Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization

dc.contributor.authorCruz Roa, Angel Alfonsospa
dc.contributor.authorDíaz Cabrera, Gloria Mercedesspa
dc.contributor.authorRomero Castro, Eduardospa
dc.contributor.authorGonzález Osorio, Fabio Augustospa
dc.date.accessioned2019-06-24T17:50:39Zspa
dc.date.available2019-06-24T17:50:39Zspa
dc.date.issued2012-01-19spa
dc.description.abstractHistopathological images are an important resource for clinical diagnosis and biomedical research. From an image understanding point of view, the automatic annotation of these images is a challenging problem. This paper presents a new method for automatic histopathological image annotation based on three complementary strategies, first, a part-based image representation, called the bag of features, which takes advantage of the natural redundancy of histopathological images for capturing the fundamental patterns of biological structures, second, a latent topic model, based on non-negative matrix factorization, which captures the high-level visual patterns hidden in the image, and, third, a probabilistic annotation model that links visual appearance of morphological and architectural features associated to 10 histopathological image annotations. The method was evaluated using 1,604 annotated images of skin tissues, which included normal and pathological architectural and morphological features, obtaining a recall of 74% and a precision of 50%, which improved a baseline annotation method based on support vector machines in a 64% and 24%, respectively.spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.eprintshttp://bdigital.unal.edu.co/5770/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/9021
dc.language.isospaspa
dc.publisherAssociation for Pathology Informaticsspa
dc.relationhttp://www.jpathinformatics.org/spa
dc.relation.ispartofUniversidad Nacional de Colombia Sede Bogotá Facultad de Medicina Instituto de Investigaciones Biomédicasspa
dc.relation.ispartofInstituto de Investigaciones Biomédicasspa
dc.relation.referencesCruz Roa, Angel Alfonso and Díaz Cabrera, Gloria Mercedes and Romero Castro, Eduardo and González Osorio, Fabio Augusto (2012) Automatic annotation of histopathological images using a latent topic model based on non-negative matrix factorization. Journal of Pathology Informatics, 2 (2). pp. 4-13.spa
dc.rightsDerechos reservados - Universidad Nacional de Colombiaspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc6 Tecnología (ciencias aplicadas) / Technologyspa
dc.subject.ddc61 Ciencias médicas; Medicina / Medicine and healthspa
dc.subject.proposalBasal Cell Carcinomaspa
dc.subject.proposalHistopathology Imagesspa
dc.subject.proposalAutomatic Annotationspa
dc.subject.proposalVisual Latent Semantic Analysisspa
dc.subject.proposalNon-negative Matrix Factorizationspa
dc.subject.proposalBag of Featuresspa
dc.titleAutomatic annotation of histopathological images using a latent topic model based on non-negative matrix factorizationspa
dc.typeArtículo de revistaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_6501spa
dc.type.coarversionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
angelcruzroa_2011.pdf
Tamaño:
5.76 MB
Formato:
Adobe Portable Document Format

Colecciones