Biosíntesis de nanopartículas de plata a partir de hongos rizosféricos y su inmovilización en una fibra natural para el control in vitro de la bacteria fitopatógena (Pectobacterium carotovorum)

dc.contributor.advisorSierra Avila, Cesar Augusto
dc.contributor.advisorLizarazo Forero, Luz Marina
dc.contributor.authorBeltrán Pineda, Mayra Eleonora
dc.contributor.cvlacBeltrán Pineda, Mayra Eleonora [https://scienti.minciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000508136]spa
dc.contributor.googlescholarBeltrán Pineda, Mayra Eleonora [https://scholar.google.com/citations?user=ZRzS9t4AAAAJ&hl=es]spa
dc.contributor.orcidBeltrán Pineda, Mayra Eleonora [0000-0002-0451-2535]spa
dc.contributor.researchgroupGrupo de investigación en macromoléculasspa
dc.contributor.researchgroupGrupo de investigación Biología ambientalspa
dc.date.accessioned2023-07-07T20:38:56Z
dc.date.available2023-07-07T20:38:56Z
dc.date.issued2023-06
dc.descriptionilustraciones, fotografíasspa
dc.description.abstractEn esta investigación inicialmente se realizó un estudio de bioprospección para seleccionar hongos rizosféricos de cultivos de papa, hongos promisorios para la síntesis de AgNp´s con acción antibacterial frente a Pectobacterium carotovorum, agente fitopatógeno de papa de difícil manejo por técnicas convencionales. Se aislaron cinco hongos de las especies Penicillium simplicissimum, Aspergillus niger y Fusarium oxysporum que produjeron AgNp´s esféricas de tamaños entre 15 y 45 nm, las cuales presentaron acción antibacterial frente al fitopatógeno. Empleándose a Fusarium oxysporum se encontró que al usar una solución de AgNO3 3mM, pH de 10, y 27 °C/24 h se obtiene el mayor rendimiento en la síntesis de AgNp´s. Posteriormente, estas nanopartículas fueron caracterizadas por TEM, FTIR, XRD, DLS. PI y potencial Z, tras lo cual su poder antibacterial frente al fitopatógeno Pectobacterium carotovorum fue estudiado, encontrándose zonas de inhibición de crecimiento de hasta 11,3 mm de diámetro cuando se emplea una dosis de 100 ppm y una MIC de 25 y 50 ppm, determinada por micro y macrodilución respectivamente. También se realizaron estudios a nivel del sustrato vegetal, evidenciándose un efecto protector sobre el tubérculo cuando se aplica una dosis de 100 ppm de AgNp´s sobre el tejido a manera de tratamiento preventivo. Posteriormente y para limitar la absorción de las nanopartículas en el tubérculo se realizaron pruebas de inmovilización de las AgNp´s sobre fibras de algodón quirúrgico por dos metodologías (cationización y reducción bioquímica in situ), obteniéndose dos tipos de fibras denominadas A-AgNp´s-C y A-AgNp´s-RBi. Fibras que mostraron zonas de inhibición de crecimiento del Pectobacterium carotovorum, con una disminución en los recuentos bacterianos a las 24 horas e inhibición de crecimiento a las 48 horas. Donde las pruebas de reuso de estas fibras con nanopartículas mostraron que los dos tipos fibras pueden tener hasta tres usos sucesivos sin perder su efectividad, independientemente del método de modificación empleado. Adicionalmente, es importante resaltar que las pruebas de retención de las AgNp´s indicaron que estas permanecen adheridas a las fibras A-AgNp´s-C y a las fibras A-AgNp´s-RBi después de dos y tres lavados sucesivos, respectivamente. Finalmente, las AgNp´s biosintetizadas se adhirieron a fibras de fique por cationización con el objetivo de obtener sacos antibacteriales de 10 x 12 cm, los cuales en pruebas in vivo presentaron tan solo un 7,8 % de afectación, mientras que tubérculos almacenados en un saco tradicional tuvieron una afectación del 25%. Por lo tanto, el empleo de hongos rizosféricos para la síntesis de AgNp´s con acción nanopesticida frente al fitopatógeno P. carotovorum y su inmovilización en fibras naturales, permitirá el desarrollo de una aplicación nanobiotecnológica en el campo de embalajes para el almacenamiento de papa, con posibilidades de escalamiento, lo que aunará en la implementación de prácticas de agricultura de precisión. (Texto tomado de la fuente)spa
dc.description.abstractIn this research, a bioprospecting study was initially carried out to select rhizospheric fungi from potato crops, promising fungi for the synthesis of AgNPs with an antibacterial action against Pectobacterium carotovorum, a potato phytopathogenic agent that is difficult to manage by conventional techniques. Five fungi of Penicillium simplicissimum, Aspergillus niger, and Fusarium oxysporum that produce spherical AgNPs between 15 and 45 nm in size were isolated and showed antibacterial action against the phytopathogen. Using Fusarium oxysporum, it was found that using a solution of AgNO3 3mM, pH 10, and 27 °C/24 h obtained the highest yield in AgNPs synthesis. Subsequently, these nanoparticles were characterized by TEM, FTIR, XRD, DLS, PI and Z-potential, after which their antibacterial power against the phytopathogen Pectobacterium carotovorum was studied, finding growth inhibition zones up to 11.3 mm in diameter when using a dose of 100 ppm and a MIC of 25 and 50 ppm, determined by micro and macrodilution, respectively. Studies were also carried out at the plant substrate level, showing a protective effect on the tuber when a dose of 100 ppm of AgNPs was applied to the tissue as a preventive treatment. Subsequently, and to limit the absorption of the nanoparticles in the tubercle, immobilization tests of AgNPs on surgical cotton fibers were carried out by two methodologies (cationization and in situ biochemical reduction), obtaining two types of fibers called A-AgNPs-C and A-AgNPs-RBi. These fibers showed growth inhibition zones of Pectobacterium carotovorum, with a decrease in bacterial counts at 24 hours and growth inhibition at 48 hours. The reuse tests of these fibers with nanoparticles showed that the two types of fibers could have up to three successive uses without losing their effectiveness, regardless of the modification method used. Additionally, it is important to highlight that the retention tests of the AgNPs indicated that they remain attached to the A-AgNPs-C and A-AgNPs-RBi fibers after two and three successive washes, respectively. Finally, the biosynthesized AgNPs were adhered to fique fibers by cationization to obtain antibacterial 10 x 12 cm sacks, which in in vivo tests showed only 7.8% of affectation, while tubers stored in a traditional sack had an affectation of 25%. The use of rhizospheric fungi for the synthesis of AgNPs with nanopesticidal action against the phytopathogen P. carotovorum and their immobilization in natural fibers will allow the development of a nanobiotechnological application in the field of potato storage packaging, with the possibility of scaling up, which will contribute to the implementation of precision agriculture practices.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Biotecnologíaspa
dc.description.researchareaBioprocesosspa
dc.description.sponsorshipGobernación de Boyacá mediante la convocatoria 733 de 2015. Formación de capital humano de alto nivel. Doctorado Nacional.spa
dc.format.extentxx, 135 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.cospa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84170
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Biotecnologíaspa
dc.relation.referencesAbbasi E, Milani M, Aval S, Kouhi M, Akbarzadeh A, Nasrabadi H, Nikasa P, Joo A, Hanifehpour Y, Nejati-Koshki K. & Samiei M. 2014 Silver nanoparticles: synthesis methods, bio-applications and properties. Crit Rev Microbiol. 42(2): 173-180. https://doi.org/ 10.3109/1040841X.2014.912200.spa
dc.relation.referencesAbdeen S, Isaac R, Geo S, Sornalekshmi S, Rose A, Praseetha P. 2013. Evaluation of antimicrobial activity of biosynthesized iron and silver nanoparticles using the fungi Fusarium oxysporum and actinomycetes sp. on human pathogens. Nano Biomed. Eng. 5(1): 39-45. https://doi.org/10.3109/1040841X.2014.912200.spa
dc.relation.referencesAbdel-Hadi, A.; Iqbal, D.; Alharbi, R.; Jahan, S.; Darwish, O.; Alshehri, B.; Banawas, S.; Palanisamy, M.; Ismail, A.; Aldosari, S.; et al. Myco-Synthesis of Silver Nanoparticles and Their Bioactive Role against Pathogenic Microbes. Biology 2023, 12, 661. https:// doi.org/10.3390/biology12050661spa
dc.relation.referencesAbdelRahim K, Mahmoud S. & Ali A. 2016. Extracellular biosynthesis of silver nanoparticles using Rhizopus stonililifer. Saudi J Biol Sci. doi: http://dx.doi.org/10.1016/j.sjbs.2016.02.025.spa
dc.relation.referencesAchi O. & Emeruwa A. 1993 Influence of cultural conditions on coal solubilization by Penicillium simplicissimum. J. Chem. Tech. Biotechnol. 57: 121-125. https://doi.org/10.1002/jctb.280570205.spa
dc.relation.referencesAdepu S. & Khandelwal M. 2017.Broad-spectrum antimicrobial activity of bacterial cellulose silver nanocomposites with sustained reléase. J Mater Sci. https://doi.org/ 10.1007/s10853-017-1638-9spa
dc.relation.referencesAguilar M. & San Martín E. 2008. Preparación y caracterización de nanopartículas de plata: evaluación del efecto antimicrobiano. 1er. Simposio de Tecnología Avanzada CICATA-IPN México D. F. Junio 16-20.spa
dc.relation.referencesAhamed N, Sankara S, Kashif M, Hayath S. & Sastry T. 2015. Evaluation of biomaterial containing regenerated cellulose and chitosan incorporated with silver nanoparticles. Int. J. Biol. Macromol. 72: 680-686. https://doi.org/10.1016/j.ijbiomac.2014.08.055.spa
dc.relation.referencesAhluwalia V, Kumar J, Sisodia R, Shakil N. & Walia S. 2014. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind Crops Prod. 55:202-6. https://doi.org/10.1016/j.indcrop.2014.01.026.spa
dc.relation.referencesAhmad A, Mukherjee P, Senapati S, Mandal D, Khan M, Kumar R. et al., 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B. 28(4):313-318. https://doi.org/10.1016/S0927-7765(02)00174-1.spa
dc.relation.referencesAl juraifani A. 2015. Biosynthesis of silver nanoparticles by Aspergillus niger, Fusarium oxysporum and Alternaria solani. African J Biotechnol. 14(26):2170-4. https://doi.org/10.5897/AJB2015.14482.spa
dc.relation.referencesAlghuthaymi M, Almoammar H, Rai M, Said-Galiev E. & Abd-Elsalam K 2015. Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip. 29(2):221-6. https://doi.org/10.1080/13102818.2015.1008194spa
dc.relation.referencesAlmeida S, De Oliveira D. & Hotza D. 2017 Characterization of silver nanoparticles produced by biosynthesis mediated by Fusarium oxysporum under different processing conditions. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-017-1788-9spa
dc.relation.referencesAl-Tayyar N, Youssef A. & Al-hindi R. 2019. Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne pathogens: A Review, Food. Chem. https://doi.org/10.1016/j.foodchem.2019.125915spa
dc.relation.referencesAl-Zomor R, Khlaif H. & Akash M. 2013. Detection and identification of Erwinia carotovora subsp. Atroseptica (Van Hall, 1902) the causal agent of potato blackleg by RFLP-PCR. Jordan Journal of Agricultural Sciences. 9(2): 170-183. https://doi.org/10.12816/0001100spa
dc.relation.referencesAmerasan D, Nataraj T, Murugan K, Panneerselvam Ch, Madhiyazhagan P, Nicoletti M. & Benelli G. 2016. Myco-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci https://doi.org/10.1007/s10340-015-0675-xspa
dc.relation.referencesAnand P, Isar J, Saran S. & Saxena R. 2006. Bioaccumulation of copper by Trichoderma viride. Bioresource Technology 97:1018-1025. https://doi.org/10.1016/j.biortech.2005.04.046.spa
dc.relation.referencesAPHA. 2004. Chapter 6. Microbiological count methods. Davidson P.M. Roth LA, Gambrel SA, Bruhn J. In H.M. Wehr & J.F. Frank (Ed). Standard methods for the examination of dairy products (17a Ed.). Washington, D. C. American Public Associationspa
dc.relation.referencesArif D, Bilal M, Ul-Haq N, Nabeel M. & Hashmi E. 2015. Preparation of antibacterial cotton fabric using chitosan-silver nanoparticles. Fibers and Polymers 16(7): 1519-1526. https://doi.org/10.1007/s12221-015-5245-6spa
dc.relation.referencesAsmathunisha N. & Kathiresan K. 2013. A review on biosynthesis of nanoparticles by marine organisms. Colloids Surf. B. 103: 283-287. https://doi.org/10.1016/j.colsurfb.2012.10.030spa
dc.relation.referencesATCC Test Method 147-2011 (2016)e. AATCC Manual of international test methods and procedures 2021. https://members.aatcc.org/4DCGI/download/k6n3D4lE7t/TM147.pdfspa
dc.relation.referencesAthanassiou C, Kavallieratos N, Benelli G, Losic D, Usha Rani P. & Desneux N. 2018. Nanoparticles for pest control: current status and future Perspectives. J Pest Sci 91:1-15 https://doi.org/10.1007/s10340-017-0898-0.spa
dc.relation.referencesAvella M, De Vlieger J, Errico M, Fischer S, Vacca P, Volpe M. 2005. Biodegradable starch/clay nanocomposite films for food packaging applications, Food Chem. 93: 467-474. https://doi.org/10.1016/j.foodchem.2004.10.024spa
dc.relation.referencesAysan Y, Karatas A. & Cinar O. 2003. Biological control of bacterial stem rot caused by Erwinia chrysanthemi on tomato. Crop Prot. 22: 807-811. http://dx.doi.org/10.1016/S0261-2194(03)00030-9spa
dc.relation.referencesAzmath P, Baker S, Rakshith D. & Satish S. 2016. Mycosynthesis of silver nanoparticles bearing antibacterial activity. Saudi Pharmaceutical Journal 24: 140-146. https://doi.org/10.1016/j.jsps.2015.01.008spa
dc.relation.references26. Bailey R, West K. & Black R. 2015. The epidemiology of global micronutrient deficiencies. Ann Nutr Metab 66(Suppl. 2):22-33. https://doi.org/10.1159/000371618spa
dc.relation.referencesBalaji D, Basavaraja S, Deshpande R, Mahesh D, Prabhakara B. & Venkataraman A. 2009. Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf. B 68: 88-92. https://doi.org/10.1016/j.colsurfb.2008.09.022spa
dc.relation.referencesBalakumaran M, Ramachandran R. & Kalaichelvan P. 2016. Exploitation of endophytic fungus, Guignardia mangiferae for extracellular synthesis of silver nanoparticles and their in vitro biological activities. Microbiol. Res. 178: 9-17. https://doi.org/10.1016/j.micres.2015.05.009spa
dc.relation.referencesBarik T, Sahu B. & Swain V. 2008. Nanosilica - from medicine to pest control. Parasitol Res 103(2):253-258. http://dx.doi.org/10.1007/s00436-008-0975-7spa
dc.relation.referencesBarnard A. & Salmond G. 2007. Quorum sensing in Erwinia species. Anal Bioanal Chem 387: 415-423. https://doi.org/10.1007/s00216-006-0701-1spa
dc.relation.referencesBarud H, Barrios C, Regiani T, Marques R, Verelst M, Dexpert-Ghys J, Messaddeq Y. & Ribeiro S. 2008. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater. Sci. Eng. C 28: 515-518. http://dx.doi.org/10.1016/j.msec.2007.05.001spa
dc.relation.referencesBasavaraja S, Balaji S, Lagashetty A, Rajasab A. & Venkataraman A. 2008. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater. Res. Bull. 43(5): 1164 -1170. https://doi.org/10.1016/j.materresbull.2007.06.020spa
dc.relation.referencesBastidas K, Sierra C. & Zea, H. 2018. Heterogeneous Fenton oxidation of Orange II using iron nanoparticles supported on natural and functionalized fique fiber. J. Env. Chem. Eng. 6: 4178-4188.spa
dc.relation.referencesBawaskar M, Gaikwad S, Ingle A, Rathod D, Gade, Duran N, Marcato P. & Rai M. 2010. A new report on mycosynthesis of silver nanoparticles by Fusarium culmorum. Curr Nanosci 6: 376-380. http://dx.doi.org/10.2174/157341310791658919spa
dc.relation.referencesBecker S, Mattiello A, Da Silva G, Groth D. & Malagi I. 2013. Production of cellulases by the endophytic fungus Fusarium oxysporum. Journal of Microbiology Research 3(4): 131-134. http://dx.doi.org/10.5923/j.microbiology.20130304.01spa
dc.relation.referencesBeltrán M, Lizarazo L, Sierra C. 2022. Antibacterial activity of biosynthesized silver nanoparticles (AgNPs) against Pectobacterium carotovorum. Brazilian Journal of Microbiology https://doi.org/10.1007/s42770-022-00757-7spa
dc.relation.referencesBenkeblia N. 2012. Postharvest diseases and disorders of potato tuber Solanum tuberosum L. Potatoes: production, consumption and health benefits. Kingston: Nova Science 7: 99-114spa
dc.relation.referencesBeveridge T, Hughes M, Lee H, Leung K, Poole R, Savvaidis I, Silver S. & Trevors J. 1997. Metal–microbe interactions: contemporary approaches. Adv Microb Physiol 38: 178-243. https://doi.org/10.1016/S0065-2911(08)60158-7spa
dc.relation.referencesBeyene H, Werkneh A, Bezabh A. & Ambaye T. 2017. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. SM&T 13: 18-23. https://doi.org/10.1016/j.susmat.2017.08.001spa
dc.relation.referencesBhainsa K. & D’Souza S. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigates. Colloids Surf. B. 47:160-164. https://doi.org/10.1016/j.colsurfb.2005.11.026.spa
dc.relation.referencesBhat R, Ganachari S, Deshpande R, Bedre M. & Venkataraman A. 2012. Biosynthesis and characterization of silver nanoparticles using extract of fungi Acremonium diospyri. International Journal of Science Research 1(4): 314-316.spa
dc.relation.referencesBhattacharya D. & Gupta R. 2005. Nanotechnology and potential of microorganisms. Crit. Rev. Biotechnol. 25:199-201 https://doi.org/10.1080/07388550500361994spa
dc.relation.referencesBhui D, Bar H, Sarkar P, Sahoo G, Prasad De S. & Misra A. 2009. Synthesis and UV–vis spectroscopic study of silver nanoparticles in aqueous SDS solution. J. Mol. Liq 145: 33-37. https://doi.org/10.1016/j.molliq.2008.11.014spa
dc.relation.referencesBinupriyaa A, Sathishkumara M. & Yun S-I. 2010. Biocrystallization of silver and gold ions by inactive cell filtrate of Rhizopus stolonifer. Colloids Surf. B. 79: 531-534. https://doi.org/10.1016/j.colsurfb.2010.05.021spa
dc.relation.referencesBirla S, Gaikwad S, Gade A. & Rai K. 2013. Rapid synthesis of silver nanoparticles from Fusarium oxysporum by optimizing physicocultural conditions. Hindawi Publishing Corporation the ScientificWorld Journal Volume 2013, Article ID 796018, 12 pages http://dx.doi.org/10.1155/2013/796018spa
dc.relation.referencesBirla S, Tiwari V, Gade A, Ingle P, Yadav A. & Rai M. 2009.Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett. Appl. Microbiol. 48: 173-179. https://doi.org/10.1111/j.1472-765X.2008.02510.xspa
dc.relation.referencesBiswas S. & Mulaba A. 2016. Optimization of process variables for the biosynthesis of silver nanoparticles by Aspergillus wentii using statistical experimental design Adv. Nat. Sci 7- 045005 (10pp).spa
dc.relation.referencesBitas V, McCartney N, Li N, Demers J, Kim J, Kim H, Mand B. & Kang S. 2015. Fusarium oxysporum volatiles enhance plant growth via affecting auxin transportand signaling. Front.Microbiol.6:1248. https://doi: 10.3389/fmicb.2015.01248spa
dc.relation.referencesBrooks J. & Flint S. 2008. Biofilms in the food industry: problems and potential solutions. Int. J. Food Sci. Technol. 43: 2163-2176. https://doi.org/10.1111/j.1365-2621.2008.01839.x.spa
dc.relation.referencesCai J, Kimura S, Wada M. & Kuga S. 2009. Nanoporous cellulose as metal nanoparticles support. Biomacromolecules 10: 87-94. https://doi.org/10.1021/bm800919espa
dc.relation.referencesCamacho A, Duarte A, Dubayj D, Forero E, González E, Jaramillo F, Maldonado C, Montoya J, Obregón N, Osma J, Sierra C. & Urquijo W. 2016. Definición de nanomateriales para Colombia. Rev. Colomb. Quim. 45(1):15-20. http://dx.doi.org/10.15446/rev.colomb.quimv45n1.58955spa
dc.relation.referencesCastellanos L, Blanco C, Hinestroza J. & Combariza M. 2012. In situ synthesis of gold nanoparticles using fique natural fibers as template. Cellulose 19:1933 - 1943. http://dx.doi.org/10.1007/s10570-012-9763-8spa
dc.relation.referencesChan Y. & Don. 2013. Biosynthesis and structural characterization of Ag nanoparticles from white rot fungi. Mater. Sci. Eng. C 33: 282-288. https://doi.org/10.1016/j.msec.2012.08.041spa
dc.relation.referencesChauhan A, Anand J, Parkash V. & Rai N. 2022. Biogenic synthesis: a sustainable approach for nanoparticles synthesis mediated by fungi. Inorganic. Nano Metal Chem. 1-14. http://dx.doi.org/10.1080/24701556.2021.2025078spa
dc.relation.referencesChen J, Lin Z, Ma X. 2003. Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37: 105-8. https://doi.org/10.1046/j.1472-765X.2003.01348.xspa
dc.relation.referencesChen Y. & Yada R. 2011. Nanotechnologies in agriculture: New tools for sustainable development. Trends. Food. Sci. Tech. 22: 585-594. https://doi.org/10.1016/j.tifs.2011.09.004spa
dc.relation.referencesClinical and Laboratory Standards Institute (CLSI). 2007. Performance standards for antimicrobial susceptibility testing. Seventeenth informational supplement (M100-S17). Wayne, PA: Clinical and Laboratory Standards Institute.spa
dc.relation.referencesCox, E. 1927.” A method of assigning numerical and percentage values to the degree of roundness of sand grains”. Journal of Paleontology. 1, 179-183.spa
dc.relation.referencesCypriyana J, Saigeetha S, Agnes L, Samrot A, Kumar S, Ponniahc P. & Chakravarthic S. 2021.Overview on toxicity of nanoparticles, it's mechanism, models used in toxicity studies and disposal methods-A review. Biocatal. Agric. Biotechnol. 36 :102117. https://doi.org/10.1016/j.bcab.2021.102117spa
dc.relation.referencesCzajkowski R, Perombelon M, Van Veen J. & Van der Wolf J. 2011. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: a review. Plant Pathol. 60: 999-1013. https://doi.org/10.1111/j.1365-3059.2011.02470.x.spa
dc.relation.referencesDas C, Kumar V, Dhas T, Karthick V, Govindaraju K, Joselin J. & Baalamurugan J. 2020. Antibacterial activity of silver nanoparticles (biosynthesis): A short review on recent advances. Biocatal. Agric. Biotechnol 27 :101593. https://doi.org/10.1016/j.bcab.2020.101593spa
dc.relation.referencesDe Santa Maria L, Santos A, Oliveira P, Barud H, Messaddeq Y. & Ribeiro S. 2009. Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater. Lett. 63: 797-799. http://dx.doi.org/10.1016%2Fj.matlet.2009.01.007.spa
dc.relation.referencesDe Souza A. & Gomes A. 2015. Biosynthesis of silver nanoparticles by fungi in Fungal biomolecules: sources, applications, and recent developments. Editors, Dr. Vijai Kumar Gupta, Prof. Robert L. Mach, Prof. S. Sreenivasaprasad. ISBN 978-1-118-95829-2.spa
dc.relation.referencesDesai R, Mankad V, Gupta S. & Jha P. 2012. Size distribution of silver nanoparticles: UV-visible spectroscopic assessment. Nanosci. Nanotech. Let. 4:30-34. https://doi.org/10.1166/nnl.2012.1278spa
dc.relation.referencesDevaux A, Goffart J, Kromann P, Andrade J, Polar V, Hareau G. 2021. The Potato of the Future: opportunities and challenges in sustainable agri-food systems. Potato Res 681-720. https://doi.org/10.1007/s11540-021-09501-4spa
dc.relation.referencesDevi L. & Joshi S. 2015. Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct. 3(1):29-37. https://doi.org/10.1016/j.jmau.2014.10.004.spa
dc.relation.referencesDhanasekaran D, Latha S, Saha S, Thajuddin &. Panneerselvam A. 2011. Biosynthesis and antimicrobial potential of metal nanoparticles. Int. J. Green Nanotechnol. 3:1, 72-82. https://doi.org/10.1080/19430892.2011.574545spa
dc.relation.referencesDhillon G, Brar S, Kaur S. & Verma M. 2012. Green approach for nanoparticle biosynthesis by fungi: current trends and applications. Crit Rev Biotechnol. 32(1):49-73. https://doi.org/10.3109/07388551.2010.550568spa
dc.relation.referencesDhoble S. 2015. Biosynthesis of metal nanoparticles from fungal isolates of soybean rhizosphere. Int J Sci Res. 4(5):3-5. https://www.doi.org/10.36106/ijsrspa
dc.relation.referencesDiez I, Eronen P, O¨ sterberg M, Linder M, Ikkala O. & Ras R. 2011. Functionalization of nanofibrillated cellulose with silver nanoclusters: fluorescence and antibacterial activity. Macromol. Biosci. 11: 1185-1191. https://doi.org/10.1002/mabi.201100099spa
dc.relation.referencesDöbelin N. & Kleeberg R. 2015. Profex: a graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48:1573-1580. https://doi.org/ 10.1107/S1600576715014685spa
dc.relation.referencesDong H & Hinestroza J. 2009. Metal nanoparticles on natural cellulose fibers: electrostatic assembly and in situ synthesis. Applied materials and interfaces. 1(4):797-803. https://doi.org/10.1021/am800225jspa
dc.relation.referencesDoolotkeldieva T, Bobusheva S. & Suleymankisi A. 2016. Biological control of Erwinia carotovora ssp. carotovora by Streptomyces Species. Advances in Microbiology. 6: 104-114. http://www.scirp.org/journal/PaperInformation.aspx?PaperID=63683&#abstractspa
dc.relation.referencesDrogat N, Granet R, Sol V, Memmi A, Saad N, Klein C, Bressollier P. & Krausz P. 2011. Antimicrobial silver nanoparticles generated on cellulose nanocrystals. J Nanopart Res 13: 1557-1562. https://doi.org/10.1007/s11051-010-9995-1spa
dc.relation.referencesDu l, Xu Q, Huang m, Xian l. & Feng J. 2015. Synthesis of small silver nanoparticles under light radiation by fungus Penicillium oxalicum and its application for the catalytic reduction of methylene blue. Mater. Chem. Phys. 160: 40-47. https://doi.org/10.1016/j.matchemphys.2015.04.003.spa
dc.relation.referencesDuarte O & Velho L. 2009. La bioprospección como un mecanismo de cooperación internacional para fortalecimiento de capacidades en ciencia y tecnología en Colombia. Ci. Inf., Brasília, DF, 38(3): 96-110.spa
dc.relation.referencesDurán N, Marcato P, Alves O, De Souza G. & Esposito E. 2005. Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J. Nanobiotechnology 3:8 doi:10.1186/1477-3155-3-8.spa
dc.relation.referencesDurán N, Marcato P, De Souza G, Alves O. & Esposito E. 2007. Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nanotechnol 3: 203-208. https://doi.org/:10.1166/jbn.2007.022spa
dc.relation.referencesDurán N, Marcato P, Durán M, Yadav A, Gade A. & Rai M. 2011. Mechanistic aspects in the biogenic synthesis of extracelular metal nanoparticles by peptides, bacteria, fungi, and plants. Appl Microbiol Biotechnol 90:1609-1624. https://doi.org/10.1007/s00253-011-3249-8spa
dc.relation.referencesElamawi R, Al-Harbi R, Hendi A. 2018. Biosynthesis and characterization of silver nanoparticles using Trichoderma longibrachiatum and their effect on phytopathogenic fungi. Egypt J Biol Pest Control. 28(1). https://doi.org/10.1186/s41938-018-0028-1spa
dc.relation.referencesElgorban A, Al-Rahmah A, Sayed S, Hirad A, Mostafa A. & Bahkali A. 2016. Antimicrobial activity and green synthesis of silver nanoparticles using Trichoderma viride. Biotechnol Biotechnol Equip. 30(2):299-304. https://doi.org/10.1080/13102818.2015.1133255spa
dc.relation.referencesEl-Moslamy S, Elkady M, Rezk A. & Abdel-Fattah Y. 2017. Applying Taguchi design and large-scale strategy for mycosynthesis of nano-silver from endophytic Trichoderma harzianum SYA.F4 and its application against phytopathogens. Sci Rep. 7(1) Article number: 45297. http://dx.doi.org/10.1038/srep45297spa
dc.relation.referencesEl-Rafie M, Mohamed A, Shaheen T. & Hebeish A. 2010. Antimicrobial effect of silver nanoparticles produced by fungal process on cotton fabrics. Carbohydr. Polym. 80: 779-782. http://dx.doi.org/10.1016/j.carbpol.2009.12.028spa
dc.relation.referencesElshahawy I, Mohamed H, Mohamed S. & Mohamed O. 2018. First report of Pythium aphanidermatum infecting tomato in Egypt and its control using biogenic silver nanoparticles. J Plant Prot Res 58 (2): 137-151. http://dx.doi.org/ 10.24425/122929spa
dc.relation.referencesEmam H, Zahran M. 2015. Ag0 nanoparticles containing cotton fabric: synthesis, characterization, color data and antibacterial action. Int. J. Biol. Macromol. 75: 106-114. https://doi.org/10.1016/j.ijbiomac.2014.12.050spa
dc.relation.referencesFAO statistics. 2020. FAO statistics 2020. Food and agriculture organization. http://www.fao.org/statistics/es/. Acceso enero 2022spa
dc.relation.referencesFathima B, Mohan R. 2014. Biosynthesis and optimization of silver nanoparticles by endophytic fungus Fusarium solani. Mat. Let.t 132: 428-431. http://dx.doi.org/10.1016%2Fj.matlet.2014.06.143.spa
dc.relation.referencesFatima F, Bajpai P, Pathak N, Singh S, Priya S. & Verma S. 2015. Antimicrobial and immunomodulatory efficacy of extracellularly synthesized silver and gold nanoparticles by a novel phosphate solubilizing fungus Bipolaris tetramera. BMC Microbiol. 15(1):52. https://doi.org/10.1186/s12866-015-0391-yspa
dc.relation.referencesFayaz A, Balaji K, Girilal M, Kalaichelvan P, Venkatesan R. 2009. Mycobased synthesis of silver nanoparticles and their incorporation into sodium alginate films for vegetable and fruit preservation. Agric Food Chem. 57:6246-6252. https://doi.org/10.1021/jf900337hspa
dc.relation.referencesFeroze N, Arshad B, Younas M, Irfan M, Saqib S. & Ayaz A. 2019. Fungal mediated synthesis of silver nanoparticles and evaluation of antibacterial activity. Microsc Res Tech. 1-9. https://doi.org/10.1002/jemt.23390spa
dc.relation.referencesFonseca M, Rodrigues D, Sokolonski A, Stanisic D. Tomé L, Góes-Neto A, Azevedo V, Meyer R, Araújo D, Tasic L. et al. 2022. Activity of Fusarium oxysporum-based silver nanoparticles on Candida spp. oral isolates. Nanomaterials 12-501. https://doi.org/10.3390/nano12030501spa
dc.relation.referencesFranco Y. & Stefanova M. 2008. Determinación de actividades enzimáticas implicadas en la virulencia de cepas de Pectobacterium carotovorum subsp. carotovorum y Dickeya chrysanthemi aisladas de papa. Agro sur 36 (3): 130-136.spa
dc.relation.referencesGade A, Bonde P, Ingle A, Marcato P, Durán N. & Rai M. 2008. Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenergy 2: 1-5. https://doi.org/10.1166/jbmb.2008.401spa
dc.relation.referencesGade A, Gaikwad S, Duran N. & Rai M. 2014. Green synthesis of silver nanoparticles by Phoma glomerata Micron 59: 52-59. https://doi.org/10.1016/j.micron.2013.12.005spa
dc.relation.referencesGahlawat G & Roin A. 2019. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9: 12944 https://doi.org/ 10.1039/c8ra10483bspa
dc.relation.referencesGaikwad S, Birla S, Ingle A, Gade A, Marcato P, Rai M. & Duran N. 2013. Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J. Braz. Chem. Soc. 24(12): 1974-1982. http://dx.doi.org/10.5935/0103-5053.20130247spa
dc.relation.referencesGajbhiye M, Kesharwani J, Ingle A, Gade A. & Rai M. 2009. Fungus mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole. Nanomedicine 5:382-386. https://doi.org/10.1016/j.nano.2009.06.005spa
dc.relation.referencesGañan P. & Mondragon I. 2002. Surface modification of fique fibers. Effects on their physico-mechanical properties. Polym. Compos. 23(3): 383-394. https://doi.org/10.1002/pc.10440spa
dc.relation.referencesGaravito L. 2015. Los páramos en Colombia, un ecosistema en riesgo. INGENIARE 11(19): 127-136 ISSN: 1909-2458. http://dx.doi.org/10.18041/1909-2458/ingeniare.19.530spa
dc.relation.referencesGericke M. & Pinches A. 2006. Biological synthesis of metal nanoparticles. Hydrometallurgy 83: 132-140. https://doi.org/10.1016/j.hydromet.2006.03.019spa
dc.relation.referencesGholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M. & Razzaghi-Abyaneh M. 2014. Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084-4098. https://doi.org/ 10.1007/s12010-014-0809-2.spa
dc.relation.referencesGokul G, Louis V, Namitha P, Mathew D, Girija D, Shylaja M et al., 2019.Variability of Pectobacterium carotovorum causing rhizome rot in banana. Biocatal Agric Biotechnol. 17:60-81. https://doi.org/10.1016/j.bcab.2018.11.001spa
dc.relation.referencesGonzalez E, et al .2015. Nanopartículas Coloidales. Ed. Nanocitec. 1ra Ed. ISBN: 978-958-46-6931-5spa
dc.relation.referencesGuilger M, Lima R. 2019. Synthesis of silver nanoparticles mediated by Fungi: A Review. Front. Bioeng. Biotechnol. 7:287 http://dx.doi.org/10.3389/fbioe.2019.00287spa
dc.relation.referencesGumel A, Surayya M, Yaro M, Waziri I. & Amina A. 2019. Biogenic synthesis of silver nanoparticles and its synergistic antimicrobial potency: an overview. J Appl Biotechnol Bioeng 6(1):22-28.spa
dc.relation.referencesGupta K, Singh T, Ahmad N, Malek N. 2021. Antibacterial, antifungal, photocatalytic activities and seed germination effect of mycosynthesized silver nanoparticles using Fusarium oxysporum. Bioenterface Research in applied chemistry 11(49): 12082 - 12091 https://doi.org/10.33263/BRIAC114.1208212091spa
dc.relation.referencesGustavsen G. 2021. Sustainability and potato consumption. Potato Rese 64:571-586. https://doi.org/10.1007/s11540-021-09493-1spa
dc.relation.referencesHamad M. 2019. Biosynthesis of silver nanoparticles by fungi and their antibacterial activity. Int J Environ Sci Technol (Tehran). 16: 1015-1024. https://doi.org/10.1007/s13762-018-1814-8spa
dc.relation.referencesHamedi S, Ghaseminezhad M, Shokrollahzadeh S, Shojaosadati S. 2017. Controlled biosynthesis of silver nanoparticles using nitrate reductase enzyme induction. Artificial cells, nanomedicine, and biotechnology 45(8): 1588-1596. http://dx.doi.org/10.1080/21691401.2016.1267011spa
dc.relation.referencesHamedi S, Shojaosadati S, Shokrollahzadeh S. & Najafabadi S. 2014. Extracellular biosynthesis of silver nanoparticles using a novel and non-pathogenic fungus, Neurospora intermedia: controlled synthesis and antibacterial activity. World J Microbiol Biotechnol 30:693-704. https://doi.org/10.1007/s11274-013-1417-yspa
dc.relation.referencesHanh T, Thu N, Hien N, An P, Loan T. & Hoa P. 2016. Preparation of silver nanoparticles fabrics against multidrug-resistant bacteria. Radiat. Phys. Chem. 121:87-92. https://doi.org/10.1016/j.radphyschem.2015.12.024spa
dc.relation.referencesHarley S. 1993. Use of a simple, colorimetric assay to demonstrate conditions for induction of nitrate reductase in plants. The American Biology Teacher. 55(3):161-164. https://doi.org/10.2307/4449615spa
dc.relation.referencesHe J, Kunitake T. & Nakao A. 2003. Facile in situ synthesis of noble metal nanoparticles in porous cellulose fibers. Chem. Mater. 15: 4401-4406. https://doi.org/10.1021/cm034720rspa
dc.relation.referencesHonary S, Barabadi H, Gharaei-Fathabad E. & Naghibi F. 2013. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop J Pharm Res. 12(1): 7-11. https://doi.org/10.4314/tjpr.v12i1.2spa
dc.relation.referencesHossain M, Shibata S, Aizawa S. & Tsuyumu S. 2005. Motility is an important determinant for pathogenesis of Erwinia carotovora subsp. carotovora. Physiol. Mol. Plant. P. 66: 134-143. http://dx.doi.org/10.1155/2013/509628spa
dc.relation.referencesHu Dong Y, Fen Zhang X, Ling X. & Hui Zhang L. 2004. Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl. Environ. Microbiol. 70(2): 954-960. https://doi.org/ 10.1128/AEM.70.2.954–960.2004spa
dc.relation.referencesHu X, Webster G, Xie L, Yu C, Li Y. & Liao X . 2014. A new method for the preservation of axenic fungal cultures. J Microbiol Methods. 99(1):81- 3. http://dx.doi.org/10.1016/j.mimet.2014.02.009spa
dc.relation.referencesHuang T, Qian Y, Wei J.& Zhou Ch. 2019. Polymeric antimicrobial food packaging and its applications, Polymers 11-560. http://dx.doi.org/10.3390/polym11030560.spa
dc.relation.referencesHulkoti N. & Taranath T. 2014. Biosynthesis of nanoparticles using microbes - A review. Colloid. Surface. B. 121: 474- 483. https://doi.org/10.1016/j.colsurfb.2014.05.027spa
dc.relation.referencesHussain N, Baqar Z, Mumtaz M, El-Sappah A, Show P, Iqbal H, Varjani S, Bilal M. 2022. Bioprospecting fungal-derived value-added bioproducts for sustainable pharmaceutical applications. Sustain. Chem. Pharm. 29-100755. https://doi.org/10.1016/j.scp.2022.100755spa
dc.relation.referencesHusseiny S, Salah T. & Anter H. 2015. Biosynthesis of size controlled silver nanoparticles by Fusarium oxysporum, their antibacterial and antitumor activities. Beni-Suef University Journal of basic and applied sciences 4:225-231. https://doi.org/10.1016/j.bjbas.2015.07.004spa
dc.relation.referencesIbrahim H. & Hassan M. 2016. Characterization and antimicrobial properties of cotton fabric loaded with green synthesized silver nanoparticles. Carbohydr Polym. http://dx.doi.org/doi:10.1016/j.carbpol.2016.05.041spa
dc.relation.referencesIbrahim S, Sirwi A, Eid B, Mohamed S, Mohamed G. 2021. Bright side of Fusarium oxysporum: secondary metabolites bioactivities and industrial relevance in biotechnology and Nanotechnology. J. Fungi 7: 943. http://dx.doi.org/10.3390/jof711943spa
dc.relation.referencesIjaz I, Gilani E, Nazir A. & Bukhari A. 2020. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chem Lett Rev 13: 223-245 https://doi.org/10.1080/17518253.2020.1802517spa
dc.relation.referencesIlic V, Šaponjic Z, Vodnik V, Potkonjak B, Jovancic P, Nedeljkovic J. & Radetic M. 2009. The influence of silver content on antimicrobial activity and color of cotton fabrics functionalized with Ag nanoparticles. Carbohydrate Polymers 78: 564-569spa
dc.relation.referencesIngham B. 2015. X-ray scattering characterisation of nanoparticles, Crystallography Reviews, 21:4, 229-303, https://doi.org/10.1080/0889311X.2015.1024114spa
dc.relation.referencesIngle A, Gade A, Bawaskar M. & Rai M. 2009. Fusarium solani, a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanoparticle Res. 11:2079-2085. https://doi.org/10.1007/s11051-008-9573-yspa
dc.relation.referencesIngle A, Gade A, Pierrat S, Sonnichsen C. & Rai M. 2008. Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci. 4:141-144. https://doi.org/10.2174/157341308784340804spa
dc.relation.referencesIshida K, Ferreira T, Miranda G, Weissmüller G, Gomes F, Miranda K. & Rozental S. 2013. Silver nanoparticle production by the fungus Fusarium oxysporum: nanoparticle characterisation and analysis of antifungal activity against pathogenic yeasts. Mem Inst Oswaldo Cruz, Rio de Janeiro: 1-9.spa
dc.relation.referencesIturbe J, Vilchiz A, Mendieta V. & Borja M. 2013. Obtención y caracterización de nanopartículas de plata soportadas en fibra de algodón. Superficies y Vacío 26(3): 73-78.spa
dc.relation.referencesJafarzadeh S, Jafarib S, Salehabadi A, Nafchia A, Kumara U. & Khalila H. 2020. Biodegradable green packaging with antimicrobial functions based on the bioactive compounds from tropical plants and their by-products. Trends Food Sci Technol 100: 262-277. http://doi.org/10.1016/j.tifs.2020.04.017spa
dc.relation.referencesJaidev L, Narasimha G. 2010. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B. 81(2):430-3. https://doi.org/10.1016/j.colsurfb.2010.07.033spa
dc.relation.referencesJain N, Bhargava A, Majumdar S, Tarafdar J. & Panwar J. 2011. Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: A mechanism perspective. Nanoscale. 3(2):635-41. https://doi.org/10.1039/C0NR00656Dspa
dc.relation.referencesJebali A, Ramezani F. & Kazemi B. 2011. Biosynthesis of silver nanoparticles by Geotrichum sp. J Clust Sci 22:225-232. https://doi.org/10.1007/s10876-011-0375-5spa
dc.relation.referencesJemal K, Sandeep B, & Sudhakar P. 2017. Synthesis, characterization, and evaluation of the antibacterial activity of Allophylus serratus leaf and leaf derived callus extracts mediated silver nanoparticles. Hindawi Journal of Nanomaterials. Article ID 4213275, https://doi.org/10.1155/2017/4213275spa
dc.relation.referencesJian Z, & Hejing W. 2003. The physical meanings of 5 basic parameters for an X-ray diffraction peak and their application. Chinese Journal of Geochemistry 22(1):38-44spa
dc.relation.referencesJo Y, Kim B. & Jung G. 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Dis 93,1037-1043. https://doi.org/10.1094/pdis-93-10-1037spa
dc.relation.referencesKah M, Beulke B, Tiede K. & Hofmann T. 2013. Nanopesticides: state of knowledge, environmental fate, and exposure modeling. Crit Rev Environ Sci Technol 43(16): 1823-1867, https://doi.org/10.1080/10643389.2012.671750spa
dc.relation.referencesKah N. & Hofmann T. 2014. Nanopesticide research: current trends and future priorities. Environment International 63: 224-235. https://doi.org/10.1016/j.envint.2013.11.015.spa
dc.relation.referencesKamarudin S, Rayung M, Abu F, Ahmad S, Fadil F, Abdul A, Nurazzi M, Sarifuddin N, Shaiful M, Mat Z, Salahuddin M. & Chuah L. 2022. A review on antimicrobial packaging from biodegradable polymer composites. Polymers 14-174. https://doi.org/10.3390/polym14010174.spa
dc.relation.referencesKamil D, Prameeladevi T, Ganesh S, Prabhakaran N, Nareshkumar R. & Thomas S. 2017. Green synthesis of silver nanoparticle by enthomopathogenic fungus Beauveria bassiana and their bioefficacy against mustard aphid (Lipaphys erysimi Kalt.). Indian J. Exp. Biol. 55: 555-561. http://nopr.niscpr.res.in/handle/123456789/42555spa
dc.relation.referencesKasprowicz M, Kozioł M. & Gorczyca,A. 2010. The effect of silver nanoparticles on phytopathogenic spores of Fusarium culmorum. Can J Microbiol 56(3):247-253. https://doi.org/10.1139/w10-012spa
dc.relation.referencesKathiresan K, Manivannan S, Nabeel M. & Dhivya B. 2009. Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf. B 71:133-137. https://doi.org/10.1016/j.colsurfb.2009.01.016spa
dc.relation.referencesKeat C, Aziz A, Eid A. & Elmarzugi A. 2015. Biosynthesis of nanoparticles and silver nanoparticle. Bioresour. Bioprocess 2:47. https://doi.org/10.1186/s40643-015-0076-2spa
dc.relation.referencesKha M. & Hofmann. 2014. Nanopesticide research: current trends and future priorities. Environ Int 63:224-35. https://doi.org/ 10.1016/j.envint.2013.11.015spa
dc.relation.referencesKhan A, Malik N, Khan M, Cho M. & Khan M. 2017. Fungi-assisted silver nanoparticle synthesis and their applications. Bioprocess Biosyst Eng. https://doi.org/ 10.1007/s00449-017-1846-3spa
dc.relation.referencesKhandel P. & Kumar S. 2018. Mycogenic nanoparticles and their bio prospective applications: current status and future challenges. J Nanostructure Chem https://doi.org/10.1007/s40097-018-0285-2spa
dc.relation.referencesKharissova O, Dias H, Kharisov B, Perez B. & Jimenez V. 2013. The greener synthesis of nanoparticles. Trends Biotechnol 31(4):240-248. https:// doi. org/ 10. 1016/j. tibte ch.2013. 01. 003spa
dc.relation.referencesKhlaif H & Wreikat B. 2018. The relationship of potato bacterial soft rot disease with reduced sugar content of potato tubers and calcium. Jordan Journal of Agricultural Sciences 14(1): 81-90spa
dc.relation.referencesKhot L, Sankaran S, Maja J, Ehsani R.& Schuster E. 2012. Applications of nanomaterials in agricultural production and crop protection: A review. Crop. Prot. 35: 64-70.spa
dc.relation.referencesKim S, Jung J, Lamsal K, Kim Y, Min J & Lee Y. 2012. Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi, Mycobiology 40(1): 53-58. https://doi.org/10.5941/MYCO.2012.40.1.053.spa
dc.relation.referencesKirthi A, Rahuman A, Jayaseelan C, Karthik L, Marimuthu S, Santhoshkumar T. Venkatesan J. Kim S. Kumar G, Ravi S, Kumar S, Rao K. 2012. Novel approach to synthesis silver nanoparticles using plant pathogenic fungi, Puccinia graminis. Mater. Lett. 81: 69-72. https://doi.org/10.1016/j.matlet.2012.04.103spa
dc.relation.referencesKolarova K, Samec D, Kvitek O, Reznickova A, Rimpelova S. & Svorcik V. 2017. Preparation and characterization of silver nanoparticles in methyl cellulose matrix and their antibacterial activity. Jpn. J. Appl. Phys. 56 06GG09. http://dx.doi.org/10.7567/JJAP.56.06GG09spa
dc.relation.referencesKong X, Reza M, Ma Y, Hinestroza J, Ahvenniemi E, Vuorinen T. 2015. Assembly of metal nanoparticles on regenerated fibers from wood sawdust and de-inked pulp: flexible substrates for surface enhanced Raman scattering (SERS) applications. Cellulose 22:3645-3655.spa
dc.relation.referencesKorbekandi H, Iravani S. & Abbasi S. 2009. Production of nanoparticles using organisms. Crit. Rev. Biotechnol. 29(4): 279-306. https://doi.org/10.3109/07388550903062462spa
dc.relation.referencesKotval S, John T. & Kokila A. 2016. A Review: Fabrication of biogenic silver nanoparticles and applications. Journal of Chemical, Biological and Physical Sciences 6(3):997-1009spa
dc.relation.referencesKhodashenas B. 2016. The influential factors on antibacterial behaviour of copper and silver nanoparticles. Indian Chemical Engineer 58(3): 224-239. https://doi.org/ 10.1080/00194506.2015.1026950spa
dc.relation.referencesKrishnakumar S, Sindu D, Shankar G, Williams P. & Sasikumar M. 2015. Extracellular biosynthesis of silver nanoparticles (Ag-NPs) using Fusarium oxysporum (MTCC-2480) and its antibacterial efficacy against Gram negative human pathogens. J Chem Pharm Res. 7(1):62-7spa
dc.relation.referencesKumar R, Priyadharsani P. & Thamaraiselvi K. 2012. Mycogenic synthesis of silver nanoparticles by the Japanese environmental isolate Aspergillus tamari. J Nanoparticle Res. 14:860-868. https://doi.org/10.1007/s11051-012-0860-2spa
dc.relation.referencesKumar U, Saxena P. & Srivastava A. 2007. Bioinspired synthesis of silver nanoparticles. Dig. J. Nanomater. Biostructures 4(1): 159 -166spa
dc.relation.referencesLamsal K, Kim S, Jung J, Kim Y, Kim K. & Lee Y. 2011. Inhibition effects of silver nanoparticles against powdery mildews on cucumber and pumpkin. Mycobiology 39:26-32. https://doi.org/10.4489/myco.2011.39.1.026spa
dc.relation.referencesLastochkina O, Baymiev A, Shayahmetova A, Garshina D, Koryakov I, Shpirnaya I, Pusenkova L, Mardanshin I, Kasnak C. & Palamutog R. 2020. Effects of endophytic Bacillus subtilis and salicylic acid on postharvest diseases (Phytophthora infestans, Fusarium oxysporum) development in stored potato tubers. Plants 9(76). https://doi.org/10.3390/plants9010076spa
dc.relation.referencesLe B. & Stellacci F. 2015. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 10, 339- 354. https://doi.org/10.1016/j.nantod.2015.04.002.spa
dc.relation.referencesLelliott R, Billinge A. & Hayward C. 1966. A determinative scheme for the fluorescent plant pathogenic Pseudomonads. J. App. Bact. 29 (3): 470-489. https://doi.org/10.1111/j.1365-2672.1966.tb03499.xspa
dc.relation.referencesLeonel M, Lopes E, Mazetti A, Peres R, Marques J, Loli E, Rodrigues T. 2017.Chemical composition of potato tubers: the effect of cultivars and growth conditions. J Food Sci Technol. https://doi.org/10.1007/s13197-017-2677-6spa
dc.relation.referencesLi G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K. & Wang L. 2012. Fungus-mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int. J. Mol. Sci. 13: 466 - 476. https://doi.org/10.3390/ijms13010466spa
dc.relation.referencesLok Ch, Ho Ch, Chen R, He Q, Yu W, Sun H, Hang P, Chiu J. & Che Ch. 2007. Silver nanoparticles: partial oxidation and antibacterial activities. J Biol Inorg Chem, 12: 527-534 https://doi.org/10.1007/s00775-007-0208-z.spa
dc.relation.referencesLoo Y, Rukayadil Y, Nor-Khaizura Y, Kuan M, Chieng C, Nishibuchi B. et al. 2018. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front. Microbiol. 9 -1555. https://doi.org/10.3389/fmicb.2018.01555spa
dc.relation.referencesLurwanu Y, Wang Y, Jiao Wu E, Dun-Chun H, Waheed A, Nkurikiyimfura O, Wang Z, Shang L, Na Yang L. & Zhan J. 2021. Increasing temperature elevates the variation and spatial differentiation of pesticide tolerance in a plant pathogen. Evol Appl.14:1274-1285. https:// doi. Org/ 10.1111/eva.13197spa
dc.relation.referencesMa L, Su W, Liu J-X, Zeng X, Huang Z, Li W et al., 2017. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. Mater Sci Eng C. 77:963-71. https://doi.org/10.1016/j.msec.2017.03.294spa
dc.relation.referencesMadakka M, Jayaraju N. & Rajesh N. 2018. Mycosynthesis of silver nanoparticles and their characterization. Methods. 5:20-9. https://doi.org/10.1016/j.mex.2017.12.003spa
dc.relation.referencesMadigan M, Martinko J, Bender K, Buckley D. & Stahl D. 2015. Brock Biología de los microorganismos. 14th ed. Madrid, España. Prentice Hall.1131p. ISBN:97888490352809spa
dc.relation.referencesMadriñán S, Cortés A. & Richardson J. 2021. Páramo is the world’s fastest evolving and coolest biodiversity hotspot. Frontiers of genetics. https://doi.org/10.3389/fgene.2013.00192spa
dc.relation.referencesMajeed S, Abdullah M, Nanda A. & Ansari M. 2018. In vitro study of the antibacterial and anticancer activities of silver nanoparticles synthesized from Penicillium brevicompactum (MTCC-1999). J Taibah Univ Sci. 10(4):614-20. https://doi.org/10.1016/j.jtusci.2016.02.010spa
dc.relation.referencesMaliszewska I, Juraszek A, Bielska K. 2013. Green synthesis and characterization of silver nanoparticles using ascomycota fungi Penicillium nalgiovense AJ12. J Clust Sci. https://doi.org/ 10.1007/s10876-013-0683-zspa
dc.relation.referencesMandal D, Bolander M, Mukhopadhyay D, Sarkar G. & Mukherjee P. 2006. The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69: 485-492. https://doi.org/10.1007/s00253-005-0179-3spa
dc.relation.referencesMangaraj S, Yadav A, Bal L, Dash S.& Mahanti N. 2019. Application of biodegradable polymers in food packaging industry: A comprehensive review. Journal of Packaging Technology and Research 3: 7-96. http://dx.doi.org/10.1007/s41783-018-0049-yspa
dc.relation.referencesManimozhi R. & Anitha R. 2014. Mycosynthesis of silver nanoparticles using aqueous extract of Aspergillus flavus mycelium and its characterization. Int. J. Pharm Drug Anal. 2(9):734 -739spa
dc.relation.referencesMansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer V, Machado M, Toth I, Salmond G. & Foster G. 2012. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol. Plant Pathol. 13:614-629. https://doi.org/10.1111/j.1364-3703.2012.00804spa
dc.relation.referencesMarrez D, Abdelhamid A. & Darwesh O. 2019. Eco-friendly cellulose acetate green synthesized silver nano-composite as antibacterial packaging system for food safety, Food Packag. Shelf Life 20-100302. http://dx.doi.org/10.1016/j.fpsl.2019.100302spa
dc.relation.referencesMartínez E, Niño N, Martínez F, Martínez J. & Ruiz F. 2008. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10, 1343-1348. https://doi.org/10.1007/s11051-008-9428-6spa
dc.relation.referencesMasum M, Islam S, Islam M. & Kabir M. 2011. Estimation of loss due to post harvest diseases of potato in markets of different districts in Bangladesh. African Journal of Biotechnology 10(56): 11892-11902. http://doi.org/10.26480/faer.01.2021.21.27spa
dc.relation.referencesMetak A, Nabhani F. & Connolly S. 2015. Migration of engineered nanoparticles from packaging into food products, LWT - Food Sci. Technol. 64: 781-787. https://doi.org/10.1016/j.lwt.2015.06.001spa
dc.relation.referencesMeyer V. 2008. Genetic engineering of filamentous fungi progress, obstacles and future trends. Biotechnol Adv. 26:177-185. https://doi.org/10.1016/j.biotechadv.2007.12.001spa
dc.relation.referencesMin J, Kim K, Kim S, Jung J, Lamsal K, Kim S, Jung M. & Lee Y. 2009. Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Plant Pathol J 25:376-380. https://doi.org/10.5423/PPJ.2009.25.4.376spa
dc.relation.referencesMishra S. & Singh H. 2015. Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol. 99:1097-1107. http://doi.org/ 10.1007/s00253-014-6296-0spa
dc.relation.referencesMohammadian A, Sho jaosadati S. & Rezaee M. 2007. Fusarium oxysporum mediates photogeneration of silver nanoparticles. Scientia Iranica 14(4): 323- 326spa
dc.relation.referencesMohammed O, Abdulkhaliq R. & Mohammed R. 2019. The effects of Fusarium graminarum silver nanoparticles on Leishmania tropica J. Phys.: Conf. Ser. 1294 062075. https://doi.org/10.1088/1742-6596/1294/6/062075spa
dc.relation.referencesMohammed A, Bajali K, Girilal M, Yadav R, Thangavelu P. &Venketesan R. 2010 Biogenic sunthesis of silver nanopartivles and their synergistic effect with antibiotics: a study against gran-positive and gran negative bacteria. Nanomedicine: Nanotechnology, Biology and Medicine. 6:103-109. https://doi.org/10.1016/j.nano.2009.04.006spa
dc.relation.referencesMohmed A, Fouda M, Elgamal M, Elgamal S, Hassan T, Shaheen S, Salem S. 2017. Enhancing of cotton fabric antibacterial properties by silver nanoparticles synthesized by new egyptian strain Fusarium keratoplasticum A1-3. Egypt. J. Chem. The 8th. Int. Conf. Text. Res. Div., Nat. Res. Centre, Cairo 63-71. https://dx.doi.org/10.21608/ejchem.2017.1626.1137spa
dc.relation.referencesMohanpuria P, Rana N. & Yadav S. 2008. Biosynthesis of nanoparticles: technological concepts and future applications. J. Nanopart Res 10:507-517. https://doi.org/10.1007/s11051-007-9275-xspa
dc.relation.referencesMohanta Y, Nayak D, Biswas K, Singdevsachan S, AbdAllah E, Hashem A., et al. 2018. Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23: 655- 673 https://doi.org/10.3390/molecules23030655spa
dc.relation.referencesMokhtari N, Daneshpajouh S, Seyedbagheri S, Atashdehghan R, Abdi K, Sarkar S, Minaian S. & Shahverdi H. 2009. A Biological synthesis of very small silver nanoparticles by culture supernatant of Klebsiella pneumonia: The effects of visible-light irradiation and the liquid mixing process. Mater. Res. Bull. 44: 1415-1421. https://doi.org/10.1016/j.materresbull.2008.11.021spa
dc.relation.referencesMondal K. & Mani C. 2012. Investigation of the antibacterial properties of nanocopper against Xanthomonas axonopodis pv. punicae, the incitant of pomegranate bacterial blight. Ann Microbiol 62(2):889-93. http://dx.doi.org/10.1007/s13213-011-0382-7spa
dc.relation.referencesMoritz M. & Geszke-moritz M. 2013. The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem Eng J 228:596-613. https://doi.org/10.1016/j.cej.2013.05.046spa
dc.relation.referencesMorones J, Elechiguerra J, Camacho A, Holt K, Kouri J, Ramírez J. & Yacaman M. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16- 2346 -2353. https://doi.org/10.1088/0957-4484/16/10/059spa
dc.relation.referencesMotelica L, Ficai D, Ficai A, Oprea O, Alpaslan D.& Andrones E.2 020. Biodegradable antimicrobial food packaging: Trends and Perspectives, Foods 9 -1438 https://dx.doi.org/:10.3390/foods9101438spa
dc.relation.referencesMoteshafi H, Mousavi S, Shojaosadati S. 2012. The possible mechanisms involved in nanoparticles biosynthesis. J Ind Eng Chem 18: 2046-2050. https://doi.org/10.1016/j.jiec.2012.05.025spa
dc.relation.referencesMukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar S, Khan M, Parishcha R, Ajaykumar P, Alam M, Kumar R. & Sastry M. 2001. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 1(10): 515-519. https://doi.org/10.1021/nl0155274spa
dc.relation.referencesMukherjee P, Roy M, Mandal B, Dey G, Mukherjee P, Ghatak J, Tyagi A. & Kale S. 2008.Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnolology. 19: 075103. https://doi.org/10.1016/j.jiec.2012.05.025spa
dc.relation.referencesMuratore F, Barbosa S. & Martinia R. 2019. Development of bioactive paper packaging for grain-based food products, Food Packag. Shelf Life 20 -100317. http://dx.doi.org/10.1016/j.fpsl.2019.100317spa
dc.relation.referencesMusarrat J, Dwivedi S, Singh B, Al-KhedhairyA, Azam A, Naqvi A. 2010. Production of antimicrobial silver nanoparticles in water extracts of the fungus Amylomyces rouxii strain KSU-09. Bioresour. Technol. 101: 8772-8776. https://doi.org/10.1016/j.biortech.2010.06.065.spa
dc.relation.referencesNam G, Purushothaman B, Rangasamy S, Song J. 2016. Investigating the versatility of multifunctional silver nanoparticles: preparation and inspection of their potential as wound treatment agents. Int Nano Lett 6:51-63. https://doi.org/10.1007/s40089-015-0168-1spa
dc.relation.referencesNanda A. & Saravanan M. 2013. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomed. Nanotechnol. Biol. Med. 01: 452- 456. https://doi.org/10.1016/j.nano.2009.01.012spa
dc.relation.referencesNarayanan K & Sakthivel N. 2010. Biological synthesis of metal nanoparticles by microbes. Advances in Colloid and Interface Science 156: 1-13. https://doi.org/10.1016/j.cis.2010.02.001spa
dc.relation.referencesNasir M, Toth Z. 2022. Effect of drought stress on potato production: A review. Agronomy 12: 635. https://doi.org/10.3390/agronomy12030635spa
dc.relation.referencesNaveen H, Kumar G, Karthik L. & Rao B. 2010. Extracellular biosynthesis of silver nanoparticles using the filamentous fungus Penicillium sp. Arch. Appl. Sci. Res. 2 (6):161-167spa
dc.relation.referencesNayak B, Nanda A, Prabhakar V. 2018. Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol. 16:412-8. https://doi.org/10.1016/j.bcab.2018.09.014spa
dc.relation.referencesNayak R, Pradhan N, Behera D, Pradhan K, Mishra S, Sukla L.& Mishra B. 2011.Green synthesis of silver nanoparticle by Penicillium purpurogenum NPMF: the process and optimization. J Nanopart Res. https://doi.org/10.1007/s11051-010-0208-8spa
dc.relation.referencesNel A, Xia T, Madler L. & Li N. 2006. Toxic potential of materials at the nanolevel. Science 311 (5761): 622-627. https://doi.org/10.1126/science.1114397spa
dc.relation.referencesNinganagouda S, Rathod V, Jyoti H, Singh D, Prema K, Ul-haq M. 2013. Extracellular biosynthesis of silver nanoparticles using Aspergillus flavus and their antimicrobial activity against Gram negative Mdr strains. Int J Pharm Bio Sci 4(2): 222 -229spa
dc.relation.referencesNithya R. & Ragunathan R. 2009. Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig. J. Nanomater. Biostructures 4(4): 623 - 629spa
dc.relation.referencesOh S, Lee S, Choi S, Lee I, Lee Y, Chun J. & Park H. 2006. Synthesis of Ag and AgSiO2 nanoparticles by y-irradiation and their antibacterial and antifungal efficiency against Salmonella enteric serovar typhimurium and Botrytis cinerea. Colloids Surfaces A. 275: 228-233spa
dc.relation.referencesOthman A, Elsayed M, Al-Balakocy N, Hassan M. & Elshafei A. 2019. Biosynthesis and characterization of silver nanoparticles induced by fungal proteins and its application in different biological activities. J Genet Eng Biotechnol 17:8 https://doi.org/10.1186/s43141-019-0008-1spa
dc.relation.referencesOttoni C, Simões M, Fernandes S, dos Santos J, Da Silva E, De Souza R et al., 2017. Screening of filamentous fungi for antimicrobial silver nanoparticles synthesis. AMB Express. 7(31): 1-10. https://doi.org/10.1186/s13568-017-0332-2spa
dc.relation.referencesOvais M, Talha A, Ayaz M, Ahmad I, Kumar S. & Mukherjee, S. 2018. Biosynthesis of metal nanoparticles via microbial enzymes: A Mechanistic Approach. Int. J. Mol. Sci. 19, 4100. https://doi.org/10.3390/ijms19124100spa
dc.relation.referencesOvalle S, Blanco C. & Combariza M. 2018. Exploring the composition of raw and delignified Colombian fique fibers, tow and pulp, Cellulose 25: 151-165 https://doi.org/10.1007/s10570-017-1599-9.spa
dc.relation.referencesOvalle S, Blanco C. & Combariza M. 2013. Síntesis in situ de nanopartículas de plata sobre fibras de fique. Rev. Colomb. Quim. 42(1): 30-37. https://doi.org/10.15446/rev.colomb.quimspa
dc.relation.referencesOwaid M, Raman J, Lakshmanan H, Al-Saeedi S, Sabaratnam V. & Abed I. 2015. Mycosynthesis of silver nanoparticles by Pleurotus cornucopiae var. citrinopileatus and its inhibitory effects against Candida sp. Mater. Lett. 153: 186-190. https://doi.org/10.1016/j.matlet.2015.04.023spa
dc.relation.referencesOwaid M. 2019. Green synthesis of silver nanoparticles by Pleurotus (oyster mushroom) and their bioactivity: Review. Environmental Nanotechnology, Monitoring & Management 12 -100256. https://doi.org/10.1016/j.enmm.2020.100313spa
dc.relation.referencesPadalkar S, Capadona J, Rowan V, Weder C, Ho Won Y, Stanciu L. & Moon R. Natural Biopolymers: novel templates for the synthesis of nanostructures, Langmuir 26(11): 8497-8502. https://doi.org/10.1021/la904439pspa
dc.relation.referencesPankey G. & SabatH L. 2004. Clinical relevance of bacteriostatic versus bactericidal mechanisms of action in the treatment of Gram-positive bacterial infections. Clin Infect Dis. 15;38(6):864-70. https://doi.org/10.1086/381972. Epub 2004 Mar 1spa
dc.relation.referencesPanyala N, Peña E. & Have J. 2008. Silver or silver nanoparticles: a hazardous threat to the environment and human health?, J. Appl. Biomed. 6 : 117-129. http://dx.doi.org/10.32725/jab.2008.015spa
dc.relation.referencesPark H, Kim S, Kim S. & Choi S. 2006. A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22: 295-302. https://doi.org/10.5423/PPJ.2006.22.3.295spa
dc.relation.referencesPepper I. & Gerba C. 2005. Environmental microbiology a laboratory manual. Elsevier academic press. ISBN:0-12-550656-2spa
dc.relation.referencesPerombelon M. & Kelman A. 1980. Ecology of soft-rot erwinias. Annu. Rev. Phytopathol. 18: 361- 387spa
dc.relation.referencesPhanjom P. & Ahmed G. 2015. Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanoscience and Nanotechnology 5(1): 14-21 https://doi.org/ 10.5923/j.nn.20150501.03spa
dc.relation.referencesPhilip D. 2009. Biosynthesis of Au, Ag and Au/Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A. 73:374-381. https://doi.org/10.1016/j.saa.2009.02.037spa
dc.relation.referencesPhyllipe A. & Schaumann G. 2014. Interactions of dissolved organic matter with natural and engineered inorganic colloids: A Review. Environ. Sci. Technol. 48(16): 8946-8962. https://doi.org/10.1021/es502342rspa
dc.relation.referencesPinto R, Marques P, Martins M, Neto C. & Trindade T. 2007. Electrostatic assembly and growth of gold nanoparticles in cellulosic fibres. J. Colloid Interface Sci. 312: 506-512. doi: 10.1016/j.jcis.2007.03.043spa
dc.relation.referencesPitt J. & Hocking A. 2009. Fungi and food spoilage. 3th edition. Springer US. https://doi.org/10.1007/978-0-387-92207-2spa
dc.relation.referencesPivec T, Hribernik S, Kolar M & Stana K. 2017. Environmentally friendly procedure for in-situ coating of regenerated cellulose fibres with silver nanoparticles. Carbohydr. Polym. http://dx.doi.org/10.1016/j.carbpol.2017.01.060spa
dc.relation.referencesPokhrel L, Dubey B. & Scheuerman P. 2013. Impacts of select organic ligands on the colloidal stability, dissolution dynamics, and toxicity of silver nanoparticles. Environ. Sci. Technol. 47, 12877-12885. https://doi.org/10.1021/es403462jspa
dc.relation.referencesPordeli H, Shaki H, Azar A. & Nezhad M. 2018. Biosynthesis of silver nanoparticles by Fusarium solani isolates from agricultural soils in Gorgan, Iran. Medical Laboratory Journal, 12(4):17-21 https://orcid.org/0000-0001-6244-385Xspa
dc.relation.referencesPortela D, Chaparro A & López S. 2013. Bacillus thuringiensis: en el manejo del agente de la pudrición blanda de la papa Erwinia carotovora. NOVA 11(20): 39-44. https://doi.org/10.22490/24629448.1024spa
dc.relation.referencesPotrykus M, Sledz W, Golanowska M, Slawiak M, Binek A, Motyka S, Zoledowska R, Czajkowski M. & Lojkowska. 2014. Simultaneous detection of major blackleg and soft rot bacterial pathogens in potato by multiplex polymerase chain reaction. Ann Appl Biol 165: 474-487. https://doi.org/10.1111/aab.12156spa
dc.relation.referencesPradhan N, Nayak R, Kumar A, Behari L. & Kanta B. 2011. In situ synthesis of entrapped silver nanoparticles by a Fungus-Penicillium purpurogenum. Nanoscience and Nanotechnology Letters 3: 1-7. https://doi.org/10.1166/nnl.2011.1235spa
dc.relation.referencesPriyadarshini E, Priyadarshini S, Cousins B. &Pradhan N. 2021. Metal-fungus interaction: review on cellular processes underlying heavy metal detoxification and synthesis of metal nanoparticles. Chemosphere 274 -129976. https://doi.org/10.1016/j.chemosphere.2021.12997.6spa
dc.relation.referencesQian Y, Yu H, He D, Yang H, Wang W, Wan X. & Wang L. 2013. Biosynthesis of silver nanoparticles by the endophytic fungus Epicoccum nigrum and their activity against pathogenic fungi. Bioprocess Biosyst Eng 36:1613-1619. https://doi.org/10.1007/s00449-013-0937-zspa
dc.relation.referencesQuester K, Avalos E. & Castro E. 2013. Biosynthesis and microscopic study of metallic nanoparticles. Micron 54 (55): 1-27. https://doi.org/10.1016/j.micron.2013.07.003spa
dc.relation.referencesRaheman F, Deshmukh S, Ingle A, Gade A. & RaiSilver M. 2011. Nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed. Eng. 3(3):174-178spa
dc.relation.referencesRai M, Deshmukh S, Ingle A. & Gade A. 2012. Silver nanoparticles: the powerful nanoweapon against multidrug- resistant bacteria. J Appl Microbiol 112(5):841-852. https://doi.org/10.1111/j.1365-2672.2012.05253.xspa
dc.relation.referencesRai M, Bonde S, Golinska P, Trzcínska J, Gade A, Abd-Elsalam, K, Shende S, Gaikwad S. & Ingle A. 2021. Fusarium as a novel fungus for the synthesis of nanoparticles: mechanism and applications. J. Fungi 7 (139). https://doi.org/10.3390/jof7020139spa
dc.relation.referencesRamalingmam P, Muthukrishnan S, Thangaraj P. 2015. Biosynthesis of silver nanoparticles using an endophytic fungus, Curvularia lunata and its antimicrobial potential. Journal of Nanoscience and Nanoengineering 1(4): 241-247.spa
dc.relation.referencesRamos M, dos S. Morais E, Da S, Sena I, Lima A, de Oliveira F, de Freitas C et al., 2020. Silver nanoparticle from whole cells of the fungi Trichoderma spp. isolated from Brazilian amazon. Biotechnol Lett. 42(5):833-43. https://doi.org/10.1007/s10529-020-02819-yspa
dc.relation.referencesRani R, Sharma D, Chaturvedi M, Yadav J. 2017. Green synthesis, characterization and antibacterial activity of silver nanoparticles of endophytic fungi Aspergillus terreus. J Nanomed Nanotechnol 8: 457. https://doi.org/10.4172/2157- 7439.1000457spa
dc.relation.referencesRavindra B. & Rajasab H. 2014. A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int. J. Pharm. Pharm. Sci. 6(1). http://gukir.inflibnet.ac.in:8080/jspui/handle/123456789/4094spa
dc.relation.referencesReddy B, Mandal R, Chakroborty M, Hijam L. & Dutta P. 2018. A review on potato (Solanum tuberosum) and its genetic diversity. Journal of Genetics 10(2): 360-364. http://dx.doi.org/10.9735/0975-2862.10.2.360-364spa
dc.relation.referencesReinoso Y, Romero, Garcia A, Gutierrez P. & Pasos V. 2006. Aislamiento, selección e identificación de bacterias del género Bacillus antagonistas de Pectobacterium carotovorum. Fitosanidad 10(3): 187-191spa
dc.relation.referencesRhim J, Park H. & Ha C. 2013, Bio-nanocomposites for food packaging applications. Prog. Polym. Sci. http://dx.doi.org/10.1016/j.progpolymsci.2013.05.008spa
dc.relation.referencesRiedel S. & Martin K. 2009 The highest oxidation states of the transition metal elements. Coord Chem Rev 253(5-6):606-624. https://doi.org/10.1016/j.ccr.2008.07.014spa
dc.relation.referencesRodríguez S, Guzmán J, Angeles C, Rodríguez V, Ortega J, Ramírez R. et al. 2020. Biosynthesis of silver nanoparticles by Fusarium scirpi and its potential as antimicrobial agent against uropathogenic Escherichia coli biofilms. PLoS ONE 15(3): e0230275. https://doi.org/10.1371/journal.pone.0230275spa
dc.relation.referencesRoi S, & Kumar T. 2015. Protein capped silver nanoparticles from fungus: X-ray Diffraction Studies with Antimicrobial properties against bacteria. International Journal of ChemTech Research.7(3): 1452-1459spa
dc.relation.referencesRojas M, Corzo M, Sánchez Y, Brito D, Montes R, Martínez Y, Pino O. 2014 Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subsp. carotovorum. Rev. Protección Veg. 29(39):197-203spa
dc.relation.referencesRoy A, Bulut O, Some S, Kumar A. &. Deniz M. 2019.Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity RSC Adv. 9: 2673. https://doi.org/10.1039/c8ra08982espa
dc.relation.referencesSalem S, Hammad E, Mohamed A. & El-Dougdoug W. 2023. A comprehensive review of nanomaterials: types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 13(1): 41. https://doi.org/10.33263/BRIAC131.041spa
dc.relation.referencesSamberg M, Loboa E, Oldenburg & Monteiro-Riviere N. 2012. Silver nanoparticles do not influence stem cell differentiation but cause minimal toxicity. Nanomedicine 7(8):1197-1209. https://doi.org/10.2217/nnm.12.18spa
dc.relation.referencesSambrook J, Maccallum P. & Russel D. 2001. Molecular cloning: A laboratory manual, 3nd edn. Cold Springs Harbour Press, New York, p 2344spa
dc.relation.referencesSamson R, Hoekstra E.& Frisvad J. 2004. Introduction to food and airborne fungi. 7 th. Centraalbureau voor Schimmelcultures U, editor. 389 p.spa
dc.relation.referencesSanghi R. & Verma P. 2009. Biomimetic synthesis and characterization of protein capped silver nanoparticles. Bioresour. Technol. 100: 501-504. https://doi.org/10.1016/j.biortech.2008.05.048.spa
dc.relation.referencesSaravanan M. & Nanda A. 2010. Extracellular synthesis of silver bionanoparticles from Aspergillus clavatus and its antimicrobial activity against MRSA and MRSE. Colloids Surf. B 77: 214-218. https://doi.org/10.1016/j.colsurfb.2010.01.026spa
dc.relation.referencesSarsar V, Selwal M. & Selwal K. 2015. Biofabrication, characterization and antibacterial efficacy of extracellular silver nanoparticles using novel fungal strain of Penicillium atramentosum KM. J. Saudi Chem. Soc. 19: 682-688. https://doi.org/10.1016/j.jscs.2014.07.001.spa
dc.relation.referencesSaxena J, Sharma P, Sharma M. & Singh A. 2016. Process optimization for green synthesis of silver nanoparticles by Sclerotinia sclerotiorum MTCC 8785 and evaluation of its antibacterial properties. Springer Plus:861. https://doi.org/10.1186/s40064-016-2558-x.spa
dc.relation.referencesSayer J, Raggett S. & Gadd G. 1995. Solubilization of insoluble metal compounds by soil fungi: development of a screening method for solubilizing ability and metal tolerance. Mycol. Res. 99(8): 987-993. https://doi.org/10.1016/S0953-7562(09)80762-4spa
dc.relation.referencesShahzad A, Saeed H, Iqtedar M, Hussain S, Kaleem A, Abdullah R, Sharif S, Naz S, Saleem F, Aihetasham A. & Chaudhary A. 2019. Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: Likely antibacterial and cytotoxic effects. Hindawi Journal of Nanomaterials. https://doi.org/10.1155/2019/5168698spa
dc.relation.referencesShaligram S, Bule M, Bhambure R, Singhal R, Singh S, Szakacs G. & Pandey A. 2009. Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 44: 939-943spa
dc.relation.referencesShankar S, Ahmad A, & Sastry M. 2003. Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627-1631spa
dc.relation.referencesSharifi S, Behzadi S, Laurent, M. Forrest L, Stroeve P. & Mahmoudib M. 2012. Toxicity of nanomaterials. Chem Soc Rev 21: 41(6): 2323-2343. https://doi.org/10.1039/C1CS15188Fspa
dc.relation.referencesShelar G. & Chavan A. 2014. Fusarium semitectum mediated extracellular synthesis of silver nanoparticles and their antibacterial activity. International Journal of Biomedical and Advance Research. https://doi.org/10.7439/ijbar.spa
dc.relation.referencesSiddiqi K. & Husen A. 2016. Fabrication of metal nanoparticles from fungi and metal salts: scope and application. Nanoscale Res Lett. 11(1). https://doi.org/10.1186/s11671-016-1311-2spa
dc.relation.referencesSima A, Mozafari J, Nader H. & Cobre M. 2015. In vitro evaluation of resistant of potato cultivars against black leg disease (Pectobacterium atrosepticum). Biologican Forum- An International Journal 7(2):1087-1094spa
dc.relation.referencesSingh D & Sharma R. 2018. Chapter 1: Postharvest diseases of fruits and vegetables and their management. Postharvest disinfection of fruits and vegetables, 1: 1-52. https://doi.org/10.1016/b978-0-12-812698-1.00001-7spa
dc.relation.referencesSingh D, Rathod V, Ninganagouda S, Herimath J. & Kulkarni P. 2013. Biosynthesis of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (turmeric) and its antibacterial activity against pathogenic gram negative bacteria. Journal of pharmacy research 7: 448- 453. https://doi.org/10.1016/j.jopr.2013.06.003spa
dc.relation.referencesSingh D, Rathod V, Ninganagouda S, Hiremath J, Singh A. & Mathew J.2014. Optimization and characterization of silver nanoparticle by endophytic fungi Penicillium sp. isolated from Curcuma longa (Turmeric) and application studies against MDR E. coli and S. aureus. Bioinorg Chem Appl. 2014:408021. https://doi.org/10.1155/2014/408021spa
dc.relation.referencesSingh P, Kim Y, Zhang D. & Yang D. 2016. Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol. 34(7):588-599. https://doi.org/10.1016/j.tibtech.2016.02.006spa
dc.relation.referencesSingh S, Shukla H. & Shukla S. 2017. Biosynthesis of silver nanoparticles by endophytic fungi: Its mechanism, characterization techniques and antimicrobial potential. Afr. J. Biotechnol. 16(14): 683-698.spa
dc.relation.referencesSinha S, Pan I, Chanda P. & Sen S. 2009. Nanoparticles fabrication using ambient biological resources. J Appl Biosci 19:1113-1130spa
dc.relation.referencesSintubin L, Gusseme B, Van der Meeren P, Pycke B, Verstraete W. & Boon N. 2011.The antibacterial activity of biogenic silver and its mode of action. Appl Microbiol Biotechnol 91: 153-162. https://doi.org/10.1007/s00253-011-3225-3spa
dc.relation.referencesSivaranjana P, Nagarajan E, Rajini N, Jawaod M. & Rajulu A. 2017. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as reducing agent. Int. J. Biol. Macromol. http://dx.doi.org/10.1016/j.ijbiomac.2017.02.070spa
dc.relation.referencesSofi S, Singh1 J, Rafiq S, Ashraf U, Dar B. & Nayik G. 2018. A Comprehensive review on antimicrobial packaging and its use in food packaging. Current Nutrition & Food Science 14: 305-312 https://doi.org/10.2174/1573401313666170609095732spa
dc.relation.referencesSudheer S, Geetha R, Muthoosamy K, Tuvikene R, Kumar V. & Manickam S. 2022. Biosustainable production of nanoparticles via mycogenesis for biotechnological applications: A critical review. Environmental Research 204-111963. https://doi.org/10.1016/j.envres.2021.111963spa
dc.relation.referencesSuresh A, Pelletier D, Wang W, Moon J, Gu B, Mortensen N, Allison D, Joy D, Phelps T. & Doktycz M. 2010. Silver Nanocrystallites: Biofabrication using Shewanella oneidensis, and evaluation of their comparative toxicity on Gram-negative and Gram-positive Bacteria. Environ. Sci. Technol 44: 5210-5215. https://doi.org/10.1021/es903684rspa
dc.relation.referencesSutton S. 2011. Acurracy of plate counts. Journal of validation technology 2011: 42-46spa
dc.relation.referencesSweet M, Chesser A. & Singleton I. 2012. Review: metal-Based Nanoparticles; size, function, and areas for advancement in applied microbiology. In Sima Sariaslani, Geoffrey M. Gadd, editors: Advances in Applied Microbiology, Vol. 80, Burlington: Academic Press, 2012, pp. 113-142. ISBN: 978-0-12-394381-01spa
dc.relation.referencesThakkar K, Mhatre S. & Parikh R. 2010. Biological synthesis of metallic nanoparticles. Nanomedicine: nanotechnology, biology, and medicine 6: 257-262. https://doi.org/10.1016/j.nano.2009.07.002spa
dc.relation.referencesUPRA: 2021. Unidad de planificación rural agropecuaria. Costos de producción agrícola. Sistemas productivos de papa, yuca y caña panelera. Disponible en chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.upra.gov.co/documents/10184/175395/20211007_BolCOSTOS_2021.pdf/f27507e8-f99b-4727-8c3e-67191318eefb?version=1.0 Consultado 10 de mayo de 2022spa
dc.relation.referencesVahabi K, Mansoori A. & Karimi S. 2011. Biosynthesis of silver nanoparticles by fungus Trichoderma reesei (A Route for Large-Scale Production of AgNPs) Insciences J. 1(1): 65-79. https://doi.org/ 10.5640/insc.010165spa
dc.relation.referencesVarshney R, Mishra A, Bhadauria S. & Gaur M. 2009. A novel microbial route to synthesize silver nanoparticles using fungus Hormoconis resinae. Dig. J. Nanomater. Biostructures 4(2): 349-355spa
dc.relation.referencesVelhal S, Kulkarni S. & Latpate R. 2016. Fungal mediated silver nanoparticle synthesis using robust experimental design and its application in cotton fabric. Int Nano Lett 6:257-264. https://doi.org/10.1007/s40089-016-0192-9spa
dc.relation.referencesVerma V, Kharwar R. & Gange A. 2010. Biosynthesis of antimicrobial silver nanoparticles by the endophytic fungus Aspergillus clavatus. Nanomedicine. 5(1): 33-40. https://doi.org/10.2217/nnm.09.77spa
dc.relation.referencesVigneshwaran N, Ashtaputre N, Varadarajan P, Nachane R, Paralikar K. & Balasubramanya R. 2006. Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett. 61:1413-1418. https://doi.org/10.1016/j.matlet.2006.07.042spa
dc.relation.referencesVilvert E, Stridh L, Andersson B, OlsonA, Aldén L. & Berlin A. 2022. Evidence based disease control methods in potato production: a systematic map protocol. Environ. E?vid. 11:6. https://doi.org/10.1186/s13750-022-00259-xspa
dc.relation.referencesWakelin S, Warren R, Harvey P. & Ryder M. 2014. Phosphate solubilization by Penicillium spp. closely associated with wheat roots. Biol Fertil Soils. 40: 36-43. https://doi.org/10.1007/s00374-004-0750-6spa
dc.relation.referencesWadell, H. 1935. “Volume, shape, and roundness of quartz particles”. Journal of Geology 43(3), 250-280spa
dc.relation.referencesWang C, Amon B, Schulz K. & Mehdi B. 2021. Factors that influence nitrous oxide emissions from agricultural soils as well as their representation in simulation models: A Review. Agronomy 11, 770. https://doi.org/10.3390/agronomy11040770spa
dc.relation.referencesWinn W, Janda W, Koneman E, Procop G, Schreckenbergew P, Woods G. 2006. Koneman Diagnóstico microbiológico. Textos y Atlas en color. Editorial Panamericana. ISBN 9789500608954spa
dc.relation.referencesXiu Z, Zhang Q, Puppala H, Colvin V. & Alvarez P. 2012. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Lett. 8:12(8):4271-4275. https://doi.org/10.1021/nl301934wspa
dc.relation.referencesXu Y, Li S, Yue X. & Lu W. 2018. Review of silver nanoparticles (AgNp´s)-cellulose antibacterial composites. BioResources 13(1): 2150-2170. https://doi.org/10.15376/BIORES.13.1.XUspa
dc.relation.referencesXue B, He D, Gao S, Wang D, Yokoyama K. & Wang L. 2016. Biosynthesis of silver nanoparticles by the fungus Arthroderma fulvum and its antifungal activity against genera of Candida, Aspergillus and Fusarium. International Journal of Nanomedicine 11: 1899-1906. https://doi.org/10.2147/IJN.S98339spa
dc.relation.referencesYadav A, Kon K, Kratosova G, Duran N, Ingle A. & Rai M. 2015. Fungi as an efficient mycosystem for the synthesis of metal nanoparticles: progress and key aspects of research Biotechnol Lett 37, 2099-2120. https://doi.org/10.1007/s10529-015-1901-6spa
dc.relation.referencesYi L, Liu X, Qi T, Deng L. & Zeng K. 2021. A new way to reduce postharvest loss of vegetables: Antibacterial products of vegetable fermentation and its controlling soft rot caused by Pectobacterium carotovorum. Biol Control. 161. 104708. https://doi.org/10.1016/j.biocontrol.2021.104708spa
dc.relation.referencesYuen J. 2021. Pathogens which threaten food security: Phytophthora infestans, the potato late blight pathogen. Food Secur. 13(2):247-53. https://doi:10.1007/s12571-021-01141-3spa
dc.relation.referencesZeng F, Hou C, Wu S, Liu X, Tong Z. & Yu S. 2007. Silver nanoparticles directly formed on natural macroporous matrix and their anti-microbial activities. Nanotechnology 18-055605. https://doi.org/10.1088/0957-4484/18/5/055605spa
dc.relation.referencesZhang D, Chen L, Zang C, Chen Y. & Lin H. 2013. Antibacterial cotton fabric grafted with silver nanoparticles and its excellent laundering durability. Carbohydrate Polymers 92: 2088-2094. http://dx.doi.org/10.1016/j.carbpol.2012.11.100.spa
dc.relation.referencesZhang M, Zhang K, Gusseme B, Verstraete W. & Field R. 2014. The antibacterial and anti-biofouling performance of biogenic silver nanoparticles by Lactobacillus fermentum. Biofouling: The Journal of Bioadhesion and Biofilm Research, 30:3, 347-357, https://doi.org/10.1080/08927014.2013.873419spa
dc.relation.referencesZhang X, Yan S, Tyagi R. & Surampalli R. 2011. Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82: 489-494. https://doi.org/10.1016/j.chemosphere.2010.10.023spa
dc.relation.referencesZheng Y, Cai Ch, Zhang F, Monty J, Linhardt R. & Simmons T. 2016. Can natural fibers be a silver bullet? antibacterial cellulose fibers through the covalent bonding of silver nanoparticles to electrospun fibers. Nanotechnology 27: 1-8. https://doi.org/10.1088/0957-4484/27/5/055102spa
dc.relation.referencesZielonka A. & Klimek M. 2017. Fungal synthesis of size-defined nanoparticles. Adv. Nat. Sci: Nanosci. Nanotechnol. 8 043001. https://doi.org/10.1088/2043-6254/aa84d4spa
dc.relation.referencesZomorodian K, Pourshahid S, Sadatsharifi A, Mehryar P, Pakshir K, Rahimi M. & ArabiMonfared A. 2016. Biosynthesis and characterization of silver nanoparticles by Aspergillus species. Hindawi Publishing Corporation BioMed Research International. Article ID 5435397, 6 p. http://dx.doi.org/10.1155/2016/5435397spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/spa
dc.subject.ddc570 - Biología::572 - Bioquímicaspa
dc.subject.decsBacteriasspa
dc.subject.decsBacteriaeng
dc.subject.decsÁcidosspa
dc.subject.decsAcidseng
dc.subject.decsEstereoisomerismospa
dc.subject.decsStereoisomerismeng
dc.subject.proposalAgricultura de precisiónspa
dc.subject.proposalBioprocesosspa
dc.subject.proposalFusarium oxysporumeng
dc.subject.proposalMicosíntesisspa
dc.subject.proposalNanopartículas de plataspa
dc.subject.proposalPectobacterium carotovorumeng
dc.subject.proposalSolanum tuberosumeng
dc.titleBiosíntesis de nanopartículas de plata a partir de hongos rizosféricos y su inmovilización en una fibra natural para el control in vitro de la bacteria fitopatógena (Pectobacterium carotovorum)spa
dc.title.translatedBiosynthesis of silver nanoparticles from rhizospheric fungi and their immobilization in a natural fiber for the in vitro control of phytopathogenic bacteria (Pectobacterium carotovorum)eng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBiosíntesis de nanopartículas de plata a partir de hongos rizosféricos y su inmovilización en una fibra natural para el control in vitro de la bacteria fitopatógena (Pectobacterium carotovorum)spa
oaire.fundernameGobernación de Boyacáspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
33365742.2023.pdf
Tamaño:
4.74 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Biotecnología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: