Counting on generalized Fibonacci Objects
dc.contributor.advisor | Ramírez Ramírez, José Luis | spa |
dc.contributor.author | Pulido Martínez, Juan Fernando | spa |
dc.contributor.orcid | Pulido Martínez, Juan Fernando [0009000314003616] | spa |
dc.contributor.researchgroup | Discremath: Matemáticas Discretas y Ciencias de la Computación | spa |
dc.date.accessioned | 2025-03-18T16:37:07Z | |
dc.date.available | 2025-03-18T16:37:07Z | |
dc.date.issued | 2024-09 | |
dc.description | ilustraciones, diagramas | spa |
dc.description.abstract | Los números de Fibonacci generalizados desempeñan un papel significativo en la combinatoria, apareciendo en la enumeración de diversos objetos combinatorios. Esta tesis investiga los números de Fibonacci generalizados a través del método ECO (Enumeración de Objetos Combinatorios), culminando en la introducción de una nueva clase de palabras enumeradas por estos números, denominadas palabras de Fibonacci generalizadas. Utilizando estas palabras, construimos dos familias adicionales de objetos: los gráficos de barras generalizados de Fibonacci y los politopos generalizados de Fibonacci. La riqueza combinatoria de estas familias se explora en detalle. Para los gráficos de barras, presentamos nuevos resultados sobre su enumeración respecto a diversas estadísticas. Para los politopos, proporcionamos hallazgos parciales sobre su volumen normalizado, su $f$-vector y su estructura, arrojando luz sobre sus interesantes propiedades geométricas y combinatorias (Texto tomado de la fuente). | spa |
dc.description.abstract | Generalized Fibonacci numbers play a significant role in combinatorics, appearing in the enumeration of various combinatorial objects. This thesis investigates generalized Fibonacci numbers through the lens of the ECO (Enumeration of Combinatorial Objects) method, culminating in the introduction of a novel class of words enumerated by these numbers, referred to as generalized Fibonacci words. Using these words, we construct two additional families of objects: generalized Fibonacci bargraphs and generalized Fibonacci polytopes. The combinatorial richness of these families is thoroughly explored. For bargraphs, we present new results on their enumeration based on various statistics. For polytopes, we provide partial findings on their normalized volume, $f$-vector, and structure, shedding light on their intriguing geometric and combinatorial properties. | eng |
dc.description.degreelevel | Maestría | spa |
dc.description.degreename | Magíster en Ciencias - Matemáticas | spa |
dc.description.researcharea | Combinatoria Enumerativa | spa |
dc.format.extent | ix, 80 páginas | spa |
dc.format.mimetype | application/pdf | spa |
dc.identifier.instname | Universidad Nacional de Colombia | spa |
dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/87685 | |
dc.language.iso | eng | spa |
dc.publisher | Universidad Nacional de Colombia | spa |
dc.publisher.branch | Universidad Nacional de Colombia - Sede Bogotá | spa |
dc.publisher.faculty | Facultad de Ciencias | spa |
dc.publisher.place | Bogotá, Colombia | spa |
dc.publisher.program | Bogotá - Ciencias - Maestría en Ciencias - Matemáticas | spa |
dc.relation.references | F. Ardila, M. Supina, A. R. Vindas-Meléndez, The equivariant Ehrhart theory of the permutahedron. Proceedings of the American Mathematical Society, 148 (2020), 5091--5107. | spa |
dc.relation.references | . Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou- Beauchamps. Generating functions for generating trees. Discrete Mathematics, 246 (2002), 29–55. | spa |
dc.relation.references | E. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the enumeration of combinatorial objects. Journal of Difference Equations and Applications, 5 (1998), 435–490. | spa |
dc.relation.references | G. Barequet and G. Ben-Shachar. Counting polyominoes. Revisited. Proc. Symp. Algor. Eng. Exp. (ALENEX 2024), 133–143. | spa |
dc.relation.references | J.-L. Baril and P.-T. Do. ECO-Generation for p-generalized Fibonacci and Lucas per- mutations. Pure Mathematics and Applications 17 (2006). | spa |
dc.relation.references | J.-L. Baril, S. Kirgizov, J.L. Ramírez, and D. Villamizar. The Combinatorics of Motzkin Polyominoes, ArXiv, 2024. | spa |
dc.relation.references | M. Beck and S. Robins, Computing the Continuous Discretely: Integer-Point Enumera- tion in Polyhedra, Springer Science & Business Media, 2007 | spa |
dc.relation.references | M. Bousquet-Melou. A method for the enumeration of various classes of column-convex polygons. Discrete Mathematics 154 (1996), 1–25. | spa |
dc.relation.references | R. Brak and A. J. Guttmann. Exact solution of the staircase and row-convex polygon perimeter and area generating function. Journal of Physics A: Mathematical and General 23 (1990), 4581–4588. | spa |
dc.relation.references | F. Chung, R. Graham, V Hoggat, and M. Kleiman. The number of Baxter permutations. Journal of Combinatorial Theory, Series A. 24 (1978), 382–394. | spa |
dc.relation.references | E. Deustch, L. Ferrari, and S. Rinaldi. Production matrices. Advances in Applied Math- ematics 34 (2005), 101–122. | spa |
dc.relation.references | G. Dresden and Z. Du. A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17, (2014). | spa |
dc.relation.references | E. Duchi. ECO method and Object Grammars: two methods for the enumeration of combinatorial objects. PhD Thesis, University of Florence, 2003. | spa |
dc.relation.references | E. Egge and T. Mansour. Restricted permutations, Fibonacci numbers, and k-generalized Fibonacci numbers. Integers Electronic Journal of Combinatorial Number Theory, 5 Ar- ticle A01, (2005). | spa |
dc.relation.references | S. Falcón. Binomial transform of the generalized k-Fibonacci numbers. Communications in Mathematics and Applications. 10(3) (2019), 643–651. | spa |
dc.relation.references | S. Falcón and A. Plaza. On the Fibonacci k–numbers. Chaos, Solitons & Fractals, 32(5) (2007), 1615–1624. | spa |
dc.relation.references | P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009. | spa |
dc.relation.references | H. Gabai. Generalized Fibonacci k-sequences. Fibonacci Quarterly 8 (1970), 31—38. | spa |
dc.relation.references | S. W. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings Princeton Univ. Press, 2nd ed., Princeton, 1994. | spa |
dc.relation.references | B. Grünbaum, Convex Polytopes, Springer Science & Business Media, 2003. | spa |
dc.relation.references | F. Haray and E. Palmer. Graphical Enumeration. Academic Press New York, 1973. | spa |
dc.relation.references | G. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proceed- ings of the London Mathematical Society 17 (2) (1918), 75–115. | spa |
dc.relation.references | S. Heubach and T. Mansour. Combinatorics of compositions and words. Taylor & Francis Group. CRC Press 2010. | spa |
dc.relation.references | V. Hoggatt. Fibonacci and Lucas numbers. Houghton Mifflin Company, Boston, 1969. | spa |
dc.relation.references | . F. Horadam. A Generalized Fibonacci Sequence. The American Mathematical Monthly, 68 (5) (1961), 455–459. | spa |
dc.relation.references | N. Madras. A pattern theorem for lattice clusters. Annals of Combinatorics, 3 (1999), 357–384. | spa |
dc.relation.references | T. Mansour and A. Sh. Shabani. Enumerations on bargraphs. Discrete Mathematics Letters 2 (2019), 65–94. | spa |
dc.relation.references | T. Mansour, J. L. Ramírez, and D. Toquica. Counting lattice points on bargraphs of Catalan words. Mathematics in Computer Sciences, 15 (2021), 701–713. | spa |
dc.relation.references | R. Stanley. Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, Series Number 49, Vol. 1, 2nd Edition, 2011. | spa |
dc.relation.references | D. Toquica. Conteo sobre los poliminós asociados a las Palabras de Catalan. Tesis de Maestría en Ciencias Matemáticas Universidad Nacional de Colombia, 2022. | spa |
dc.relation.references | A. R. Vindas-Meléndez, Two problems on lattice point enumeration of rational polytopes, Master thesis, San Francisco State University, 2017. | spa |
dc.relation.references | C. G. Wagner. A First Course in Enumerative Combinatorics American Mathematical Society, 2020. | spa |
dc.relation.references | H. F. Wilf. Generating functionology. Academic Press, Inc. 1990. | spa |
dc.relation.references | R. Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc, 1986. | spa |
dc.relation.references | G. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995 | spa |
dc.relation.references | R. Stanley, Catalan Numbers, Cambridge University Press, 2015. | spa |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | spa |
dc.rights.license | Reconocimiento 4.0 Internacional | spa |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | spa |
dc.subject.ddc | 510 - Matemáticas::512 - Álgebra | spa |
dc.subject.ddc | 510 - Matemáticas::515 - Análisis | spa |
dc.subject.lemb | LOGICA COMBINATORIA | spa |
dc.subject.lemb | Combinatory logic | eng |
dc.subject.lemb | LOGICA SIMBOLICA Y MATEMATICA | spa |
dc.subject.lemb | Logic, symbolic and mathematical | eng |
dc.subject.lemb | ANALISIS COMBINATORIO | spa |
dc.subject.lemb | Combinatorial analysis | eng |
dc.subject.lemb | PERMUTACIONES | spa |
dc.subject.lemb | Permutations | eng |
dc.subject.lemb | SUCESIONES (MATEMATICAS) | spa |
dc.subject.lemb | Sequences (mathematics) | eng |
dc.subject.lemb | SERIES (MATEMATICAS) | spa |
dc.subject.lemb | Series | eng |
dc.subject.lemb | POLITOPOS CONVEXOS | spa |
dc.subject.lemb | Convex polytopes | eng |
dc.subject.proposal | Generalized Fibonacci numbers | eng |
dc.subject.proposal | ECO method | eng |
dc.subject.proposal | Bargraph | eng |
dc.subject.proposal | Polytope | eng |
dc.subject.proposal | Generating function | eng |
dc.subject.proposal | Números de Fibonacci generalizados | spa |
dc.subject.proposal | Método ECO | spa |
dc.subject.proposal | Gráficos de barras | spa |
dc.subject.proposal | Politopo | spa |
dc.subject.proposal | Función generatriz | spa |
dc.title | Counting on generalized Fibonacci Objects | eng |
dc.title.translated | Conteo en objetos generalizados de Fibonacci | spa |
dc.type | Trabajo de grado - Maestría | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | spa |
dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | spa |
dc.type.content | Text | spa |
dc.type.driver | info:eu-repo/semantics/masterThesis | spa |
dc.type.redcol | http://purl.org/redcol/resource_type/TM | spa |
dc.type.version | info:eu-repo/semantics/acceptedVersion | spa |
dcterms.audience.professionaldevelopment | Estudiantes | spa |
dcterms.audience.professionaldevelopment | Investigadores | spa |
dcterms.audience.professionaldevelopment | Público general | spa |
oaire.accessrights | http://purl.org/coar/access_right/c_abf2 | spa |
Archivos
Bloque original
1 - 1 de 1
Cargando...
- Nombre:
- 1032503950.2024.pdf
- Tamaño:
- 1.13 MB
- Formato:
- Adobe Portable Document Format
- Descripción:
- Tesis de Maestría en Ciencias Matemáticas
Bloque de licencias
1 - 1 de 1
No hay miniatura disponible
- Nombre:
- license.txt
- Tamaño:
- 5.74 KB
- Formato:
- Item-specific license agreed upon to submission
- Descripción: