En 21 día(s), 11 hora(s) y 43 minuto(s): El Repositorio Institucional UNAL informa a la comunidad universitaria que, con motivo del periodo de vacaciones colectivas, el servicio de publicación estará suspendido: Periodo de cierre: Del 20 de diciembre al 18 de enero de 2026. Sobre los depósitos: Durante este tiempo, los usuarios podrán continuar realizando el depósito respectivo de sus trabajos en la plataforma. Reanudación: Una vez reiniciadas las actividades administrativas, los documentos serán revisados y publicados en orden de llegada.

Evaluación de dietas basadas en subproductos orgánicos sobre la dinámica productiva del gusano amarillo de la harina (Tenebrio molitor) y la calidad de la harina para su uso como suplemento en la producción de pollo de engorde

dc.contributor.advisorGonzález Sepúlveda, Carlos Augusto
dc.contributor.advisorUribe Soto, Sandra Inés
dc.contributor.authorDaniela Ardila Morales, Daniela
dc.contributor.orcidGonzález Sepúlveda, Carlos Augusto [0000000315948710]
dc.contributor.orcidUribe Soto, Sandra Inés [0000000247620552]
dc.contributor.researchgroupGrupo de Investigación en Sistemática Molecular
dc.date.accessioned2025-12-17T18:50:34Z
dc.date.available2025-12-17T18:50:34Z
dc.date.issued2025-12-15
dc.descriptionIlustraciones
dc.description.abstractLos insectos han sido ampliamente reconocidos por sus propiedades nutricionales y su elevado valor biológico, destacándose por su alta concentración de proteínas y lípidos de calidad [1]. En Colombia, su estudio como alternativa alimentaria de inclusión se encuentra en fase de desarrollo. Este trabajo evaluó el potencial del Tenebrio molitor como ingrediente de inclusión nutricional en la dieta de pollos de engorde, mediante un diseño experimental estructurado en tres etapas. En la primera etapa, se desarrolló una revisión bibliográfica sobre el valor nutricional del insecto T. molitor, destacando su alta concentración de proteína y grasas, y su inclusión en dietas para consumo animal. La segunda etapa el objetivo fue evaluar el desarrollo de larvas T. molitor criadas con diferentes subproductos de la industria alimenticia, correspondientes a T1: dieta control (100% salvado de trigo y zanahoria), T2: sustrato enriquecido (mezcla de salvado de trigo, granos gastados de frijol-lenteja, levadura de cerveza, zanahoria y lechuga), y T3: sustrato alternativo (salvado de maíz y trigo, zanahoria y lechuga), se evaluaron parámetros zootécnicos como ganancia de peso, conversión alimenticia, y composición nutricional larval. Los resultados del desempeño larval muestran que hubo diferencia significativa en el peso, solo en la semana 11 de edad para el T3, en las otras semanas no se presentaron diferencias significativas. Para el consumo de alimento acumulado se presentó significancia para el T3, con el menor consumo por larva. El sustrato enriquecido (T2) presentó mayor concentración de proteína cruda larval (22.2%). La tercera etapa se evaluó el uso de la harina de T. molitor en dietas para pollo de engorde durante la fase de iniciación. Se aplicaron tres tratamientos con inclusión de harina de T. molitor al 0%, 5% y 10%, por sustitución de la fracción energética y proteica de la dieta control. No se observaron diferencias significativas en parámetros de desempeño en las aves comparadas con la dieta control, las aves alcanzaron un peso superior de 2000 g a los 35 días. Se concluye que la harina de T. molitor puede ser una alternativa interesante de alimentación en términos de parámetros de desempeño (peso, consumo de alimento y conversión alimenticia) en la producción avícola. (Tomado de la fuente)spa
dc.description.abstractInsects have been widely recognized for their nutritional properties and high biological value, particularly due to their elevated concentrations of quality proteins and lipids [1]. In Colombia, research into their use as an inclusive feed alternative remains in a developmental phase. This study evaluated the potential of Tenebrio molitor as a nutritional inclusion ingredient in broiler chicken diets through a three-stage experimental design. In the first stage, a literature review was conducted on the nutritional value of T. molitor, highlighting its high protein and fat content and its historical inclusion in animal feed diets. The second stage aimed to assess the larval development of T. molitor reared on different agro-industrial byproducts, corresponding to three treatments: T1 (control diet comprising 100% wheat bran and carrot), T2 (enriched substrate combining wheat bran, spent bean- lentil grains, brewer’s yeast, carrot, and lettuce), and T3 (alternative substrate consisting of corn and wheat bran, carrot, and lettuce). Zootechnical parameters such as weight gain, feed conversion ratio, and nutritional composition were evaluated. Results showed a significant difference in larval weight only at week 11 for T3, with no significant differences observed in other weeks. Significant differences were observed in cumulative feed intake for treatment T3, which exhibited the lowest consumption per larva. The enriched substrate (T2) resulted in a higher concentration of larval crude protein, reaching 64% on a dry matter basis. In the third stage, T. molitor meal was evaluated as a dietary inclusion in broiler chicken feed during the starter phase. Three treatments were implemented with inclusion levels of 0%, 5%, and 10%, substituting portions of the energy and protein fraction of the control diet. No significant differences in performance parameters were observed between treatments and the control group, with birds reaching weights exceeding 2000 g by day 35. The study concludes that T. molitor meal represents a promising feed alternative in terms of performance indicators (weight, feed intake, and feed conversion) for poultry production.eng
dc.description.curricularareaProducción Agraria Sostenible.Sede Medellín
dc.description.degreelevelMaestría
dc.description.degreenameMagíster en Ciencias Agrarias
dc.description.researchareaInsectos para la alimentación y la nutrición.
dc.format.extent1 recurso en línea (86 páginas)
dc.format.mimetypeapplication/pdf
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/89226
dc.language.isospa
dc.publisherUniversidad Nacional de Colombia
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellín
dc.publisher.facultyFacultad de Ciencias Agrarias
dc.publisher.placeMedellín, Colombia
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrarias
dc.relation.referencesDobermann, D., Swift, J., & Field, L. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291
dc.relation.referencesOrganización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. Noticias ONU. https://news.un.org/es/story/2022/07/1511502
dc.relation.referencesUnited Nations. (2023). Population. United Nations. https://www.un.org/en/global- issues/population
dc.relation.referencesBovera, F., Loponte, R., Marono, S., Piccolo, G., Parisi, G., Iaconisi, V., ... & Nizza, A. (2016). Use of larvae meal as protein source in broiler diet: Effect on growth performance, nutrient digestibility, and carcass and meat traits. Journal of Animal Science, 94(2), 639–647. https://doi.org/10.2527/jas.2015-9201
dc.relation.referencesvan Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704
dc.relation.referencesToral, P. G., Frutos, P., Belenguer, Á., & Hervás, G. (2022). Insects as alternative feed for ruminants: Comparison of protein evaluation methods. Journal of Animal Science and Biotechnology, 13(1), 21. https://doi.org/10.1186/s40104-021-00671-2
dc.relation.referencesvan Broekhoven, S. (2015). Quality and safety aspects of mealworms as human food (Tesis de doctorado, Wageningen University). ISBN 978-94-6257-571-4
dc.relation.referencesOonincx, D. G. A. B., van Broekhoven, S., van Huis, A., & van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLOS ONE, 10(12), e0144601. https://doi.org/10.1371/journal.pone.0144601
dc.relation.referencesInsect Marketing. (2023, April 16). Water and land area comparison between soybean and insect protein production [Publicación en LinkedIn]. LinkedIn. https://www.linkedin.com/pulse/water-land-area-comparison-between-soybean-insect- protein
dc.relation.referencesNiyonsaba, H., Doyen, V., & Bindelle, J. (2021). Profitability of insect farms. Journal of Insects as Food and Feed, 7(5), 661–682. https://doi.org/10.3920/JIFF2020.0087
dc.relation.referencesMoruzzo, R., Ricci, E., Zhang, Z., & Crippa, M. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals, 11(9), 2568. https://doi.org/10.3390/ani11092568
dc.relation.referencesJanssen, R. H., Vincken, J. P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278
dc.relation.referencesPérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25
dc.relation.referencesGasco, L., Biancarosa, I., & Liland, N. S. (2020). From waste to feed: A review of recent knowledge on insects as producers of protein and fat for animal feeds. Current Opinion in Green and Sustainable Chemistry, 23, 67–79. https://doi.org/10.1016/j.cogsc.2020.03.003
dc.relation.referencesMoreira, N. R., Cardoso, C., Dias, R. O., Ferreira, C., & Terra, W. R. (2017). A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor. Journal of Insect Physiology, 99, 58–66. https://doi.org/10.1016/j.jinsphys.2017.03.009
dc.relation.referencesGrabowski, N. T., Acheuk, F., Abdulmawjood, A., & Costa Neto, E. M. (2022). Review: Insects—A source of safe and sustainable food?—“Jein” (yes and no). Frontiers in Sustainable Food Systems, 5, Article 701797. https://doi.org/10.3389/fsufs.2021.701797
dc.relation.referencesLoh, J. Y. (2018). Effects of food wastes on yellow mealworm (Tenebrio molitor) larval nutritional profiles and growth performances. Examines in Marine Biology and Oceanography, 2(1), 173–178. https://doi.org/10.31031/EIMBO.2018.02.000530
dc.relation.referencesMadau, F. A., Arru, B., & Furesi, R. (2020). Insect farming for feed and food production from a circular business model perspective. Sustainability, 12(13), 5418. https://doi.org/10.3390/su12135418
dc.relation.referencesArévalo Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control, 138, 109030. https://doi.org/10.1016/j.foodcont.2022.109030
dc.relation.referencesSogari, G., Amato, M., Biasato, I., Chiesa, S., & Gasco, L. (2019). The potential role of insects as feed: A multi-perspective review. Animals, 9(4), 119. https://doi.org/10.3390/ani9040119
dc.relation.referencesAvendaño, C., Sánchez, M., & Valenzuela, C. (2020). Insectos: ¿Son realmente una alternativa para la alimentación de animales y humanos? Revista Chilena de Nutrición, 47(6), 1029–1037. https://dx.doi.org/10.4067/S0717-75182020000601029
dc.relation.referencesBelghit, I., Liland, N. S., Waagbø, R., Biancarosa, I., Pelusio, N., Li, Y., Krogdahl, Å., & Lock, E.-J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491, 72–81. https://doi.org/10.1016/j.aquaculture.2018.03.016
dc.relation.referencesvan Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704
dc.relation.referencesvan Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security (FAO Forestry Paper No. 171). Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/c7851ad8-1b4b-4917-b1a1- 104f07ab830d/content
dc.relation.referencesData Bridge Market Research. (2024). Informe de análisis del tamaño, la participación y las tendencias del mercado global de insectos comestibles: Panorama general del sector y pronóstico hasta 2032. https://www.databridgemarketresearch.com/es/reports/global- edible-insects-market
dc.relation.referencesSancho Belenguer, L. (2020). Regulación y desarrollo normativo de la introducción de los insectos para consumo humano y animal en la Unión Europea [Trabajo de Fin de Grado, Universidad de Zaragoza]. Repositorio Institucional Zaguán. https://zaguan.unizar.es/record/98863/files/TAZ-TFG-2020-1415.pdf
dc.relation.referencesDabbou, S., Gai, F., Biasato, I., Capucchio, M. T., Biasibetti, E., Dezzutto, D., Meneguz, M., Plachà, I., Gasco, L., & Schiavone, A. (2018). Black soldier fly defatted meal as a dietary protein source for broiler chickens: Effects on growth performance, blood traits, gut morphology and histological features. Journal of Animal Science and Biotechnology, 9(49). https://doi.org/10.1186/s40104-018-0266-9
dc.relation.referencesBessa, L. W., Pieterse, E., Sigge, G., & Hoffman, L. C. (2018). Insects as human food: From farm to fork. Journal of the Science of Food and Agriculture, 100(14), 5017–5022. https://doi.org/10.1002/jsfa.8860
dc.relation.referencesMancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S., & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. https://doi.org/10.3390/ani9080484
dc.relation.referencesFood for the Future. (s.f.). Impacto. F4F. Recuperado el 22 de agosto de 2025, de https://f4f.cl/impacto/
dc.relation.referencesDobermann, D., Swift, J. A., & Field, L. M. (2017). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291
dc.relation.referencesFood and Agriculture Organization of the United Nations. (2012). The state of world fisheries and aquaculture 2012 (FAO Fisheries and Aquaculture Report No. 978-92-5- 107225-7). Food and Agriculture Organization of the United Nations. https://www.fao.org/4/i2727e/i2727e00.htm
dc.relation.referencesDoreau, M., Corson, M. S., & Wiedemann, S. G. (2012). Water use by livestock: A global perspective for a regional issue? Animal Frontiers, 2(2), 9–16. https://doi.org/10.2527/af.2012-0036
dc.relation.referencesOonincx, D. G. A. B., & de Boer, I. J. M. (2012). Environmental impact of the production of mealworms as a protein source for humans – A life cycle assessment. PLoS ONE, 7(12), e51145. https://doi.org/10.1371/journal.pone.0051145
dc.relation.referencesMenozzi, D., Sogari, G., Mora, C., Gariglio, M., Gasco, L., & Schiavone, A. (2021). Insects as feed for farmed poultry: Are Italian consumers ready to embrace this innovation? Insects, 12(5), 435. https://doi.org/10.3390/insects12050435
dc.relation.referencesSachs, J. D. (2015). The age of sustainable development. Columbia University Press. https://cup.columbia.edu/book/the-age-of-sustainable-development/9780231173155
dc.relation.referencesLundy, M. E., & Parrella, M. P. (2015). Crickets are not a free lunch: Protein capture from scalable organic side-streams via high-density populations of Acheta domesticus. PLoS ONE, 10(4), e0118785.
dc.relation.referencesDorlivete, D. S., Silva, J. A. da, Oliveira, J. M. de, & Silva, R. R. da. (2021). Mealworm (Tenebrio molitor) potential in fish nutrition: a review. Research, Society and Development, 10(16), e269101623229. https://doi.org/10.33448/rsd-v10i16.23229
dc.relation.referencesPérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25.
dc.relation.referencesBouchard, P., Lawrence, J. F., Davies, A. E., & Newton, A. F. (2005). Synoptic classification of the world Tenebrionidae (Insecta: Coleoptera) with a review of family-group names. Annales Zoologici, 55(4), 499–530. https://www.researchgate.net/publication/228657891_Synoptic_classification_of_the_worl d_Tenebrionidae_Insecta_Coleoptera_with_a_review_of_family-group_names
dc.relation.referencesMorales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-selection of agricultural by-products and food ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and impact on food utilization and nutrient intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827
dc.relation.referencesGasco, L., Henry, M., Piccolo, G., Marono, S., Gai, F., Renna, M., Lussiana, C., Antonopoulou, E., Mola, P., & Chatzifotis, S. (2016). Tenebrio molitor meal in diets for European sea bass (Dicentrarchus labrax L.) juveniles: Growth performance, whole body composition and in vivo apparent digestibility. Animal Feed Science and Technology, 220, 35–45. https://doi.org/10.1016/j.anifeedsci.2016.07.003
dc.relation.referencesMoruzzo, R., Mancini, S., & Guidi, A. (2021). Edible insects and sustainable development goals. Insects, 12(6), 557. https://doi.org/10.3390/insects12060557
dc.relation.referencesFundación Española para el Desarrollo de la Nutrición Animal (FEDNA). (2011, noviembre). Haba de soja cocida o extrusionada. FEDNA.
dc.relation.referencesVitaliano. A. 2006. La soya como fuente de proteína en la alimentación animal. AGROSAVIA. https://repository.agrosavia.co/bitstream/handle/20.500.12324/1652/41738_43719.pdf
dc.relation.referencesBußler, S., Rumpold, B. A., Jander, E., Rawel, H. M., & Schlüter, O. K. (2016). Recovery and techno-functionality of flours and proteins from two edible insect species: Mealworm (Tenebrio molitor) and black soldier fly (Hermetia illucens) larvae. Heliyon, 2(12), e00218. https://doi.org/10.1016/j.heliyon.2016.e00218
dc.relation.referencesJanssen, R. H., Vincken, J. P., van den Broek, L. A. M., Fogliano, V., & Lakemond, C. M. M. (2017). Nitrogen-to-protein conversion factors for three edible insects: Tenebrio molitor, Alphitobius diaperinus, and Hermetia illucens. Journal of Agricultural and Food Chemistry, 65(11), 2275–2278.
dc.relation.referencesHagstrum, D. W., & Subramanyam, B. (2006). Fundamentals of stored-product entomology. AACC International. https://www.academia.edu/40327613/Fundamentals_
dc.relation.referencesBermúdez-Serrano, I. M., Quirós-Blanco, A. M., & Acosta-Montoya, Ó. (2023). Producción de insectos comestibles: Retos, oportunidades y perspectivas para Costa Rica. Agronomía Mesoamericana, 34(3), Artículo 53052. https://doi.org/10.15517/am.2023.53052
dc.relation.referencesRumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735
dc.relation.referencesRumpold, B. A., & Schlüter, O. K. (2013). Potential and challenges of insects as an innovative source for food and feed production. Innovative Food Science and Emerging Technologies, 17, 1–11. https://doi.org/10.1016/j.ifset.2012.11.005
dc.relation.referencesHong, J., Han, T., & Kim, Y. Y. (2020). Mealworm (Tenebrio molitor Larvae) as an Alternative Protein Source for Monogastric Animal: A Review. Animals, 10(11), 2068. https://doi.org/10.3390/ani10112068
dc.relation.referencesBiasato, I., Ferrocino, I., Biasibetti, E. et al. Modulación de la microbiota intestinal, morfología y composición de mucina mediante la inclusión de harina de insectos en la dieta de pollos de corral. BMC Vet Res 14 , 383 (2018). https://doi.org/10.1186/s12917-018- 1690-y
dc.relation.referencesMalematja, E., Manyelo, T., Sebola, N. et al. El papel de los insectos en la promoción de la salud y el estado intestinal de las aves de corral. Comp Clin Pathol 32, 501–513 (2023). https://doi.org/10.1007/s00580-023-03447-4
dc.relation.referencesFood and Agriculture Organization of the United Nations. (2013). La contribución de los insectos a la seguridad alimentaria, los medios de vida y el medio ambiente (Folleto informativo). FAO. https://openknowledge.fao.org/handle/20.500.14283
dc.relation.referencesFAO. 2018. El futuro de la alimentación y la agricultura: Vías alternativas hacia el 2050. Versión resumida. Rome. 64 pp. https://openknowledge.fao.org/server/api/core/bitstreams/e2afea45-10be-4cab-a7e2- 36508e77461b/content
dc.relation.referencesSiemianowska, E., Kosewska, A., Aljewicz, M., Skibniewska, K. A., Polak-Juszczak, L., Jarocki, A., & Jędras, M. (2013). Larvae of mealworm (Tenebrio molitor L.) as European novel food. Agricultural Sciences, 4(6), 287–291. https://doi.org/10.4236/as.2013.46041
dc.relation.referencesKouřimská, L., & Adámková, A. (2016). Nutritional and sensory quality of edible insects. NFS Journal, 4, 22–26. https://doi.org/10.1016/j.nfs.2016.07.001
dc.relation.referencesChávez Vera, W. M. (2022). La entomofagia y la industrialización de los insectos: Una revisión sistemática. Agro-Vet, 6(2), 108–118. http://revistasbolivianas.umsa.bo/scielo.php?script=sci_arttext&pid=S2523- 20372022000200012&lng=es&nrm=iso
dc.relation.referencesVanguardia. (2023). La biotecnológica salmantina Tebrio pretende abrir la mayor granja de insectos del mundo. La Vanguardia. https://www.lavanguardia.com/comer/al- dia/20230331/8867708/asi-sera-fabrica-insectos-mas-grande-mundo-situada- salamanca.html
dc.relation.referencesProteinsecta. (2011). Conoce Proteinsecta: Expertos en granjas de insectos. https://www.proteinsecta.com/conoce-proteinsecta/
dc.relation.referencesIberinsect. (2021). Iberinsect cumple dos años apostando por la proteína alternativa en la alimentación animal. Iberinsect. https://iberinsect.com/iberinsect-cumple-2-anos- apostando-por-la-proteina-alternativa-en-la-alimentacion-animal/
dc.relation.referencesSanergy & Insectipro. (2022). Insectos como parte de una economía circular para los alimentos. Ellen MacArthur Foundation. https://www.ellenmacarthurfoundation.org/es/ejemplos-circulares/insectipro-sanergy
dc.relation.referencesFilou, E. (2020). Kenia: producción de carne con insectos. Deutsche Welle. https://www.dw.com/es/pueden-los-insectos-revolucionar-la-agricultura-como-fuente- proteica-para-la-alimentaci%C3%B3n-animal/a-54352124
dc.relation.referencesNext-Food. (2013). Acerca de Next-Food. https://www.next-food.net/es/acerca-de- next-food/
dc.relation.referencesEl Tiempo. (2016). Insectos comestibles, una industria de futuro que lidera Tailandia. El Tiempo. https://www.eltiempo.com/mundo-curioso/insectos-comestibles-una-industria- de-futuro-que-lidera-tailandia-40262
dc.relation.referencesIllucens Colombia. (2019). Insectos comestibles, alimentación animal, biofertilizantes y economía circular. https://www.linkedin.com/company/illucens-colombia/about/
dc.relation.referencesBiofly. (2017). Entobiorrefinería, proteína de insecto, economía circular y mosca soldado negro. https://www.biofly.co/
dc.relation.referencesAgriProtein. (2017, marzo 29). AgriProtein construirá 20 granjas de moscas en EE. UU. y Canadá. All About Feed. https://es.allaboutfeed.net/agriprotein-construira-20-granjas-de- moscas-en-ee-uu-y-canada/
dc.relation.referencesPérez-Grisales, M.S., Uribe Soto, S.I. (2022). Insects as sources of food and bioproducts: a review from Colombia. JoBAZ 83, 56. https://doi.org/10.1186/s41936-022- 00319-1
dc.relation.referencesMenozzi, D., Sogari, G., Mora, C., Gariglio, M., Gasco, L., & Schiavone, A. (2021). Insects as feed for farmed poultry: Are Italian consumers ready to embrace this innovation? Insects, 12(5), 435. https://doi.org/10.3390/insects12050435
dc.relation.referencesNaciones Unidas. (2022). Objetivos de desarrollo sostenible. Noticias ONU. https://news.un.org/es/story/2022/07/1511502
dc.relation.referencesvan Huis, A., Van Itterbeeck, J., Klunder, H., Mertens, E., Halloran, A., Muir, G., & Vantomme, P. (2013). Edible insects: Future prospects for food and feed security (FAO Forestry Paper No. 171). Food and Agriculture Organization of the United Nations. https://openknowledge.fao.org/server/api/core/bitstreams/c7851ad8-1b4b-4917-b1a1- 104f07ab830d/content
dc.relation.referencesvan Huis, A. (2013). Potential of insects as food and feed in assuring food security. Annual Review of Entomology, 58, 563–583. https://doi.org/10.1146/annurev-ento-120811- 153704
dc.relation.referencesvan Huis, A., & Oonincx, D. G. A. B. (2017). The environmental sustainability of insects as food and feed: A review. Agronomy for Sustainable Development, 37(5), 43. https://doi.org/10.1007/s13593-017-0452-8
dc.relation.referencesVan Huis, A. (2020). Insects as food and feed, a new emerging agricultural sector: a review. Journal of Insects as Food and Feed, 6(1), 27–44. https://doi.org/10.3920/JIFF2019.0017
dc.relation.referencesNiyonsaba, H. H., Höhler, J., Kooistra, J., Van der Fels-Klerx, H. J., & Meuwissen, M. P. M. (2021). Profitability of insect farms. Journal of Insects as Food and Feed, 7(5), 923– 934. https://doi.org/10.3920/JIFF2020.0087
dc.relation.referencesRumbos, C. I., Oonincx, D. G. A. B., Karapanagiotidis, I. T., Vrontaki, M., Gourgouta, M., Asimaki, A., Mente, E., & Athanassiou, C. G. (2022). Agricultural by-products from Greece as feed for yellow mealworm larvae: Circular economy at a local level. Journal of Insects as Food and Feed, 8(1), 9–22. https://doi.org/10.3920/JIFF2021.0044
dc.relation.referencesCabello Torres, R. J., Basualdo Lindoa, M. M., Gómez Estrada, S., Neciosup Gonzales, D., Castaneda Olivera, C. A., & Cabello-Romero, E. A. (2023). Biomechanical
dc.relation.referencesRecycling of Plastic Waste Using Tenebrio Molitor Larvae. Chemical Engineering Transactions, 102, 319-324. https://doi.org/10.3303/CET23102054
dc.relation.referencesMorales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-Selection of Agricultural By-Products and Food Ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and Impact on Food Utilization and Nutrient Intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827
dc.relation.referencesMoreira, N. R., Cardoso, C., Dias, R. O., Ferreira, C., & Terra, W. R. (2017). A physiologically-oriented transcriptomic analysis of the midgut of Tenebrio molitor. Journal of Insect Physiology, 99, 58–66. https://doi.org/10.1016/j.jinsphys.2017.03.009
dc.relation.referencesKrzyżaniak, M., Aljewicz, M., Bordiean, A., & Stolarski, M. J. (2022). Yellow Mealworm Composition after Convective and Freeze Drying—Preliminary Results. Agriculture, 12(2), 149. https://doi.org/10.3390/agriculture12020149
dc.relation.referencesAnankware, J. P., Roberts, B. J., Cheseto, X., Osuga, I., Savolainen, V., & Collins, C. M. (2021). The nutritional profiles of five important edible insect species from West Africa— An analytical and literature synthesis. Frontiers in Nutrition, 8, 792941. https://doi.org/10.3389/fnut.2021.792941
dc.relation.referencesFundación FEDNA. (2019, noviembre). Salvado de trigo: 20 % almidón [Actualizado]. Ingredientes para piensos. https://www.fundacionfedna.org/ingredientes_para_piensos/salvado-de-trigo-20- almid%C3%B3n-actualizado-nov-2011
dc.relation.referencesKröncke, N., & Benning, R. (2023). Influencia del contenido de proteínas dietéticas en la composición nutricional de las larvas de gusano de la harina (Tenebrio molitor L.). Insects, 14(3), 261. https://doi.org/10.3390/insects14030261
dc.relation.referencesRumbos, C.I., Karapanagiotidis, I.T., Mente, E. Psofakis, P. Athanassiou, C. G. (2020). Evaluation of various commodities for the development of the yellow mealworm, Tenebrio molitor. Scientific Reports 10, 11224. https://doi.org/10.1038/s41598-020-67363-1
dc.relation.referencesOonincx, D. G. A. B., Van Broekhoven, S., Van Huis, A., & Van Loon, J. J. A. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PLoS ONE, 10(12), e0144601. https://doi.org/10.1371/journal.pone.0144601
dc.relation.referencesVan Huis, A., & Tomberlin, J. K. (2017). Insects as food and feed: From production to consumption. Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686- 849-0
dc.relation.referencesVan Soest, P. J., & Robertson, J. B. (1977). What is fibre and fibre in food? Nutrition Reviews, 35(1), 12–22. https://doi.org/10.1111/j.1753-4887.1977.tb06532.x
dc.relation.referencesMorales-Ramos, J. A., Rojas, M. G., Kelstrup, H. C., & Emery, V. (2020). Self-selection of agricultural by-products and food ingredients by Tenebrio molitor (Coleoptera: Tenebrionidae) and impact on food utilization and nutrient intake. Insects, 11(12), 827. https://doi.org/10.3390/insects11120827
dc.relation.referencesMancini, S., Fratini, F., Turchi, B., Mattioli, S., Dal Bosco, A., Tuccinardi, T., Nozic, S., & Paci, G. (2019). Former foodstuff products in Tenebrio molitor rearing: Effects on growth, chemical composition, microbiological load, and antioxidant status. Animals, 9(8), 484. https://doi.org/10.3390/ani9080484
dc.relation.referencesZhang, X., Tang, H., Chen, G., & others. (2019). Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. European Food Research and Technology, 245(12), 2631–2640. https://doi.org/10.1007/s00217-019- 03336-7
dc.relation.referencesLi, L., Zhao, Z., & Liu, H. (2013). Feasibility of feeding yellow mealworm (Tenebrio molitor L.) in bioregenerative life support systems as a source of animal protein for humans. Acta Astronautica, 92, 103–109. https://doi.org/10.1016/j.actaastro.2012.03.012
dc.relation.referencesJohn, A. M., Davis, G. R., & Sosulski, F. W. (1979). Protein nutrition of Tenebrio molitor L. XX. Growth response of larvae to graded levels of amino acids. Archives Internationales de Physiologie et de Biochimie, 87(5), 997–1004. https://doi.org/10.3109/13813457909070548
dc.relation.referencesAdámková, A., Mlček, J., Adámek, M., Borkovcová, M., Bednářová, M., Hlobilová, V., Knížková, I., & Juríková, T. (2020). Tenebrio molitor (Coleoptera: Tenebrionidae) Optimization of rearing conditions to obtain desired nutritional values. Journal of Insect Science, 20(5), 24. https://doi.org/10.1093/jisesa/ieaa100
dc.relation.referencesFondevila, G., Remiro, A., & Fondevila, M. (2024). Growth performance and chemical composition of Tenebrio molitor larvae grown on substrates with different starch to fibre ratios. Italian Journal of Animal Science, 23 (1), 887–894. https://doi.org/10.1080/1828051X.2024.2362765
dc.relation.referencesRho, M. S., & Lee, K. P. (2014). Geometric analysis of nutrient balancing in the mealworm beetle, Tenebrio molitor L. (Coleoptera: Tenebrionidae). Journal of Insect Physiology, 71, 37–45. https://doi.org/10.1016/j.jinsphys.2014.10.001
dc.relation.referencesDavis, G. R. (1974). Protein nutrition of Tenebrio molitor L. XVII. Improved amino acid mixture and interaction with dietary carbohydrate. Archives Internationales de Physiologie et de Biochimie, 82(4), 631–637. https://doi.org/10.3109/13813457409072315
dc.relation.referencesHernández Juárez, L. E., & Damborsky, M. P. (s.f.). Ciclo de vida de Tenebrio molitor. Recuperado de Academia.edu
dc.relation.referencesRiaz, K., Iqbal, T., Khan, S., Usman, A., Al-Ghamdi, M. S., Shami, A., El Hadi Mohamed, R. A., Almadiy, A. A., Al Galil, F. M. A., Alfuhaid, N. A., Ahmed, N., & Alam, P. (2023). Growth Optimization and Rearing of Mealworm (Tenebrio molitor L.) as a Sustainable Food Source. Foods, 12(9), 1891. https://doi.org/10.3390/foods12091891
dc.relation.referencesMuñoz-Seijas, N., Fernandes, H., López-Periago, J. E., Outeiriño, D., Morán-Aguilar, M. G., Domínguez, J. M., & Salgado, J. M. (2024). Characterization of all life stages of Tenebrio molitor: Envisioning innovative applications for this edible insect. Future Foods, 10, 100404. https://doi.org/10.1016/j.fufo.2024.100404
dc.relation.referencesRumpold, B. A., & Schlüter, O. K. (2013). Nutritional composition and safety aspects of edible insects. Molecular Nutrition & Food Research, 57(5), 802–823. https://doi.org/10.1002/mnfr.201200735
dc.relation.referencesBelluco, S., Losasso, C., Maggioletti, M., Alonzi, C. C., Paoletti, M. G., & Ricci, A. (2013). Edible insects in a food safety and nutritional perspective: A critical review. Comprehensive Reviews in Food Science and Food Safety, 12(3), 296–313. https://doi.org/10.1111/1541-4337.12014
dc.relation.referencesVan Broekhoven, S. (2015). Quality and safety aspects of mealworms as human food [Tesis doctoral, Wageningen University]. Wageningen University & Research. https://doi.org/10.18174/363193
dc.relation.referencesOur World in Data. (2023). Global meat consumption, World, 1961 to 2050. https://ourworldindata.org/grapher/global-meat-projections-to-2050
dc.relation.referencesOrganización de las Naciones Unidas. (2022). Objetivos de desarrollo sostenible. https://news.un.org/es/story/2022/07/1511502
dc.relation.referencesFenavi Editorial. (2023). 2022, un año de grandes retos para la avicultura. Avicultores, 297, 30–31.
dc.relation.referencesAviagen. (2018). Manual del pollo de engorde ROSS. https://aviagen.com/es/
dc.relation.referencesVogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., Meinshausen, N., & Frieler, K. (2019). The effects of climate extremes on global agricultural yields. Environmental Research Letters, 14(5), 054010. https://doi.org/10.1088/1748- 9326/ab154b
dc.relation.referencesData Bridge Market Research. (2024). Informe de análisis del tamaño, la participación y las tendencias del mercado global de insectos comestibles: Panorama general del sector y pronóstico hasta 2032. https://www.databridgemarketresearch.com/es/reports/global- edible-insects-market
dc.relation.referencesSchlüter, O., Rumpold, B., Holzhauser, T., Roth, A., Vogel, R. F., Quasigroch, W., Vogel, S., Heinz, V., Jäger, H., Bandick, N., & otros. (2017). Safety aspects of the production of foods and food ingredients from insects. Molecular Nutrition & Food Research, 61(6), 1600520. https://doi.org/10.1002/mnfr.201600520
dc.relation.referencesDobermann, D., Swift, J., & Field, L. (2017, diciembre). Opportunities and hurdles of edible insects for food and feed. Nutrition Bulletin, 42(4), 293–308. https://doi.org/10.1111/nbu.12291
dc.relation.referencesAl-Qazzaz, M. F., & Ismail, D. B. (2016). Insect meal as a source of protein in animal diet. Animal Nutrition and Feed Technology, 16, 527–547. https://doi.org/10.5958/0974- 181X.2016.00038.X
dc.relation.referencesShah, A. A., Totakul, P., Matra, M., Cherdthong, A., Hanboonsong, Y., & Wanapat, M. (2022). Nutritional composition of various insects and potential uses as alternative protein sources in animal diets. Animal Bioscience, 35(2), 317–331. https://doi.org/10.5713/ab.21.0447
dc.relation.referencesMakkar, H. P. S., Tran, G., Heuzé, V., & Ankers, P. (2014). State-of-the-art on use of insects as animal feed. Animal Feed Science and Technology, 197, 1–33. https://doi.org/10.1016/j.anifeedsci.2014.07.008
dc.relation.referencesVasilopoulos, S., Giannenas, I., Savvidou, S., Bonos, E., Rumbos, C. I., Papadopoulos, I., Fortomaris, P., & Athanassiou, C. G. (2023). Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole Tenebrio molitor larvae. Animal Nutrition, 13, 90–100. https://doi.org/10.1016/j.aninu.2022.12.002
dc.relation.referencesComisión Europea. (2021, 17 de agosto). Reglamento (UE) 2021/1372 de la Comisión por el que se modifica el anexo IV del Reglamento (CE) n.º 999/2001 en lo que respecta a la prohibición de alimentar a animales de granja no rumiantes con proteínas derivadas de animales. Diario Oficial de la Unión Europea, L 295, 1–17. http://data.europa.eu/eli/reg/2021/1372/oj
dc.relation.referencesMoruzzo, R., Riccioli, F., Espinosa Diaz, S., Secci, C., Poli, G., & Mancini, S. (2021). Mealworm (Tenebrio molitor): Potential and challenges to promote circular economy. Animals, 11(9), 2568. https://doi.org/10.3390/ani11092568
dc.relation.referencesNational Research Council. (1994). Nutrient requirements of poultry: Ninth revised edition. National Academies Press. https://nap.nationalacademies.org/catalog/2114/nutrient-requirements-of-poultry-ninth- revised-edition-1994
dc.relation.referencesPérez-Grisales, M. S., & Pineda-Ángel, J. (2020). Tenebrio molitor (Linnaeus, 1758) (Coleoptera: Tenebrionidae): Notas sobre su importancia e identificación taxonómica. Boletín del Museo Entomológico Francisco Luis Gallego, 12(2), 17–25.
dc.relation.referencesArévalo Arévalo, H. A., Menjura Rojas, E. M., Barragán Fonseca, K. B., & Vásquez Mejía, S. M. (2022). Implementation of the HACCP system for production of Tenebrio molitor larvae meal. Food Control, 138, 109030. https://doi.org/10.1016/j.foodcont.2022.109030
dc.relation.referencesFraqueza, M., & Patarata, L. (2017). Constraints of HACCP application on edible insect for food and feed. In H. Mikkola (Ed.), Future foods. InTech. https://doi.org/10.5772/intechopen.69300
dc.relation.referencesPurschke, B., Brüggen, H., Scheibelberger, R., & Jäger, H. (2018). Effect of pre- treatment and drying method on physicochemical properties and dry fractionation behavior of mealworm larvae (Tenebrio molitor L.). European Food Research and Technology, 244(2), 269–280. https://doi.org/10.1007/s00217-017-2953-8
dc.relation.referencesKlunder, H., Wolkers - Rooijackers, J., Korpela, J., & Nout, M. (2012). Microbiological aspects of processing and storage of edible insects. Food Control, 26, 628–631. https://doi.org/10.1016/j.foodcont.2012.02.013
dc.relation.referencesKooh, P., Jury, V., Laurent, S., Audiat-Perrin, F., Sanaa, M., Tesson, V., Federighi, M., & Bou´e, G. (2020). Control of biological hazards in insect processing: Application of HACCP method for yellow mealworm (Tenebrio molitor) powders. Foods, 9(11), 1528. https://doi.org/10.3390/foods9111528
dc.relation.referencesBovera, F., Piccolo, G., Gasco, L., Marono, S., Loponte, R., Vassalotti, G., Mastellone, V., Lombardi, P., Attia, Y. A., & Nizza, A. (2015). Yellow mealworm larvae (Tenebrio molitor, L.) as possible alternative to soybean meal in broiler diets. British Poultry Science. https://doi.org/10.1080/00071668.2015.1080815
dc.relation.referencesBallitoc, D. A., & Sun, S. (2013). Ground yellow mealworms (Tenebrio molitor, L.) feed supplementation improves growth performance and carcass yield characteristics in broilers. Open Science Repository Agriculture. https://doi.org/10.7392/openaccess.23050425
dc.relation.referencesRamos-Elorduy, J., Avila González, E., Rocha Hernández, A., & Pino, J. M. (2002). Use of Tenebrio molitor (Coleoptera: Tenebrionidae) to recycle organic wastes and as feed for broiler chickens. Journal of Economic Entomology, 95(1), 214–220. 10.1603/0022- 0493-95.1.214
dc.relation.referencesBiasato, I., M. De Marco, L. Rotolo, M. Renna, S. Dabbou, M. T. Capucchio, E. Biasibetti, M. Tarantola, P. Costa, F. Gai, L. Pozzo, D. Dezzutto, S. Bergagna, L. Gasco, and A. Schiavone. (2016). Effects of dietary Tenebrio molitor meal inclusion in freerange chickens. Journal of Animal Physiology and Animal Nutrition, 100(6), 1104–1112. https://doi.org/10.1111/jpn.12487
dc.relation.referencesVasilopoulos, S., Giannenas, I., Savvidou, S., Bonos, E., Rumbos, C. I., Papadopoulos, E., Fortomaris, P., & Athanassiou, C. G. (2022). Growth performance, welfare traits and meat characteristics of broilers fed diets partly replaced with whole
dc.relation.referencesTenebrio molitor larvae. Animal Nutrition, 13, 90–100. https://doi.org/10.1016/j.aninu.2022.12.002
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.licenseAtribución-NoComercial 4.0 Internacional
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.armarcAves de corral - Nutrición
dc.subject.armarcInsectos como alimento
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::638 - Cultivo de insectos
dc.subject.ddc590 - Animales::595 - Artrópodos
dc.subject.proposalProteína de origen entomológicospa
dc.subject.proposalProteína de insectosspa
dc.subject.proposalTenebrio molitorspa
dc.subject.proposalNutrición avícolaspa
dc.subject.proposalDesempeñospa
dc.subject.proposalBroilerspa
dc.subject.proposalInclusión de harina de Tenebrio molitorspa
dc.subject.proposalEntomological proteineng
dc.subject.proposalNutritional inclusion ingredienteng
dc.subject.proposalPerformance indicators in animal production.eng
dc.subject.proposalinsecto T. molitor,spa
dc.titleEvaluación de dietas basadas en subproductos orgánicos sobre la dinámica productiva del gusano amarillo de la harina (Tenebrio molitor) y la calidad de la harina para su uso como suplemento en la producción de pollo de engordespa
dc.title.translatedEvaluation of diets based on organic by-products on the productive dynamics of the yellow mealworm (Tenebrio molitor) and the quality of its meal for use as a supplement in broiler chicken productioneng
dc.typeTrabajo de grado - Maestría
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcc
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aa
dc.type.contentText
dc.type.driverinfo:eu-repo/semantics/masterThesis
dc.type.redcolhttp://purl.org/redcol/resource_type/TM
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dcterms.audience.professionaldevelopmentPúblico general
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
Tesis de Maestría en Ciencias Agrarias.pdf
Tamaño:
1.22 MB
Formato:
Adobe Portable Document Format

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: