Counting on generalized Fibonacci Objects

dc.contributor.advisorRamírez Ramírez, José Luisspa
dc.contributor.authorPulido Martínez, Juan Fernandospa
dc.contributor.orcidPulido Martínez, Juan Fernando [0009000314003616]spa
dc.contributor.researchgroupDiscremath: Matemáticas Discretas y Ciencias de la Computaciónspa
dc.date.accessioned2025-03-18T16:37:07Z
dc.date.available2025-03-18T16:37:07Z
dc.date.issued2024-09
dc.descriptionilustraciones, diagramasspa
dc.description.abstractLos números de Fibonacci generalizados desempeñan un papel significativo en la combinatoria, apareciendo en la enumeración de diversos objetos combinatorios. Esta tesis investiga los números de Fibonacci generalizados a través del método ECO (Enumeración de Objetos Combinatorios), culminando en la introducción de una nueva clase de palabras enumeradas por estos números, denominadas palabras de Fibonacci generalizadas. Utilizando estas palabras, construimos dos familias adicionales de objetos: los gráficos de barras generalizados de Fibonacci y los politopos generalizados de Fibonacci. La riqueza combinatoria de estas familias se explora en detalle. Para los gráficos de barras, presentamos nuevos resultados sobre su enumeración respecto a diversas estadísticas. Para los politopos, proporcionamos hallazgos parciales sobre su volumen normalizado, su $f$-vector y su estructura, arrojando luz sobre sus interesantes propiedades geométricas y combinatorias (Texto tomado de la fuente).spa
dc.description.abstractGeneralized Fibonacci numbers play a significant role in combinatorics, appearing in the enumeration of various combinatorial objects. This thesis investigates generalized Fibonacci numbers through the lens of the ECO (Enumeration of Combinatorial Objects) method, culminating in the introduction of a novel class of words enumerated by these numbers, referred to as generalized Fibonacci words. Using these words, we construct two additional families of objects: generalized Fibonacci bargraphs and generalized Fibonacci polytopes. The combinatorial richness of these families is thoroughly explored. For bargraphs, we present new results on their enumeration based on various statistics. For polytopes, we provide partial findings on their normalized volume, $f$-vector, and structure, shedding light on their intriguing geometric and combinatorial properties.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Matemáticasspa
dc.description.researchareaCombinatoria Enumerativaspa
dc.format.extentix, 80 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/87685
dc.language.isoengspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Matemáticasspa
dc.relation.referencesF. Ardila, M. Supina, A. R. Vindas-Meléndez, The equivariant Ehrhart theory of the permutahedron. Proceedings of the American Mathematical Society, 148 (2020), 5091--5107.spa
dc.relation.references. Banderier, M. Bousquet-Mélou, A. Denise, P. Flajolet, D. Gardy, and D. Gouyou- Beauchamps. Generating functions for generating trees. Discrete Mathematics, 246 (2002), 29–55.spa
dc.relation.referencesE. Barcucci, A. Del Lungo, E. Pergola, and R. Pinzani. ECO: a methodology for the enumeration of combinatorial objects. Journal of Difference Equations and Applications, 5 (1998), 435–490.spa
dc.relation.referencesG. Barequet and G. Ben-Shachar. Counting polyominoes. Revisited. Proc. Symp. Algor. Eng. Exp. (ALENEX 2024), 133–143.spa
dc.relation.referencesJ.-L. Baril and P.-T. Do. ECO-Generation for p-generalized Fibonacci and Lucas per- mutations. Pure Mathematics and Applications 17 (2006).spa
dc.relation.referencesJ.-L. Baril, S. Kirgizov, J.L. Ramírez, and D. Villamizar. The Combinatorics of Motzkin Polyominoes, ArXiv, 2024.spa
dc.relation.referencesM. Beck and S. Robins, Computing the Continuous Discretely: Integer-Point Enumera- tion in Polyhedra, Springer Science & Business Media, 2007spa
dc.relation.referencesM. Bousquet-Melou. A method for the enumeration of various classes of column-convex polygons. Discrete Mathematics 154 (1996), 1–25.spa
dc.relation.referencesR. Brak and A. J. Guttmann. Exact solution of the staircase and row-convex polygon perimeter and area generating function. Journal of Physics A: Mathematical and General 23 (1990), 4581–4588.spa
dc.relation.referencesF. Chung, R. Graham, V Hoggat, and M. Kleiman. The number of Baxter permutations. Journal of Combinatorial Theory, Series A. 24 (1978), 382–394.spa
dc.relation.referencesE. Deustch, L. Ferrari, and S. Rinaldi. Production matrices. Advances in Applied Math- ematics 34 (2005), 101–122.spa
dc.relation.referencesG. Dresden and Z. Du. A simplified Binet formula for k-generalized Fibonacci numbers. Journal of Integer Sequences, 17, (2014).spa
dc.relation.referencesE. Duchi. ECO method and Object Grammars: two methods for the enumeration of combinatorial objects. PhD Thesis, University of Florence, 2003.spa
dc.relation.referencesE. Egge and T. Mansour. Restricted permutations, Fibonacci numbers, and k-generalized Fibonacci numbers. Integers Electronic Journal of Combinatorial Number Theory, 5 Ar- ticle A01, (2005).spa
dc.relation.referencesS. Falcón. Binomial transform of the generalized k-Fibonacci numbers. Communications in Mathematics and Applications. 10(3) (2019), 643–651.spa
dc.relation.referencesS. Falcón and A. Plaza. On the Fibonacci k–numbers. Chaos, Solitons & Fractals, 32(5) (2007), 1615–1624.spa
dc.relation.referencesP. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.spa
dc.relation.referencesH. Gabai. Generalized Fibonacci k-sequences. Fibonacci Quarterly 8 (1970), 31—38.spa
dc.relation.referencesS. W. Golomb. Polyominoes: Puzzles, Patterns, Problems, and Packings Princeton Univ. Press, 2nd ed., Princeton, 1994.spa
dc.relation.referencesB. Grünbaum, Convex Polytopes, Springer Science & Business Media, 2003.spa
dc.relation.referencesF. Haray and E. Palmer. Graphical Enumeration. Academic Press New York, 1973.spa
dc.relation.referencesG. H. Hardy and S. Ramanujan. Asymptotic formulae in combinatory analysis. Proceed- ings of the London Mathematical Society 17 (2) (1918), 75–115.spa
dc.relation.referencesS. Heubach and T. Mansour. Combinatorics of compositions and words. Taylor & Francis Group. CRC Press 2010.spa
dc.relation.referencesV. Hoggatt. Fibonacci and Lucas numbers. Houghton Mifflin Company, Boston, 1969.spa
dc.relation.references. F. Horadam. A Generalized Fibonacci Sequence. The American Mathematical Monthly, 68 (5) (1961), 455–459.spa
dc.relation.referencesN. Madras. A pattern theorem for lattice clusters. Annals of Combinatorics, 3 (1999), 357–384.spa
dc.relation.referencesT. Mansour and A. Sh. Shabani. Enumerations on bargraphs. Discrete Mathematics Letters 2 (2019), 65–94.spa
dc.relation.referencesT. Mansour, J. L. Ramírez, and D. Toquica. Counting lattice points on bargraphs of Catalan words. Mathematics in Computer Sciences, 15 (2021), 701–713.spa
dc.relation.referencesR. Stanley. Enumerative Combinatorics. Cambridge Studies in Advanced Mathematics, Series Number 49, Vol. 1, 2nd Edition, 2011.spa
dc.relation.referencesD. Toquica. Conteo sobre los poliminós asociados a las Palabras de Catalan. Tesis de Maestría en Ciencias Matemáticas Universidad Nacional de Colombia, 2022.spa
dc.relation.referencesA. R. Vindas-Meléndez, Two problems on lattice point enumeration of rational polytopes, Master thesis, San Francisco State University, 2017.spa
dc.relation.referencesC. G. Wagner. A First Course in Enumerative Combinatorics American Mathematical Society, 2020.spa
dc.relation.referencesH. F. Wilf. Generating functionology. Academic Press, Inc. 1990.spa
dc.relation.referencesR. Wilson. Introduction to Graph Theory. John Wiley & Sons, Inc, 1986.spa
dc.relation.referencesG. Ziegler, Lectures on polytopes, Springer-Verlag, New York, 1995spa
dc.relation.referencesR. Stanley, Catalan Numbers, Cambridge University Press, 2015.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc510 - Matemáticas::512 - Álgebraspa
dc.subject.ddc510 - Matemáticas::515 - Análisisspa
dc.subject.lembLOGICA COMBINATORIAspa
dc.subject.lembCombinatory logiceng
dc.subject.lembLOGICA SIMBOLICA Y MATEMATICAspa
dc.subject.lembLogic, symbolic and mathematicaleng
dc.subject.lembANALISIS COMBINATORIOspa
dc.subject.lembCombinatorial analysiseng
dc.subject.lembPERMUTACIONESspa
dc.subject.lembPermutationseng
dc.subject.lembSUCESIONES (MATEMATICAS)spa
dc.subject.lembSequences (mathematics)eng
dc.subject.lembSERIES (MATEMATICAS)spa
dc.subject.lembSerieseng
dc.subject.lembPOLITOPOS CONVEXOSspa
dc.subject.lembConvex polytopeseng
dc.subject.proposalGeneralized Fibonacci numberseng
dc.subject.proposalECO methodeng
dc.subject.proposalBargrapheng
dc.subject.proposalPolytopeeng
dc.subject.proposalGenerating functioneng
dc.subject.proposalNúmeros de Fibonacci generalizadosspa
dc.subject.proposalMétodo ECOspa
dc.subject.proposalGráficos de barrasspa
dc.subject.proposalPolitopospa
dc.subject.proposalFunción generatrizspa
dc.titleCounting on generalized Fibonacci Objectseng
dc.title.translatedConteo en objetos generalizados de Fibonaccispa
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1032503950.2024.pdf
Tamaño:
1.13 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Matemáticas

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: