Evaluación de dietas basadas en subproductos orgánicos sobre la dinámica productiva del gusano amarillo de la harina (Tenebrio molitor) y la calidad de la harina para su uso como suplemento en la producción de pollo de engorde
| dc.contributor.advisor | González Sepúlveda, Carlos Augusto | |
| dc.contributor.advisor | Uribe Soto, Sandra Inés | |
| dc.contributor.author | Daniela Ardila Morales, Daniela | |
| dc.contributor.orcid | González Sepúlveda, Carlos Augusto [0000000315948710] | |
| dc.contributor.orcid | Uribe Soto, Sandra Inés [0000000247620552] | |
| dc.contributor.researchgroup | Grupo de Investigación en Sistemática Molecular | |
| dc.date.accessioned | 2025-12-17T18:50:34Z | |
| dc.date.available | 2025-12-17T18:50:34Z | |
| dc.date.issued | 2025-12-15 | |
| dc.description | Ilustraciones | |
| dc.description.abstract | Los insectos han sido ampliamente reconocidos por sus propiedades nutricionales y su elevado valor biológico, destacándose por su alta concentración de proteínas y lípidos de calidad [1]. En Colombia, su estudio como alternativa alimentaria de inclusión se encuentra en fase de desarrollo. Este trabajo evaluó el potencial del Tenebrio molitor como ingrediente de inclusión nutricional en la dieta de pollos de engorde, mediante un diseño experimental estructurado en tres etapas. En la primera etapa, se desarrolló una revisión bibliográfica sobre el valor nutricional del insecto T. molitor, destacando su alta concentración de proteína y grasas, y su inclusión en dietas para consumo animal. La segunda etapa el objetivo fue evaluar el desarrollo de larvas T. molitor criadas con diferentes subproductos de la industria alimenticia, correspondientes a T1: dieta control (100% salvado de trigo y zanahoria), T2: sustrato enriquecido (mezcla de salvado de trigo, granos gastados de frijol-lenteja, levadura de cerveza, zanahoria y lechuga), y T3: sustrato alternativo (salvado de maíz y trigo, zanahoria y lechuga), se evaluaron parámetros zootécnicos como ganancia de peso, conversión alimenticia, y composición nutricional larval. Los resultados del desempeño larval muestran que hubo diferencia significativa en el peso, solo en la semana 11 de edad para el T3, en las otras semanas no se presentaron diferencias significativas. Para el consumo de alimento acumulado se presentó significancia para el T3, con el menor consumo por larva. El sustrato enriquecido (T2) presentó mayor concentración de proteína cruda larval (22.2%). La tercera etapa se evaluó el uso de la harina de T. molitor en dietas para pollo de engorde durante la fase de iniciación. Se aplicaron tres tratamientos con inclusión de harina de T. molitor al 0%, 5% y 10%, por sustitución de la fracción energética y proteica de la dieta control. No se observaron diferencias significativas en parámetros de desempeño en las aves comparadas con la dieta control, las aves alcanzaron un peso superior de 2000 g a los 35 días. Se concluye que la harina de T. molitor puede ser una alternativa interesante de alimentación en términos de parámetros de desempeño (peso, consumo de alimento y conversión alimenticia) en la producción avícola. (Tomado de la fuente) | spa |
| dc.description.abstract | Insects have been widely recognized for their nutritional properties and high biological value, particularly due to their elevated concentrations of quality proteins and lipids [1]. In Colombia, research into their use as an inclusive feed alternative remains in a developmental phase. This study evaluated the potential of Tenebrio molitor as a nutritional inclusion ingredient in broiler chicken diets through a three-stage experimental design. In the first stage, a literature review was conducted on the nutritional value of T. molitor, highlighting its high protein and fat content and its historical inclusion in animal feed diets. The second stage aimed to assess the larval development of T. molitor reared on different agro-industrial byproducts, corresponding to three treatments: T1 (control diet comprising 100% wheat bran and carrot), T2 (enriched substrate combining wheat bran, spent bean- lentil grains, brewer’s yeast, carrot, and lettuce), and T3 (alternative substrate consisting of corn and wheat bran, carrot, and lettuce). Zootechnical parameters such as weight gain, feed conversion ratio, and nutritional composition were evaluated. Results showed a significant difference in larval weight only at week 11 for T3, with no significant differences observed in other weeks. Significant differences were observed in cumulative feed intake for treatment T3, which exhibited the lowest consumption per larva. The enriched substrate (T2) resulted in a higher concentration of larval crude protein, reaching 64% on a dry matter basis. In the third stage, T. molitor meal was evaluated as a dietary inclusion in broiler chicken feed during the starter phase. Three treatments were implemented with inclusion levels of 0%, 5%, and 10%, substituting portions of the energy and protein fraction of the control diet. No significant differences in performance parameters were observed between treatments and the control group, with birds reaching weights exceeding 2000 g by day 35. The study concludes that T. molitor meal represents a promising feed alternative in terms of performance indicators (weight, feed intake, and feed conversion) for poultry production. | eng |
| dc.description.curriculararea | Producción Agraria Sostenible.Sede Medellín | |
| dc.description.degreelevel | Maestría | |
| dc.description.degreename | Magíster en Ciencias Agrarias | |
| dc.description.researcharea | Insectos para la alimentación y la nutrición. | |
| dc.format.extent | 1 recurso en línea (86 páginas) | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.instname | Universidad Nacional de Colombia | spa |
| dc.identifier.reponame | Repositorio Institucional Universidad Nacional de Colombia | spa |
| dc.identifier.repourl | https://repositorio.unal.edu.co/ | spa |
| dc.identifier.uri | https://repositorio.unal.edu.co/handle/unal/89226 | |
| dc.language.iso | spa | |
| dc.publisher | Universidad Nacional de Colombia | |
| dc.publisher.branch | Universidad Nacional de Colombia - Sede Medellín | |
| dc.publisher.faculty | Facultad de Ciencias Agrarias | |
| dc.publisher.place | Medellín, Colombia | |
| dc.publisher.program | Medellín - Ciencias Agrarias - Maestría en Ciencias Agrarias | |
| dc.relation.references | Dobermann, D., Swift, J., & Field, L. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291 | |
| dc.relation.references | Organización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. Noticias ONU. https://news.un.org/es/story/2022/07/1511502 | |
| dc.relation.references | United Nations. (2023). Population. United Nations. https://www.un.org/en/global- issues/population | |
| dc.relation.references | Bovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., ... & Nizza, A. (2016). Use of larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science, 94(2), 639–647. https://doi.org/10.2527/jas.2015-9201 | |
| dc.relation.references | van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704 | |
| dc.relation.references | Toral, P. G., Frutos, P., Belenguer, Á., & Hervás, G. (2022). Insects as alternative feed for ruminants: Comparison of protein evaluation methods. Journal of Animal Science and Biotechnology, 13(1), 21. https://doi.org/10.1186/s40104-021-00671-2 | |
| dc.relation.references | van Broekhoven, S. (2015). Quality and safety aspects of mealworms as human food (Tesis de doctorado, Wageningen University). ISBN 978-94-6257-571-4 | |
| dc.relation.references | Oonincx, D. G. A. B., van Broekhoven, S., van Huis, A., & van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/journal.pone.0144601 | |
| dc.relation.references | Insect Marketing. (2023, April 16). Water and land area comparison between soybean and insect protein production [Publicación en LinkedIn]. LinkedIn. https://www.linkedin.com/pulse/water-land-area-comparison-between-soybean-insect- protein | |
| dc.relation.references | Niyonsaba, H., Doyen, V., & Bindelle, J. (2021). Profitability of insect farms. Journal of Insects as Food and Feed, 7(5), 661–682. https://doi.org/10.3920/JIFF2020.0087 | |
| dc.relation.references | Moruzzo, R., Ricci, E., Zhang, Z., & Crippa, M. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals, 11(9), 2568. https://doi.org/10.3390/ani11092568 | |
| dc.relation.references | Janssen, R. H., Vincken, J. P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278 | |
| dc.relation.references | Pérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25 | |
| dc.relation.references | Gasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67–79. https://doi.org/10.1016/j.cogsc.2020.03.003 | |
| dc.relation.references | Moreira, N. R., Cardoso, C., Dias, R. O., Ferreira, C., & Terra, W. R. (2017). A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor. Journal of Insect Physiology, 99, 58–66. https://doi.org/10.1016/j.jinsphys.2017.03.009 | |
| dc.relation.references | Grabowski, N. T., Acheuk, F., Abdulmawjood, A., & Costa Neto, E. M. (2022). Review: Insects—A source of safe and sustainable food?—“Jein” (yes and no). Frontiers in Sustainable Food Systems, 5, Article 701797. https://doi.org/10.3389/fsufs.2021.701797 | |
| dc.relation.references | Loh, J. Y. (2018). Effects of food wastes on yellow mealworm (Tenebrio molitor) larval nutritional profiles and growth performances. Examines in Marine Biology and Oceanography, 2(1), 173–178. https://doi.org/10.31031/EIMBO.2018.02.000530 | |
| dc.relation.references | Madau, F. A., Arru, B., & Furesi, R. (2020). Insect farming for feed and food production from a circular business model perspective. Sustainability, 12(13), 5418. https://doi.org/10.3390/su12135418 | |
| dc.relation.references | Arévalo Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control, 138, 109030. https://doi.org/10.1016/j.foodcont.2022.109030 | |
| dc.relation.references | Sogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 119. https://doi.org/10.3390/ani9040119 | |
| dc.relation.references | Avendaño, C., Sánchez, M., & Valenzuela, C. (2020). Insectos: ¿Son realmente una alternativa para la alimentación de animales y humanos? Revista Chilena de Nutrición, 47(6), 1029–1037. https://dx.doi.org/10.4067/S0717-75182020000601029 | |
| dc.relation.references | Belghit, I., Liland, N. S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å., & Lock, E.-J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491, 72–81. https://doi.org/10.1016/j.aquaculture.2018.03.016 | |
| dc.relation.references | van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704 | |
| dc.relation.references | van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security (FAO Forestry Paper No. 171). Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/c7851ad8-1b4b-4917-b1a1- 104f07ab830d/content | |
| dc.relation.references | Data Bridge Market Research. (2024). Informe de análisis del tamaño, la participación y las tendencias del mercado global de insectos comestibles: Panorama general del sector y pronóstico hasta 2032. https://www.databridgemarketresearch.com/es/reports/global- edible-insects-market | |
| dc.relation.references | Sancho Belenguer, L. (2020). Regulación y desarrollo normativo de la introducción de los insectos para consumo humano y animal en la Unión Europea [Trabajo de Fin de Grado, Universidad de Zaragoza]. Repositorio Institucional Zaguán. https://zaguan.unizar.es/record/98863/files/TAZ-TFG-2020-1415.pdf | |
| dc.relation.references | Dabbou, S., Gai, F., Biasato, I., Capucchio, M. T., Biasibetti, E., Dezzutto, D., Meneguz, M., Plachà, I., Gasco, L., & Schiavone, A. (2018). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. Journal of Animal Science and Biotechnology, 9(49). https://doi.org/10.1186/s40104-018-0266-9 | |
| dc.relation.references | Bessa, L. W., Pieterse, E., Sigge, G., & Hoffman, L. C. (2018). Insects as human food: From farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017–5022. https://doi.org/10.1002/jsfa.8860 | |
| dc.relation.references | Mancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S., & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. https://doi.org/10.3390/ani9080484 | |
| dc.relation.references | Food for the Future. (s.f.). Impacto. F4F. Recuperado el 22 de agosto de 2025, de https://f4f.cl/impacto/ | |
| dc.relation.references | Dobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291 | |
| dc.relation.references | Food and Agriculture Organization of the United Nations. (2012). The state of world fisheries and aquaculture 2012 (FAO Fisheries and Aquaculture Report No. 978-92-5- 107225-7). Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i2727e/i2727e00.htm | |
| dc.relation.references | Doreau, M., Corson, M. S., & Wiedemann, S. G. (2012). Water use by livestock: A global perspective for a regional issue? Animal Frontiers, 2(2), 9–16. https://doi.org/10.2527/af.2012-0036 | |
| dc.relation.references | Oonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. PLoS ONE, 7(12), e51145. https://doi.org/10.1371/journal.pone.0051145 | |
| dc.relation.references | Menozzi, D., Sogari, G., Mora, C., Gariglio, M., Gasco, L., & Schiavone, A. (2021). Insects as feed for farmed poultry: Are Italian consumers ready to embrace this innovation? Insects, 12(5), 435. https://doi.org/10.3390/insects12050435 | |
| dc.relation.references | Sachs, J. D. (2015). The age of sustainable development. Columbia University Press. https://cup.columbia.edu/book/the-age-of-sustainable-development/9780231173155 | |
| dc.relation.references | Lundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE, 10(4), e0118785. | |
| dc.relation.references | Dorlivete, D. S., Silva, J. A. da, Oliveira, J. M. de, & Silva, R. R. da. (2021). Mealworm (Tenebrio molitor) potential in fish nutrition: a review. Research, Society and Development, 10(16), e269101623229. https://doi.org/10.33448/rsd-v10i16.23229 | |
| dc.relation.references | Pérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25. | |
| dc.relation.references | Bouchard, P., Lawrence, J. F., Davies, A. E., & Newton, A. F. (2005). Synoptic classification of the world Tenebrionidae (Insecta: Coleoptera) with a review of family-group names. Annales Zoologici, 55(4), 499–530. https://www.researchgate.net/publication/228657891_Synoptic_classification_of_the_worl d_Tenebrionidae_Insecta_Coleoptera_with_a_review_of_family-group_names | |
| dc.relation.references | Morales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-selection of agricultural by-products and food ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and impact on food utilization and nutrient intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827 | |
| dc.relation.references | Gasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 35–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003 | |
| dc.relation.references | Moruzzo, R., Mancini, S., & Guidi, A. (2021). Edible insects and sustainable development goals. Insects, 12(6), 557. https://doi.org/10.3390/insects12060557 | |
| dc.relation.references | Fundación Española para el Desarrollo de la Nutrición Animal (FEDNA). (2011, noviembre). Haba de soja cocida o extrusionada. FEDNA. | |
| dc.relation.references | Vitaliano. A. 2006. La soya como fuente de proteína en la alimentación animal. AGROSAVIA. https://repository.agrosavia.co/bitstream/handle/20.500.12324/1652/41738_43719.pdf | |
| dc.relation.references | Bußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., & Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Mealworm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2(12), e00218. https://doi.org/10.1016/j.heliyon.2016.e00218 | |
| dc.relation.references | Janssen, R. H., Vincken, J. P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278. | |
| dc.relation.references | Hagstrum, D. W., & Subramanyam, B. (2006). Fundamentals of stored-product entomology. AACC International. https://www.academia.edu/40327613/Fundamentals_ | |
| dc.relation.references | Bermúdez-Serrano, I. M., Quirós-Blanco, A. M., & Acosta-Montoya, Ó. (2023). Producción de insectos comestibles: Retos, oportunidades y perspectivas para Costa Rica. Agronomía Mesoamericana, 34(3), Artículo 53052. https://doi.org/10.15517/am.2023.53052 | |
| dc.relation.references | Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735 | |
| dc.relation.references | Rumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1–11. https://doi.org/10.1016/j.ifset.2012.11.005 | |
| dc.relation.references | Hong, J., Han, T., & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals, 10(11), 2068. https://doi.org/10.3390/ani10112068 | |
| dc.relation.references | Biasato, I., Ferrocino, I., Biasibetti, E. et al. Modulación de la microbiota intestinal, morfología y composición de mucina mediante la inclusión de harina de insectos en la dieta de pollos de corral. BMC Vet Res 14 , 383 (2018). https://doi.org/10.1186/s12917-018- 1690-y | |
| dc.relation.references | Malematja, E., Manyelo, T., Sebola, N. et al. El papel de los insectos en la promoción de la salud y el estado intestinal de las aves de corral. Comp Clin Pathol 32, 501–513 (2023). https://doi.org/10.1007/s00580-023-03447-4 | |
| dc.relation.references | Food and Agriculture Organization of the United Nations. (2013). La contribución de los insectos a la seguridad alimentaria, los medios de vida y el medio ambiente (Folleto informativo). FAO. https://openknowledge.fao.org/handle/20.500.14283 | |
| dc.relation.references | FAO. 2018. El futuro de la alimentación y la agricultura: Vías alternativas hacia el 2050. Versión resumida. Rome. 64 pp. https://openknowledge.fao.org/server/api/core/bitstreams/e2afea45-10be-4cab-a7e2- 36508e77461b/content | |
| dc.relation.references | Siemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287–291. https://doi.org/10.4236/as.2013.46041 | |
| dc.relation.references | Kouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26. https://doi.org/10.1016/j.nfs.2016.07.001 | |
| dc.relation.references | Chávez Vera, W. M. (2022). La entomofagia y la industrialización de los insectos: Una revisión sistemática. Agro-Vet, 6(2), 108–118. http://revistasbolivianas.umsa.bo/scielo.php?script=sci_arttext&pid=S2523- 20372022000200012&lng=es&nrm=iso | |
| dc.relation.references | Vanguardia. (2023). La biotecnológica salmantina Tebrio pretende abrir la mayor granja de insectos del mundo. La Vanguardia. https://www.lavanguardia.com/comer/al- dia/20230331/8867708/asi-sera-fabrica-insectos-mas-grande-mundo-situada- salamanca.html | |
| dc.relation.references | Proteinsecta. (2011). Conoce Proteinsecta: Expertos en granjas de insectos. https://www.proteinsecta.com/conoce-proteinsecta/ | |
| dc.relation.references | Iberinsect. (2021). Iberinsect cumple dos años apostando por la proteína alternativa en la alimentación animal. Iberinsect. https://iberinsect.com/iberinsect-cumple-2-anos- apostando-por-la-proteina-alternativa-en-la-alimentacion-animal/ | |
| dc.relation.references | Sanergy & Insectipro. (2022). Insectos como parte de una economía circular para los alimentos. Ellen MacArthur Foundation. https://www.ellenmacarthurfoundation.org/es/ejemplos-circulares/insectipro-sanergy | |
| dc.relation.references | Filou, E. (2020). Kenia: producción de carne con insectos. Deutsche Welle. https://www.dw.com/es/pueden-los-insectos-revolucionar-la-agricultura-como-fuente- proteica-para-la-alimentaci%C3%B3n-animal/a-54352124 | |
| dc.relation.references | Next-Food. (2013). Acerca de Next-Food. https://www.next-food.net/es/acerca-de- next-food/ | |
| dc.relation.references | El Tiempo. (2016). Insectos comestibles, una industria de futuro que lidera Tailandia. El Tiempo. https://www.eltiempo.com/mundo-curioso/insectos-comestibles-una-industria- de-futuro-que-lidera-tailandia-40262 | |
| dc.relation.references | Illucens Colombia. (2019). Insectos comestibles, alimentación animal, biofertilizantes y economía circular. https://www.linkedin.com/company/illucens-colombia/about/ | |
| dc.relation.references | Biofly. (2017). Entobiorrefinería, proteína de insecto, economía circular y mosca soldado negro. https://www.biofly.co/ | |
| dc.relation.references | AgriProtein. (2017, marzo 29). AgriProtein construirá 20 granjas de moscas en EE. UU. y Canadá. All About Feed. https://es.allaboutfeed.net/agriprotein-construira-20-granjas-de- moscas-en-ee-uu-y-canada/ | |
| dc.relation.references | Pérez-Grisales, M.S., Uribe Soto, S.I. (2022). Insects as sources of food and bioproducts: a review from Colombia. JoBAZ 83, 56. https://doi.org/10.1186/s41936-022- 00319-1 | |
| dc.relation.references | Menozzi, D., Sogari, G., Mora, C., Gariglio, M., Gasco, L., & Schiavone, A. (2021). Insects as feed for farmed poultry: Are Italian consumers ready to embrace this innovation? Insects, 12(5), 435. https://doi.org/10.3390/insects12050435 | |
| dc.relation.references | Naciones Unidas. (2022). Objetivos de desarrollo sostenible. Noticias ONU. https://news.un.org/es/story/2022/07/1511502 | |
| dc.relation.references | van Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security (FAO Forestry Paper No. 171). Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/c7851ad8-1b4b-4917-b1a1- 104f07ab830d/content | |
| dc.relation.references | van Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704 | |
| dc.relation.references | van Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed: A review. Agronomy for Sustainable Development, 37(5), 43. https://doi.org/10.1007/s13593-017-0452-8 | |
| dc.relation.references | Van Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed, 6(1), 27–44. https://doi.org/10.3920/JIFF2019.0017 | |
| dc.relation.references | Niyonsaba, H. H., Höhler, J., Kooistra, J., Van der Fels-Klerx, H. J., & Meuwissen, M. P. M. (2021). Profitability of insect farms. Journal of Insects as Food and Feed, 7(5), 923– 934. https://doi.org/10.3920/JIFF2020.0087 | |
| dc.relation.references | Rumbos, C. I., Oonincx, D. G. A. B., Karapanagiotidis, I. T., Vrontaki, M., Gourgouta, M., Asimaki, A., Mente, E., & Athanassiou, C. G. (2022). Agricultural by-products from Greece as feed for yellow mealworm larvae: Circular economy at a local level. Journal of Insects as Food and Feed, 8(1), 9–22. https://doi.org/10.3920/JIFF2021.0044 | |
| dc.relation.references | Cabello Torres, R. J., Basualdo Lindoa, M. M., Gómez Estrada, S., Neciosup Gonzales, D., Castaneda Olivera, C. A., & Cabello-Romero, E. A. (2023). Biomechanical | |
| dc.relation.references | Recycling of Plastic Waste Using Tenebrio Molitor Larvae. Chemical Engineering Transactions, 102, 319-324. https://doi.org/10.3303/CET23102054 | |
| dc.relation.references | Morales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-Selection of Agricultural By-Products and Food Ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and Impact on Food Utilization and Nutrient Intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827 | |
| dc.relation.references | Moreira, N. R., Cardoso, C., Dias, R. O., Ferreira, C., & Terra, W. R. (2017). A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor. Journal of Insect Physiology, 99, 58–66. https://doi.org/10.1016/j.jinsphys.2017.03.009 | |
| dc.relation.references | Krzyżaniak, M., Aljewicz, M., Bordiean, A., & Stolarski, M. J. (2022). Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture, 12(2), 149. https://doi.org/10.3390/agriculture12020149 | |
| dc.relation.references | Anankware, J. P., Roberts, B. J., Cheseto, X., Osuga, I., Savolainen, V., & Collins, C. M. (2021). The nutritional profiles of five important edible insect species from West Africa— An analytical and literature synthesis. Frontiers in Nutrition, 8, 792941. https://doi.org/10.3389/fnut.2021.792941 | |
| dc.relation.references | Fundación FEDNA. (2019, noviembre). Salvado de trigo: 20 % almidón [Actualizado]. Ingredientes para piensos. https://www.fundacionfedna.org/ingredientes_para_piensos/salvado-de-trigo-20- almid%C3%B3n-actualizado-nov-2011 | |
| dc.relation.references | Kröncke, N., & Benning, R. (2023). Influencia del contenido de proteínas dietéticas en la composición nutricional de las larvas de gusano de la harina (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/insects14030261 | |
| dc.relation.references | Rumbos, C.I., Karapanagiotidis, I.T., Mente, E. Psofakis, P. Athanassiou, C. G. (2020). Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports 10, 11224. https://doi.org/10.1038/s41598-020-67363-1 | |
| dc.relation.references | Oonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10(12), e0144601. https://doi.org/10.1371/journal.pone.0144601 | |
| dc.relation.references | Van Huis, A., & Tomberlin, J. K. (2017). Insects as food and feed: From production to consumption. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686- 849-0 | |
| dc.relation.references | Van Soest, P. J., & Robertson, J. B. (1977). What is fibre and fibre in food? Nutrition Reviews, 35(1), 12–22. https://doi.org/10.1111/j.1753-4887.1977.tb06532.x | |
| dc.relation.references | Morales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-selection of agricultural by-products and food ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and impact on food utilization and nutrient intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827 | |
| dc.relation.references | Mancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S., & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. https://doi.org/10.3390/ani9080484 | |
| dc.relation.references | Zhang, X., Tang, H., Chen, G., & others. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631–2640. https://doi.org/10.1007/s00217-019- 03336-7 | |
| dc.relation.references | Li, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92, 103–109. https://doi.org/10.1016/j.actaastro.2012.03.012 | |
| dc.relation.references | John, A. M., Davis, G. R., & Sosulski, F. W. (1979). Protein nutrition of Tenebrio molitor L. XX. Growth response of larvae to graded levels of amino acids. Archives Internationales de Physiologie et de Biochimie, 87(5), 997–1004. https://doi.org/10.3109/13813457909070548 | |
| dc.relation.references | Adámková, A., Mlček, J., Adámek, M., Borkovcová, M., Bednářová, M., Hlobilová, V., Knížková, I., & Juríková, T. (2020). Tenebrio molitor (Coleoptera: Tenebrionidae) Optimization of rearing conditions to obtain desired nutritional values. Journal of Insect Science, 20(5), 24. https://doi.org/10.1093/jisesa/ieaa100 | |
| dc.relation.references | Fondevila, G., Remiro, A., & Fondevila, M. (2024). Growth performance and chemical composition of Tenebrio molitor larvae grown on substrates with different starch to fibre ratios. Italian Journal of Animal Science, 23 (1), 887–894. https://doi.org/10.1080/1828051X.2024.2362765 | |
| dc.relation.references | Rho, M. S., & Lee, K. P. (2014). Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 71, 37–45. https://doi.org/10.1016/j.jinsphys.2014.10.001 | |
| dc.relation.references | Davis, G. R. (1974). Protein nutrition of Tenebrio molitor L. XVII. Improved amino acid mixture and interaction with dietary carbohydrate. Archives Internationales de Physiologie et de Biochimie, 82(4), 631–637. https://doi.org/10.3109/13813457409072315 | |
| dc.relation.references | Hernández Juárez, L. E., & Damborsky, M. P. (s.f.). Ciclo de vida de Tenebrio molitor. Recuperado de Academia.edu | |
| dc.relation.references | Riaz, K., Iqbal, T., Khan, S., Usman, A., Al-Ghamdi, M. S., Shami, A., El Hadi Mohamed, R. A., Almadiy, A. A., Al Galil, F. M. A., Alfuhaid, N. A., Ahmed, N., & Alam, P. (2023). Growth Optimization and Rearing of Mealworm (Tenebrio molitor L.) as a Sustainable Food Source. Foods, 12(9), 1891. https://doi.org/10.3390/foods12091891 | |
| dc.relation.references | Muñoz-Seijas, N., Fernandes, H., López-Periago, J. E., Outeiriño, D., Morán-Aguilar, M. G., Domínguez, J. M., & Salgado, J. M. (2024). Characterization of all life stages of Tenebrio molitor: Envisioning innovative applications for this edible insect. Future Foods, 10, 100404. https://doi.org/10.1016/j.fufo.2024.100404 | |
| dc.relation.references | Rumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735 | |
| dc.relation.references | Belluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. https://doi.org/10.1111/1541-4337.12014 | |
| dc.relation.references | Van Broekhoven, S. (2015). Quality and safety aspects of mealworms as human food [Tesis doctoral, Wageningen University]. Wageningen University & Research. https://doi.org/10.18174/363193 | |
| dc.relation.references | Our World in Data. (2023). Global meat consumption, World, 1961 to 2050. https://ourworldindata.org/grapher/global-meat-projections-to-2050 | |
| dc.relation.references | Organización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. https://news.un.org/es/story/2022/07/1511502 | |
| dc.relation.references | Fenavi Editorial. (2023). 2022, un año de grandes retos para la avicultura. Avicultores, 297, 30–31. | |
| dc.relation.references | Aviagen. (2018). Manual del pollo de engorde ROSS. https://aviagen.com/es/ | |
| dc.relation.references | Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5), 054010. https://doi.org/10.1088/1748- 9326/ab154b | |
| dc.relation.references | Data Bridge Market Research. (2024). Informe de análisis del tamaño, la participación y las tendencias del mercado global de insectos comestibles: Panorama general del sector y pronóstico hasta 2032. https://www.databridgemarketresearch.com/es/reports/global- edible-insects-market | |
| dc.relation.references | Schlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., Vogel, S., Heinz, V., Jäger, H., Bandick, N., & otros. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61(6), 1600520. https://doi.org/10.1002/mnfr.201600520 | |
| dc.relation.references | Dobermann, D., Swift, J., & Field, L. (2017, diciembre). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291 | |
| dc.relation.references | Al-Qazzaz, M. F., & Ismail, D. B. (2016). Insect meal as a source of protein in animal diet. Animal Nutrition and Feed Technology, 16, 527–547. https://doi.org/10.5958/0974- 181X.2016.00038.X | |
| dc.relation.references | Shah, A. A., Totakul, P., Matra, M., Cherdthong, A., Hanboonsong, Y., & Wanapat, M. (2022). Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Animal Bioscience, 35(2), 317–331. https://doi.org/10.5713/ab.21.0447 | |
| dc.relation.references | Makkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008 | |
| dc.relation.references | Vasilopoulos, S., Giannenas, I., Savvidou, S., Bonos, E., Rumbos, C. I., Papadopoulos, I., Fortomaris, P., & Athanassiou, C. G. (2023). Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole Tenebrio molitor larvae. Animal Nutrition, 13, 90–100. https://doi.org/10.1016/j.aninu.2022.12.002 | |
| dc.relation.references | Comisión Europea. (2021, 17 de agosto). Reglamento (UE) 2021/1372 de la Comisión por el que se modifica el anexo IV del Reglamento (CE) n.º 999/2001 en lo que respecta a la prohibición de alimentar a animales de granja no rumiantes con proteínas derivadas de animales. Diario Oficial de la Unión Europea, L 295, 1–17. http://data.europa.eu/eli/reg/2021/1372/oj | |
| dc.relation.references | Moruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G., & Mancini, S. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals, 11(9), 2568. https://doi.org/10.3390/ani11092568 | |
| dc.relation.references | National Research Council. (1994). Nutrient requirements of poultry: Ninth revised edition. National Academies Press. https://nap.nationalacademies.org/catalog/2114/nutrient-requirements-of-poultry-ninth- revised-edition-1994 | |
| dc.relation.references | Pérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25. | |
| dc.relation.references | Arévalo Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control, 138, 109030. https://doi.org/10.1016/j.foodcont.2022.109030 | |
| dc.relation.references | Fraqueza, M., & Patarata, L. (2017). Constraints of HACCP application on edible insect for food and feed. In H. Mikkola (Ed.), Future foods. InTech. https://doi.org/10.5772/intechopen.69300 | |
| dc.relation.references | Purschke, B., Brüggen, H., Scheibelberger, R., & Jäger, H. (2018). Effect of pre- treatment and drying method on physicochemical properties and dry fractionation behavior of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology, 244(2), 269–280. https://doi.org/10.1007/s00217-017-2953-8 | |
| dc.relation.references | Klunder, H., Wolkers - Rooijackers, J., Korpela, J., & Nout, M. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26, 628–631. https://doi.org/10.1016/j.foodcont.2012.02.013 | |
| dc.relation.references | Kooh, P., Jury, V., Laurent, S., Audiat-Perrin, F., Sanaa, M., Tesson, V., Federighi, M., & Bou´e, G. (2020). Control of biological hazards in insect processing: Application of HACCP method for yellow mealworm (Tenebrio molitor) powders. Foods, 9(11), 1528. https://doi.org/10.3390/foods9111528 | |
| dc.relation.references | Bovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia, Y. A., & Nizza, A. (2015). Yellow mealworm larvae (Tenebrio molitor, L.) as possible alternative to soybean meal in broiler diets. British Poultry Science. https://doi.org/10.1080/00071668.2015.1080815 | |
| dc.relation.references | Ballitoc, D. A., & Sun, S. (2013). Ground yellow mealworms (Tenebrio molitor, L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Science Repository Agriculture. https://doi.org/10.7392/openaccess.23050425 | |
| dc.relation.references | Ramos-Elorduy, J., Avila González, E., Rocha Hernández, A., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of Economic Entomology, 95(1), 214–220. 10.1603/0022- 0493-95.1.214 | |
| dc.relation.references | Biasato, I., M. De Marco, L. Rotolo, M. Renna, S. Dabbou, M. T. Capucchio, E. Biasibetti, M. Tarantola, P. Costa, F. Gai, L. Pozzo, D. Dezzutto, S. Bergagna, L. Gasco, and A. Schiavone. (2016). Effects of dietary Tenebrio molitor meal inclusion in freerange chickens. Journal of Animal Physiology and Animal Nutrition, 100(6), 1104–1112. https://doi.org/10.1111/jpn.12487 | |
| dc.relation.references | Vasilopoulos, S., Giannenas, I., Savvidou, S., Bonos, E., Rumbos, C. I., Papadopoulos, E., Fortomaris, P., & Athanassiou, C. G. (2022). Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole | |
| dc.relation.references | Tenebrio molitor larvae. Animal Nutrition, 13, 90–100. https://doi.org/10.1016/j.aninu.2022.12.002 | |
| dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
| dc.rights.license | Atribución-NoComercial 4.0 Internacional | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.subject.armarc | Aves de corral - Nutrición | |
| dc.subject.armarc | Insectos como alimento | |
| dc.subject.ddc | 630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos | |
| dc.subject.ddc | 590 - Animales::595 - Artrópodos | |
| dc.subject.proposal | Proteína de origen entomológico | spa |
| dc.subject.proposal | Proteína de insectos | spa |
| dc.subject.proposal | Tenebrio molitor | spa |
| dc.subject.proposal | Nutrición avícola | spa |
| dc.subject.proposal | Desempeño | spa |
| dc.subject.proposal | Broiler | spa |
| dc.subject.proposal | Inclusión de harina de Tenebrio molitor | spa |
| dc.subject.proposal | Entomological protein | eng |
| dc.subject.proposal | Nutritional inclusion ingredient | eng |
| dc.subject.proposal | Performance indicators in animal production. | eng |
| dc.subject.proposal | insecto T. molitor, | spa |
| dc.title | Evaluación de dietas basadas en subproductos orgánicos sobre la dinámica productiva del gusano amarillo de la harina (Tenebrio molitor) y la calidad de la harina para su uso como suplemento en la producción de pollo de engorde | spa |
| dc.title.translated | Evaluation of diets based on organic by-products on the productive dynamics of the yellow mealworm (Tenebrio molitor) and the quality of its meal for use as a supplement in broiler chicken production | eng |
| dc.type | Trabajo de grado - Maestría | |
| dc.type.coar | http://purl.org/coar/resource_type/c_bdcc | |
| dc.type.coarversion | http://purl.org/coar/version/c_ab4af688f83e57aa | |
| dc.type.content | Text | |
| dc.type.driver | info:eu-repo/semantics/masterThesis | |
| dc.type.redcol | http://purl.org/redcol/resource_type/TM | |
| dc.type.version | info:eu-repo/semantics/acceptedVersion | |
| dcterms.audience.professionaldevelopment | Público general | |
| oaire.accessrights | http://purl.org/coar/access_right/c_abf2 |

