Evaluación del uso de técnicas InSAR para el monitoreo y detección de movimientos en masa en un sistema de alertas tempranas en los Andes colombianos

dc.contributor.advisorAristizábal Giraldo, Edier Vicente
dc.contributor.authorOspina Urán, Alejandro
dc.contributor.researchgateOspina Uran, Alejandrospa
dc.contributor.researchgroupInvestigación en Geología Ambiental Geaspa
dc.coverage.countryValle de Aburrá (Colombia)
dc.date.accessioned2024-10-07T20:37:12Z
dc.date.available2024-10-07T20:37:12Z
dc.date.issued2024
dc.description.abstractEn este trabajo se evalúa el uso de técnicas de Interferometría de Radar de Apertura Sintética (InSAR, por sus iniciales en inglés) para la detección de movimientos en masa en ambientes tropicales de montaña, específicamente en los Andes colombianos. Además, se propone una metodología para la integración de estas técnicas en un sistema de alertas tempranas en zona urbana-suburbana tomando como área de estudio el Valle de Aburrá, Colombia. El documento se estructura en cuatro artículos científicos independientes entre sí, los cuales serán potencialmente sometidos a publicación. El Artículo 1 presenta el marco teórico para la aplicación de técnicas InSAR en ambientes tropicales de montaña. Este primer artículo busca aportar al conocimiento de InSAR a la literatura en español. El Artículo 2 aborda la aplicación exitosa de InSAR a escala regional y la detección de múltiples zonas de deformación del terreno, asociadas a movimientos en masa en el área de estudio. El Artículo 3 se centra en un caso de estudio en el Valle de Aburrá, donde se aplica InSAR a un movimiento en masa que ha causado graves afectaciones desde 2018, encontrando que la zona de deformación supera en más de diez veces el perímetro definido inicialmente con recorridos de campo e instrumentación geotécnica tradicional. Este análisis permitió aproximar la extensión real de la zona de deformación, lo cual no había sido posible debido a las limitaciones del monitoreo geotécnico, además, encontrar relaciones entre los desplazamientos InSAR e información pluviométrica. Finalmente, el Artículo 4 presenta una propuesta metodológica conceptual para integrar InSAR en un sistema de alertas tempranas regional. Se concluye que InSAR es una herramienta eficaz para detectar movimientos en masa en los Andes colombianos y que su aplicación tendría positivos impactos en la gestión del riesgo de desastres.spa
dc.description.abstractThis work evaluates the use of Interferometric Synthetic Aperture Radar (InSAR) techniques for the detection of landslides in tropical mountain environments, specifically in the Colombian Andes. Additionally, a methodology is proposed for integrating these techniques into an early warning system in urban-suburban areas, with the Aburrá Valley, Colombia, as the study area. The document is structured into four independent scientific articles. Article 1 presents the theoretical framework for the application of InSAR techniques in tropical mountain environments. This first article aims to contribute to the knowledge of InSAR in the Spanish literature. Article 2 addresses the successful application of InSAR on a regional scale and the detection of multiple areas of ground deformation associated with landslides in the study area. Article 3 focuses on a case study in the Aburrá Valley, where InSAR is applied to a landslide that has caused significant impacts since 2018, revealing that the deformation area exceeds the initially defined perimeter from field surveys and traditional geotechnical instrumentation by more than ten times. This analysis allowed for an estimation of the actual extent of the deformation area, which had not been possible due to the limitations of geotechnical monitoring. Additionally, it identified relationships between InSAR displacements and rainfall data. Finally, Article 4 presents a conceptual methodological proposal for integrating InSAR into a regional early warning system. It is concluded that InSAR is an effective tool for detecting mass movements in the Colombian Andes and that its application would have positive impacts on disaster risk management.eng
dc.description.curricularareaÁrea Curricular de Medio Ambientespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Medio Ambiente y Desarrollospa
dc.description.researchareaGestión del riesgo de desastresspa
dc.format.extent1 recursos en línea (83 páginas)spa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/86910
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.facultyFacultad de Minasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Minas - Maestría en Medio Ambiente y Desarrollospa
dc.relation.referencesAgram, P., Jolivet, R., Riel, B., Lin, Y., Simons, M., Hetland, E., Doin, M.-P., & Lasserre, C. (2013). New radar interferometric time series analysis toolbox released. Eos, Transactions American Geophysical Union, 94(7), 69--70.spa
dc.relation.referencesAgram, P. & Simons, M. (2015). A noise model for insar time series. Journal of Geophysical Research: Solid Earth, 120(4), 2752--2771.spa
dc.relation.referencesAristizábal, E. & Sánchez, O. (2020). Spatial and temporal patterns and the socioeconomic impacts of landslides in the tropical and mountainous colombian andes. Disasters, 44(3), 596--618.spa
dc.relation.referencesAslan, G., Foumelis, M., Raucoules, D., De Michele, M., Bernardie, S., & Cakir, Z. (2020). Landslide mapping and monitoring using persistent scatterer interferometry (psi) technique in the french alps. Remote Sensing, 12(8), 1305.spa
dc.relation.referencesAcosta, J. H. C. (2011). Las avenidas torrenciales: una amenaza potencial en el Valle de Aburrá. Gestión y ambiente, 14(3), 45--50.spa
dc.relation.referencesAristizábal, E. & Gómez, J. (2007). Inventario de emergencias y desastres en el valle de aburrá originados por fenómenos naturales y antrópicos en el período 1880-2007. Gestión y ambiente, 10(2), 17--30.spa
dc.relation.referencesAristizábal, E. & Yokota, S. (2006). Geomorfología aplicada a la ocurrencia de deslizamientos en el valle de aburrá. Dyna, 73(149), 5--16.spa
dc.relation.referencesAgapiou, A. & Lysandrou, V. (2020). Detecting displacements within archaeological sites in cyprus after a 5.6 magnitude scale earthquake event through the hybrid pluggable processing pipeline (hyp3) cloud-based system and sentinel-1 interferometric synthetic aperture radar (insar) analysis. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 6115--6123.spa
dc.relation.referencesAgustan, A., Ito, T., Kriswati, E., Priyadi, H., Sadmono, H., & Hernawati, R. (2022). Time series insar analysis over jakarta metropolitan area. In 2022 IEEE Asia-Pacific Conference on Geoscience, Electronics and Remote Sensing Technology (AGERS) (pp. 30--35).: IEEE.spa
dc.relation.referencesAristizábal, E., Gamboa, M. F., & Leoz, F. J. (2010). Sistema de alerta temprana por movimientos en masa inducidos por lluvia para el valle de aburrá, colombia. Revista EIA, (13), 155--169.spa
dc.relation.referencesBarra, A., Reyes-Carmona, C., Herrera, G., Galve, J. P., Solari, L., Mateos, R. M., Azañón, J. M., Béjar-Pizarro, M., López-Vinielles, J., Palamà, R., et al. (2022). From satellite interferometry displacements to potential damage maps: A tool for risk reduction and urban planning. Remote Sensing of Environment, 282, 113294.spa
dc.relation.referencesBerardino, P., Fornaro, G., Lanari, R., & Sansosti, E. (2002). A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Transactions on geoscience and remote sensing, 40(11), 2375--2383.spa
dc.relation.referencesBiggs, J., Wright, T., Lu, Z., & Parsons, B. (2007). Multi-interferogram method for measuring interseismic deformation: Denali fault, alaska. Geophysical Journal International, 170(3), 1165--1179.spa
dc.relation.referencesBayer, B., Simoni, A., Mulas, M., Corsini, A., & Schmidt, D. (2018). Deformation responses of slow moving landslides to seasonal rainfall in the northern apennines, measured by insar. Geomorphology, 308, 293--306.spa
dc.relation.referencesBekaert, D. P., Handwerger, A. L., Agram, P., & Kirschbaum, D. B. (2020). Insar-based detection method for mapping and monitoring slow-moving landslides in remote regions with steep and mountainous terrain: An application to nepal. Remote Sensing of Environment, 249, 111983.spa
dc.relation.referencesBéjar-Pizarro, M., Notti, D., Mateos, R. M., Ezquerro, P., Centolanza, G., Herrera, G., Bru, G., Sanabria, M., Solari, L., Duro, J., et al. (2017). Mapping vulnerable urban areas affected by slow-moving landslides using sentinel-1 insar data. Remote Sensing, 9(9), 876.spa
dc.relation.referencesBiggs, J. & Wright, T. J. (2020). How satellite insar has grown from opportunistic science to routine monitoring over the last decade. Nature Communications, 11(1), 3863.spa
dc.relation.referencesCampbell, J. B. & Wynne, R. H. (2011). Introduction to remote sensing. Guilford press.spa
dc.relation.referencesCasagli, N., Intrieri, E., Tofani, V., Gigli, G., & Raspini, F. (2023). Landslide detection, monitoring and prediction with remote-sensing techniques. Nature Reviews Earth & Environment, 4(1), 51--64.spa
dc.relation.referencesCascini, L., Fornaro, G., & Peduto, D. (2009). Analysis at medium scale of low-resolution dinsar data in slow-moving landslide-affected areas. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 598--611.spa
dc.relation.referencesChen, X., Tessari, G., Fabris, M., Achilli, V., & Floris, M. (2021). Comparison between ps and sbas insar techniques in monitoring shallow landslides. Understanding and Reducing Landslide Disaster Risk: Volume 3 Monitoring and Early Warning 5th, (pp. 155--161).spa
dc.relation.referencesCigna, F., Bateson, L. B., Jordan, C. J., & Dashwood, C. (2014). Simulating sar geometric distortions and predicting persistent scatterer densities for ers-1/2 and envisat c-band sar and insar applications: Nationwide feasibility assessment to monitor the landmass of great britain with sar imagery. Remote Sensing of Environment, 152, 441--466.spa
dc.relation.referencesCigna, F., Esquivel Ramírez, R., & Tapete, D. (2021). Accuracy of sentinel-1 psi and sbas insar displacement velocities against gnss and geodetic leveling monitoring data. Remote Sensing, 13(23), 4800.spa
dc.relation.referencesClosson, D. & Milisavljevic, N. (2017). Insar coherence and intensity changes detection. Mine Action-The Research Experience of the Royal Military Academy of Belgium.spa
dc.relation.referencesCloude, S. R. & Papathanassiou, K. P. (1998). Polarimetric sar interferometry. IEEE Transactions on geoscience and remote sensing, 36(5), 1551--1565.spa
dc.relation.referencesColesanti, C. & Wasowski, J. (2006). Investigating landslides with space-borne synthetic aperture radar (sar) interferometry. Engineering geology, 88(3-4), 173--199.spa
dc.relation.referencesCrosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B. (2016). Persistent scatterer interferometry: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 115, 78--89.spa
dc.relation.referencesCrosetto, M., Solari, L., Mróz, M., Balasis-Levinsen, J., Casagli, N., Frei, M., Oyen, A., Moldestad, D. A., Bateson, L., Guerrieri, L., et al. (2020). The evolution of wide-area dinsar: From regional and national services to the european ground motion service. Remote Sensing, 12(12), 2043.spa
dc.relation.referencesCutrona, L. (1990). Synthetic aperture radar, volume 2. McGraw-Hill New York.spa
dc.relation.referencesCorrea, A. M., Martens, U., Restrepo, J. J., Ordóñez-Carmona, O., & Pimentel, M. M. (2005). Subdivisión de las metamorfitas básicas de los alrededores de medellín--cordillera central de colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 29(112), 325--343.spa
dc.relation.referencesCruden, D. M. (1991). A simple definition of a landslide. Bulletin of the International Association of Engineering Geology-Bulletin de l’Association Internationale de Géologie de l’Ingénieur, 43(1), 27--29.spa
dc.relation.referencesCao, Z. & Wang, T. (2022). Water-temperature controlled deformation patterns in heifangtai loess terraces revealed by wavelet analysis of insar time series and hydrological parameters. Frontiers in Environmental Science, 10, 957339.spa
dc.relation.referencesCai, J., Liu, G., Jia, H., Zhang, B., Wu, R., Fu, Y., Xiang, W., Mao, W., Wang, X., & Zhang, R. (2022). A new algorithm for landslide dynamic monitoring with high temporal resolution by kalman filter integration of multiplatform time-series insar processing. International Journal of Applied Earth Observation and Geoinformation, 110, 102812.spa
dc.relation.referencesDing, X.-l., Li, Z.-w., Zhu, J.-j., Feng, G.-c., & Long, J.-p. (2008). Atmospheric effects on insar measurements and their mitigation. Sensors, 8(9), 5426--5448.spa
dc.relation.referencesDai, K., Deng, J., Xu, Q., Li, Z., Shi, X., Hancock, C., Wen, N., Zhang, L., & Zhuo, G. (2022). Interpretation and sensitivity analysis of the insar line of sight displacements in landslide measurements. GIScience & Remote Sensing, 59(1), 1226--1242.spa
dc.relation.referencesDilley, M. (2005). Natural disaster hotspots: a global risk analysis, volume 5. World Bank Publications.spa
dc.relation.referencesDoerry, A. W. (2006). Performance limits for Synthetic Aperture Radar. Technical report, Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA, USAspa
dc.relation.referencesDoin, M.-P., Lasserre, C., Peltzer, G., Cavalié, O., & Doubre, C. (2009). Corrections of stratified tropospheric delays in sar interferometry: Validation with global atmospheric models. Journal of Applied Geophysics, 69(1), 35--50.spa
dc.relation.referencesDu, Y., Zhang, L., Feng, G., Lu, Z., & Sun, Q. (2016). On the accuracy of topographic residuals retrieved by mtinsar. IEEE Transactions on Geoscience and Remote Sensing, 55(2), 1053--1065.spa
dc.relation.referencesDuan, H., Li, Y., Li, B., & Li, H. (2022). Fast insar time-series analysis method in a full-resolution sar coordinate system: A case study of the yellow river delta. Sustainability, 14(17), 10597.spa
dc.relation.referencesEl-Darymli, K., McGuire, P., Gill, E., Power, D., & Moloney, C. (2014). Understanding the significance of radiometric calibration for synthetic aperture radar imagery. In 2014 IEEE 27th Canadian Conference on Electrical and Computer Engineering (CCECE) (pp. 1--6).: IEEE.spa
dc.relation.referencesEriksen, H. Ø., Lauknes, T. R., Larsen, Y., Corner, G. D., Bergh, S. G., Dehls, J., & Kierulf, H. P. (2017). Visualizing and interpreting surface displacement patterns on unstable slopes using multi-geometry satellite sar interferometry (2d insar). Remote Sensing of Environment, 191, 297--312.spa
dc.relation.referencesFattahi, H. & Amelung, F. (2013). Dem error correction in insar time series. IEEE Transactions on Geoscience and Remote Sensing, 51(7), 4249--4259.spa
dc.relation.referencesFerretti, A., Monti-Guarnieri, A., Prati, C., Rocca, F., & Massonet, D. (2007). InSAR principles-guidelines for SAR interferometry processing and interpretation, volume 19.spa
dc.relation.referencesFerretti, A., Prati, C., & Rocca, F. (1999). Permanent scatterers in sar interferometry. In IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS’99 (Cat. No. 99CH36293), volume 3 (pp. 1528--1530).: IEEE.spa
dc.relation.referencesFobert, M.-A., Singhroy, V., & Spray, J. G. (2021). Insar monitoring of landslide activity in dominica. Remote Sensing, 13(4).spa
dc.relation.referencesFroude, M. J. & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161--2181.spa
dc.relation.referencesFarr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., Roth, L., et al. (2007). The shuttle radar topography mission. Reviews of geophysics, 45(2).spa
dc.relation.referencesGarcía, C. (2005). 5. el deslizamiento de villatina. DESASTRES, (pp.5̃5).spa
dc.relation.referencesFikri, S., Anjasmara, I. M., & Taufik, M. (2021). Application of different coherence threshold on ps-insar technique for monitoring deformation on the lusi affected area during 2017 and 2019. In IOP Conference Series: Earth and Environmental Science, volume 731 (pp. 012036).: IOP Publishing.spa
dc.relation.referencesGuzzetti, F., Gariano, S. L., Peruccacci, S., Brunetti, M. T., Marchesini, I., Rossi, M., & Melillo, M. (2020). Geographical landslide early warning systems. Earth-Science Reviews, 200, 102973.spa
dc.relation.referencesHogenson, K., Arko, S. A., Buechler, B., Hogenson, R., Herrmann, J., & Geiger, A. (2016). Hybrid pluggable processing pipeline (hyp3): A cloud-based infrastructure for generic processing of sar data. In Agu fall meeting abstracts, volume 2016 (pp. IN21B--1740).spa
dc.relation.referencesHrysiewicz, A., Wang, X., & Holohan, E. P. (2023). Ez-insar: An easy-to-use open-source toolbox for mapping ground surface deformation using satellite interferometric synthetic aperture radar. Earth Science Informatics, 16(2), 1929--1945.spa
dc.relation.referencesHuggel, C., Khabarov, N., Obersteiner, M., & Ramírez, J. M. (2010). Implementation and integrated numerical modeling of a landslide early warning system: a pilot study in colombia. Natural Hazards, 52, 501--518.spa
dc.relation.referencesHungr, O., Leroueil, S., & Picarelli, L. (2014). The varnes classification of landslide types, an update. Landslides, 11, 167--194.spa
dc.relation.referencesHermelin, M. (2007). Valle de aburrá:?‘ quo vadis? Gestión y ambiente, 10(2), 07--16.spa
dc.relation.referencesHrysiewicz, A., Wang, X., & Holohan, E. P. (2023). Ez-insar: An easy-to-use open-source toolbox for mapping ground surface deformation using satellite interferometric synthetic aperture radar. Earth Science Informatics, 16(2), 1929--1945.spa
dc.relation.referencesHe, K., Zhang, X., Li, Z., Jiang, W., Zhou, J., & Han, B. (2024). A mask r-cnn network for wide-area mining subsidence automatic detection with insar observations. IEEE Transactions on Geoscience and Remote Sensing.spa
dc.relation.referencesHandwerger, A. L., Fielding, E. J., Huang, M.-H., Bennett, G. L., Liang, C., & Schulz, W. H. (2019). Widespread initiation, reactivation, and acceleration of landslides in the northern california coast ranges due to extreme rainfall. Journal of Geophysical Research: Earth Surface, 124(7), 1782--1797.spa
dc.relation.referencesHoeser, T. (2018). Analysing the Capabilities and Limitations of InSAR using Sentinel-1 Data for Landslide Detection and Monitoring. PhD thesis.spa
dc.relation.referencesJacquemart, M. & Tiampo, K. (2021). Leveraging time series analysis of radar coherence and normalized difference vegetation index ratios to characterize pre-failure activity of the mud creek landslide, california. Natural Hazards and Earth System Sciences, 21(2), 629--642.spa
dc.relation.referencesJiang, M., Li, Z., Ding, X., Zhu, J., & Feng, G. (2011). Modeling minimum and maximum detectable deformation gradients of interferometric sar measurements. International journal of applied earth observation and geoinformation, 13(5), 766--777.spa
dc.relation.referencesJolivet, R., Grandin, R., Lasserre, C., Doin, M.-P., & Peltzer, G. (2011). Systematic insar tropospheric phase delay corrections from global meteorological reanalysis data. Geophysical Research Letters, 38(17).spa
dc.relation.referencesIntrieri, E., Gigli, G., Mugnai, F., Fanti, R., & Casagli, N. (2012). Design and implementation of a landslide early warning system. Engineering Geology, 147, 124--136.spa
dc.relation.referencesKerle, N., Janssen, L. L., Huurneman, G. C., Bakker, W., Grabmaier, K., van der Meer, F., Prakash, A., Tempfli, K., Gieske, A., Hecker, C., et al. (2004). Principles of remote sensing: an introductory textbook.spa
dc.relation.referencesKhalil, R. Z. et al. (2018). Insar coherence-based land cover classification of okara, pakistan. The Egyptian Journal of Remote Sensing and Space Science, 21, S23--S28.spa
dc.relation.referencesKhorram, S., Koch, F. H., Van der Wiele, C. F., & Nelson, S. A. (2012). Remote sensing. Springer Science & Business Media.spa
dc.relation.referencesKropatsch, W. G. & Strobl, D. (1990). The generation of sar layover and shadow maps from digital elevation models. IEEE Transactions on Geoscience and Remote Sensing, 28(1), 98--107.spa
dc.relation.referencesKelman, I. & Glantz, M. H. (2014). Early warning systems defined. Reducing disaster: Early warning systems for climate change, (pp. 89--108).spa
dc.relation.referencesLi, S., Xu, W., & Li, Z. (2022). Review of the sbas insar time-series algorithms, applications, and challenges. Geodesy and Geodynamics, 13(2), 114--126.spa
dc.relation.referencesLiang, J., Dong, J., Zhang, S., Zhao, C., Liu, B., Yang, L., Yan, S., & Ma, X. (2022). Discussion on insar identification effectivity of potential landslides and factors that influence the effectivity. Remote Sensing, 14(8), 1952.spa
dc.relation.referencesLacasse, S., Nadim, F., & Kalsnes, B. (2005). Living with landslide risk. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 41(4)spa
dc.relation.referencesLiu, Y., Qiu, H., Yang, D., Liu, Z., Ma, S., Pei, Y., Zhang, J., & Tang, B. (2022). Deformation responses of landslides to seasonal rainfall based on insar and wavelet analysis. Landslides, (pp. 1--12).spa
dc.relation.referencesLu, Z. & Kim, J. (2021). A framework for studying hydrology-driven landslide hazards in northwestern us using satellite insar, precipitation and soil moisture observations: early results and future directions. GeoHazards, 2(2), 17--40.spa
dc.relation.referencesLanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., & Pepe, A. (2007). An overview of the small baseline subset algorithm: A dinsar technique for surface deformation analysis. Deformation and Gravity Change: Indicators of Isostasy, Tectonics, Volcanism, and Climate Change, (pp. 637--661).spa
dc.relation.referencesLeroueil, S. (2001). Natural slopes and cuts: movement and failure mechanisms. Géotechnique, 51(3), 197--243.spa
dc.relation.referencesManavalan, R. (2017). Sar image analysis techniques for flood area mapping-literature survey. Earth Science Informatics, 10(1), 1--14.spa
dc.relation.referencesMarr, W. A. (2007). Why monitor performance? In FMGM 2007: Seventh International Symposium Field Measurements in Geomechanics (pp. 1--27).spa
dc.relation.referencesMassonnet, D. & Feigl, K. L. (1998). Radar interferometry and its application to changes in the earth’s surface. Reviews of geophysics, 36(4), 441--500.spa
dc.relation.referencesMeyer, F. (2019). Spaceborne synthetic aperture radar: Principles, data access, and basic processing techniques. Synthetic Aperture Radar (SAR) Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, (pp. 21--64).spa
dc.relation.referencesMondini, A. C., Chang, K.-T., & Yin, H.-Y. (2011). Combining multiple change detection indices for mapping landslides triggered by typhoons. Geomorphology, 134(3-4), 440--451.spa
dc.relation.referencesMondini, A. C., Guzzetti, F., Chang, K.-T., Monserrat, O., Martha, T. R., & Manconi, A. (2021). Landslide failures detection and mapping using synthetic aperture radar: Past, present and future. Earth-Science Reviews, 216, 103574.spa
dc.relation.referencesMoreira, A., Prats-Iraola, P., Younis, M., Krieger, G., Hajnsek, I., & Papathanassiou, K. P. (2013). A tutorial on synthetic aperture radar. IEEE Geoscience and remote sensing magazine, 1(1), 6--43.spa
dc.relation.referencesMoretto, S., Bozzano, F., & Mazzanti, P. (2021). The role of satellite insar for landslide forecasting: Limitations and openings. Remote sensing, 13(18), 3735.spa
dc.relation.referencesMorishita, Y., Lazecky, M., Wright, T. J., Weiss, J. R., Elliott, J. R., & Hooper, A. (2020). Licsbas: An open-source insar time series analysis package integrated with the licsar automated sentinel-1 insar processor. Remote Sensing, 12(3), 424.spa
dc.relation.referencesMaya, M. & González, H. (1995). Unidades litodémicas en la cordillera central de colombia. Boletín geológico, 35(2-3), 44--57.spa
dc.relation.referencesMejía, N. (1984). Geología y geoquímica de las planchas 130 (santafé de antioquia) y 146 (medellín occidental), escala 1: 100.000, memoria explicativa. Instituto Colombiano de Geología y Minería (INGEOMINAS).spa
dc.relation.referencesMirmazloumi, S. M., Gambin, A. F., Palamà, R., Crosetto, M., Wassie, Y., Navarro, J. A., Barra, A., & Monserrat, O. (2022). Supervised machine learning algorithms for ground motion time series classification from insar data. Remote Sensing, 14(15), 3821.spa
dc.relation.referencesNotti, D., Meisina, C., Zucca, F., Colombo, A., et al. (2011). Models to predict persistent scatterers data distribution and their capacity to register movement along the slope. In Fringe 2011 Workshop (pp. 19--23).spa
dc.relation.referencesMedina-Cetina, Z. & Nadim, F. (2008). Stochastic design of an early warning system. Georisk, 2(4), 223--236.spa
dc.relation.referencesPlank, S., Singer, J., Minet, C., & Thuro, K. (2012). Pre-survey suitability evaluation of the differential synthetic aperture radar interferometry method for landslide monitoring. International journal of remote sensing, 33(20), 6623--6637.spa
dc.relation.referencesPetley, D. (2012). Global patterns of loss of life from landslides. Geology, 40(10), 927--930.spa
dc.relation.referencesPlank, S., Singer, J., Thuro, K., & Minet, C. (2010). The suitability of the differential radar interferometry method for deformation monitoring of landslides—a new gis based evaluation tool. In Proceedings of the 11th IAEG Congress Geologically Active, Auckland, New Zealand (pp. 5--10).spa
dc.relation.referencesRen, K., Yao, X., Li, R., Zhou, Z., Yao, C., & Jiang, S. (2022). 3d displacement and deformation mechanism of deep-seated gravitational slope deformation revealed by insar: a case study in wudongde reservoir, jinsha river. Landslides, 19(9), 2159--2175.spa
dc.relation.referencesRichards, J., Woodgate, P., & Skidmore, A. (1987). An explanation of enhanced radar backscattering from flooded forests. International Journal of Remote Sensing, 8(7), 1093--1100.spa
dc.relation.referencesRosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M. (2000). Synthetic aperture radar interferometry. Proceedings of the IEEE, 88(3), 333--382.spa
dc.relation.referencesRotaru, A., Oajdea, D., & Răileanu, P. (2007). Analysis of the landslide movements. International journal of geology, 1(3), 70--79.spa
dc.relation.referencesScaioni, M., Longoni, L., Melillo, V., & Papini, M. (2014). Remote sensing for landslide investigations: An overview of recent achievements and perspectives. Remote Sensing, 6(10), 9600--9652.spa
dc.relation.referencesSepúlveda, S. A. & Petley, D. N. (2015). Regional trends and controlling factors of fatal landslides in latin america and the caribbean. Natural Hazards and Earth System Sciences, 15(8), 1821--1833.spa
dc.relation.referencesSolari, L., Del Soldato, M., Raspini, F., Barra, A., Bianchini, S., Confuorto, P., Casagli, N., & Crosetto, M. (2020). Review of satellite interferometry for landslide detection in italy. Remote Sensing, 12(8), 1351.spa
dc.relation.referencesSegalini, A., Carri, A., & Savi, R. (2017). Role of geotechnical monitoring: state of the art and new perspectives. Geotechnical Society of Bosnia and Herzegovina GEO-EXPO.spa
dc.relation.referencesSteinberg, L. J., Sengul, H., & Cruz, A. M. (2008). Natech risk and management: an assessment of the state of the art. Natural Hazards, 46, 143--152.spa
dc.relation.referencesSerna Quintana, C. A. (2011). La naturaleza social de los desastres asociados a inundaciones y deslizamientos en medellín (1930-1990). Historia crítica, (43), 198--223.spa
dc.relation.referencesSmith, L. C. (1997). Satellite remote sensing of river inundation area, stage, and discharge: A review. Hydrological processes, 11(10), 1427--1439.spa
dc.relation.referencesTomás, R., Pagán, J. I., Navarro, J. A., Cano, M., Pastor, J. L., Riquelme, A., Cuevas-González, M., Crosetto, M., Barra, A., Monserrat, O., et al. (2019). Semi-automatic identification and pre-screening of geological--geotechnical deformational processes using persistent scatterer interferometry datasets. Remote Sensing, 11(14), 1675.spa
dc.relation.referencesThirugnanam, H., Uhlemann, S., Reghunadh, R., Ramesh, M. V., & Rangan, V. P. (2022). Review of landslide monitoring techniques with iot integration opportunities. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 5317--5338.spa
dc.relation.referencesUrgilez Vinueza, A., Handwerger, A. L., Bakker, M., & Bogaard, T. (2022). A new method to detect changes in displacement rates of slow-moving landslides using insar time series. Landslides, 19(9), 2233--2247.spa
dc.relation.referencesUniversidad de los Andes y Área Metropolitana del Valle de Aburrá (2016). Estudio de microzonificación sismica del valle de aburrá. Informe técnico.spa
dc.relation.referencesvan Natijne, A. L., Bogaard, T., van Leijen, F. J., Hanssen, R. F., & Lindenbergh, R. C. (2022). World-wide insar sensitivity index for landslide deformation tracking. International Journal of Applied Earth Observation and Geoinformation, 111, 102829.spa
dc.relation.referencesVicari, A., Famiglietti, N. A., Colangelo, G., & Cecere, G. (2019). A comparison of multi temporal interferometry techniques for landslide susceptibility assessment in urban area: an example on stigliano (mt), a town of southern of italy. Geomatics, Natural Hazards and Risk, 10(1), 836--852.spa
dc.relation.referencesWang, T., Liao, M., & Perissin, D. (2009). Insar coherence-decomposition analysis. IEEE Geoscience and Remote Sensing Letters, 7(1), 156--160.spa
dc.relation.referencesWasowski, J. & Bovenga, F. (2014). Investigating landslides and unstable slopes with satellite multi temporal interferometry: Current issues and future perspectives. Engineering Geology, 174, 103--138.spa
dc.relation.referencesWasowski, J. & Pisano, L. (2020). Long-term insar, borehole inclinometer, and rainfall records provide insight into the mechanism and activity patterns of an extremely slow urbanized landslide. Landslides, 17, 445--457.spa
dc.relation.referencesWegnüller, U., Werner, C., Strozzi, T., Wiesmann, A., Frey, O., & Santoro, M. (2016). Sentinel-1 support in the gamma software. Procedia Computer Science, 100, 1305--1312.spa
dc.relation.referencesWerthmann, C., Sapena, M., Kühnl, M., Singer, J., Garcia, C., Menschik, B., Schäfer, H., Schröck, S., Seiler, L., Thuro, K., et al. (2023). Inform@ risk. the development of a prototype for an integrated landslide early warning system in an informal settlement: the case of bello oriente in medellín, colombia. Natural Hazards and Earth System Sciences Discussions, 2023, 1--42.spa
dc.relation.referencesWhite, L., Brisco, B., Dabboor, M., Schmitt, A., & Pratt, A. (2015). A collection of sar methodologies for monitoring wetlands. Remote sensing, 7(6), 7615--7645.spa
dc.relation.referencesXie, M., Zhao, W., Ju, N., He, C., Huang, H., & Cui, Q. (2020). Landslide evolution assessment based on insar and real-time monitoring of a large reactivated landslide, wenchuan, china. Engineering Geology, 277, 105781.spa
dc.relation.referencesYao, J., Yao, X., & Liu, X. (2022). Landslide detection and mapping based on sbas-insar and ps-insar: A case study in gongjue county, tibet, china. Remote Sensing, 14(19), 4728.spa
dc.relation.referencesYi, Y., Xu, X., Xu, G., & Gao, H. (2023). Rapid mapping of slow-moving landslides using an automated sar processing platform (hyp3) and stacking-insar method. Remote Sensing, 15(6), 1611.spa
dc.relation.referencesYu, H., Lan, Y., Yuan, Z., Xu, J., & Lee, H. (2019). Phase unwrapping in insar: A review. IEEE Geoscience and Remote Sensing Magazine, 7(1), 40--58.spa
dc.relation.referencesYunjun, Z., Fattahi, H., & Amelung, F. (2019). Small baseline insar time series analysis: Unwrapping error correction and noise reduction. Computers & Geosciences, 133, 104331.spa
dc.relation.referencesYamaguchi, Y. (2020). Polarimetric SAR imaging: theory and applications. CRC Press.spa
dc.relation.referencesYagüe-Martínez, N., Prats-Iraola, P., Gonzalez, F. R., Brcic, R., Shau, R., Geudtner, D., Eineder, M., & Bamler, R. (2016). Interferometric processing of sentinel-1 tops data. IEEE transactions on geoscience and remote sensing, 54(4), 2220--2234.spa
dc.relation.referencesZebker, H. A., Villasenor, J., et al. (1992). Decorrelation in interferometric radar echoes. IEEE Transactions on geoscience and remote sensing, 30(5), 950--959.spa
dc.relation.referencesZhang, L., Dai, K., Deng, J., Ge, D., Liang, R., Li, W., & Xu, Q. (2021). Identifying potential landslides by stacking-insar in southwestern china and its performance comparison with sbas-insar. Remote Sensing, 13(18), 3662.spa
dc.relation.referencesZhang, Y., Meng, X., Dijkstra, T., Jordan, C., Chen, G., Zeng, R., & Novellino, A. (2020). Forecasting the magnitude of potential landslides based on insar techniques. Remote Sensing of Environment, 241, 111738.spa
dc.relation.referencesZhang, Z., Duan, P., Li, J., Chen, D., Peng, K., & Fan, C. (2023). A time-series insar processing chain for wide-area geohazard identification. Natural Hazards, 118(1), 691--707.spa
dc.relation.referencesZheng, Y. & Zebker, H. A. (2017). Phase correction of single-look complex radar images for user-friendly efficient interferogram formation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(6), 2694--2701.spa
dc.relation.referencesZanaga, D., Van De Kerchove, R., Daems, D., De Keersmaecker, W., Brockmann, C., Kirches, G., Wevers, J., Cartus, O., Santoro, M., Fritz, S., et al. (2022). Esa worldcover 10 m 2021 v200.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc620 - Ingeniería y operaciones afines::629 - Otras ramas de la ingenieríaspa
dc.subject.ddc550 - Ciencias de la tierraspa
dc.subject.lembRiesgo ambiental
dc.subject.lembInterferometría
dc.subject.lembDesgaste de masa
dc.subject.proposalMovimientos en masaspa
dc.subject.proposalTeledetecciónspa
dc.subject.proposalInSARspa
dc.subject.proposalCoherenciaspa
dc.subject.proposalSistemas de Alerta Tempranaspa
dc.subject.proposalColombiaspa
dc.subject.proposalLandslideseng
dc.subject.proposalCoherenceeng
dc.subject.proposalRemote Sensing Tecniqueseng
dc.subject.proposalInSAReng
dc.subject.proposalEarly Warning Systemeng
dc.subject.proposalProcesamiento InSARspa
dc.subject.wikidataRiesgo geológico
dc.titleEvaluación del uso de técnicas InSAR para el monitoreo y detección de movimientos en masa en un sistema de alertas tempranas en los Andes colombianosspa
dc.title.translatedEvaluation of InSAR Techniques for Monitoring and Detection of Landslides in an Early Warning System in the Colombian Andeseng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/submittedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1037664280.2024.pdf
Tamaño:
2.24 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Medio Ambiente y Desarrollo

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: