, W. F. (2001). An improved GROMOS96 Force Field for Aliphatic Hydrocarbons in the Condensed Phase. J. Comput. Chem., 22(11), 1205–1218. https://doi.org/10.1002/jcc.1078spa
dc.relation.referencesShe, A.-Q., Gang, H.-Z., & Mu, B.-Z. (2012). Temperature Influence on the Structure and Interfacial Properties of Surfactin Micelle: A Molecular Dynamics Simulation Study. The Journal of Physical Chemistry B, 116(42), 12735–12743. https://doi.org/10.1021/jp302413cspa
dc.relation.referencesShen, H. H., Thomas, R. K., Chen, C. Y., Darton, R. C., Baker, S. C., & Penfold, J. (2009). Aggregation of the naturally occurring lipopeptide, surfactin, at interfaces and in solution: An unusual type of surfactant? Langmuir, 25(7), 4211–4218. https://doi.org/10.1021/la802913xspa
dc.relation.referencesSiu, S. W. I., Pluhackova, K., & Böckmann, R. A. (2012). Optimization of the OPLS-AA force field for long hydrocarbons. Journal of Chemical Theory and Computation, 8(4), 1459–1470. https://doi.org/10.1021/ct200908rspa
dc.relation.referencesSong, C. S., Ye, R. Q., & Mu, B. Z. (2007). Molecular behavior of a microbial lipopeptide monolayer at the air-water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 302(1–3), 82–87. https://doi.org/10.1016/j.colsurfa.2007.01.055spa
dc.relation.referencesSong, Z. Y., Han, H. Y., & Zhu, W. Y. (2015). Morphological variation and recovery mechanism of residual crude oil by Biosurfactant from indigenous bacteria: Macro- and pore-scale experimental investigations. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1409.09074spa
dc.relation.referencesTsan, P., Volpon, L., Besson, F., & Lancelin, J.-M. (2007). Structure and dynamics of surfactin studied by NMR in micellar media. Journal of the American Chemical Society, 129(7), 1968–1977. https://doi.org/10.1021/ja066117qspa
dc.relation.referencesUnderwood, T. R., & Greenwell, H. C. (2018). The Water-Alkane Interface at Various NaCl Salt Concentrations: A Molecular Dynamics Study of the Readily Available Force Fields. Scientific Reports, 8(1), 1–11. https://doi.org/10.1038/s41598-017-18633-yspa
dc.relation.referencesVanittanakom, N., & Loeffler, W. (1986). Fengycin - a novel antifungal lipopeptide antibiotic produced by Bacillus subtilis F-29-3. The Journal of Antibiotics, XXXIX(7), 888–901. https://doi.org/10.7164/antibiotics.39.888spa
dc.relation.referencesVega, C., & De Miguel, E. (2007). Surface tension of the most popular models of water by using the test-area simulation method. Journal of Chemical Physics, 126(15). https://doi.org/10.1063/1.2715577spa
dc.relation.referencesVerlet, L. (1967). Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical Review. https://doi.org/10.1103/PhysRev.159.98spa
dc.relation.referencesWang, J., Wolf, R. M., Caldwell, J. W., Kollamn, P. A., & Case, D. A. (2004). Development and testing of a general Amber force field. Journal of Computatational Chemistry, 25, 1157–1174.spa
dc.relation.referencesZarbakhsh, A., Bowers, J., & Webster, J. R. P. (2005). Width of the hexadecane-water interface: A discrepancy resolved. Langmuir, 21(25), 11596–11598. https://doi.org/10.1021/la051809yspa
dc.relation.referencesZou, A., Liu, J., Garamus, V. M., Yang, Y., Willumeit, R., & Mu, B. (2010). Micellization activity of the natural lipopeptide [Glui, Asp5] surfactin-C15 in aqueous solution. Journal of Physical Chemistry B, 114(8), 2712–2718. https://doi.org/10.1021/jp908675sspa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.licenseAtribución-SinDerivadas 4.0 Internacionalspa
dc.rights.spaAcceso abiertospa
dc.rights.urihttp://creativecommons.org/licenses/by-nd/4.0/spa
dc.subject.ddc660 - Ingeniería químicaspa
dc.subject.proposalTensión interfacialspa
dc.subject.proposalInterfacial Tensioneng
dc.subject.proposalSurfactinasspa
dc.subject.proposalSurfactinseng
dc.subject.proposalRecobro Mejorado de petróleospa
dc.subject.proposalEnhanced Oil Recoveryeng
dc.subject.proposalKurstakinseng
dc.subject.proposalKurstakinasspa
dc.titleAnálisis por dinámica molecular de propiedades tensoactivas de lipopéptidos producidos por Bacillus spp. para su potencial uso en recuperación mejorada de petróleospa
dc.title.alternativeMolecular dynamics analysis of surfactant properties of lipopeptides produced by Bacillus spp. for its potential use in enhanced oil recoveryspa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1042063804.2019.pdf
Tamaño:
3.44 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
3.9 KB
Formato:
Item-specific license agreed upon to submission
Descripción: