Indicadores de calidad del suelo relacionados con la degradación de la pastura y el rendimiento forrajero del pasto Kikuyo Cenchrus clandestinus (Hochst. ex Chiov.) Morrone

dc.contributor.advisorOsorio Vega, Nelson Walter
dc.contributor.advisorRamirez Pisco, Ramiro
dc.contributor.authorNoreña Grisales, Jorge Mario
dc.contributor.orcidRamirez Pisco, Ramiro [0000-0002-8639-8173]spa
dc.coverage.cityMedellín, Colombia
dc.date.accessioned2022-11-02T20:26:17Z
dc.date.available2022-11-02T20:26:17Z
dc.date.issued2022-08-29
dc.descriptionilustraciones, diagramas, mapasspa
dc.description.abstractEl manejo inadecuado de las praderas ha conllevado a la degradación de extensas áreas y a la pérdida de productividad y de sostenibilidad de muchas de ellas, convirtiéndose, en una realidad a la que se enfrentan comúnmente los ganaderos del Colombia. Por ello, en la Estación Agraria Paysandú de la Universidad Nacional de Colombia, Sede Medellín, localizada en el corregimiento de Santa Elena, se desarrolló una investigación que permitió determinar un índice de calidad de suelo, al evaluar los indicadores físicos y químicos que más se relacionaron con la degradación y producción de materia seca del pasto kikuyu (Cenchrus clandestinus). Se estableció el set mínimo de datos (SMD) para los indicadores más sensibles, elegidos mediante el análisis de componentes principales PCA, y se utilizó una función de puntuación no lineal para desarrollar el índice de calidad del suelo (SQI). Se encontró diferencia estadística entre todos los tratamientos y la producción de materia seca (p<0,05: 1,911372e-32). Los indicadores más sensibles fueron: densidad aparente BD > porosidad total OP > macroporos MAC > microporos MIC > resistencia a la penetración PR > capacidad efectiva de intercambio catiónico CECE > pH. Como resultado se obtuvo el índice de calidad del suelo y la ecuación fue = (0,225×BD) + (0,224×OP) + (0,220×MAC) + (0,218×MIC) + (0,113×PR) + (0,0879×CECE) + (0,0877×pH). Es necesario probar el índice a escala regional en sistemas de lechería bajo pastoreo ubicados en el trópico alto andino colombiano, especialmente en praderas con dominio de pasto kikuyu. (Texto tomado de la fuente)spa
dc.description.abstractThe inadequate management of pastures has led to the degradation of extensive areas and to the loss of productivity and sustainability of many of them, becoming a reality commonly faced by cattle ranchers in Colombia. For this reason, at the Paysandú Agricultural Station of the National University of Colombia, Medellín, located in the town of Santa Elena, an investigation was carried out to determine a soil quality index by evaluating the physical and chemical indicators that were most related to the degradation and dry matter production of kikuyu grass (Cenchrus clandestinus). The minimum data set (MDS) was established for the most sensitive indicators, chosen by principal component analysis PCA, and a nonlinear scoring function was used to develop the soil quality index (InCS). Statistical difference was found between all treatments and dry matter production (p total porosity OP > macropores MAC > micropores MIC > penetration resistance PR > effective cation exchange capacity CECE > pH. As a result, the soil quality index was obtained and the equation was = (0.225×BD) + (0.224×OP) + (0.220×MAC) + (0.218×MIC) + (0.113×PR) + (0.0879×CECE) + (0.0877×pH). It is necessary to test the index at a regional scale in grazing dairy systems located in the Colombian high Andean tropics, especially in Kikuyu grass-dominated pastures.eng
dc.description.curricularareaÁrea Curricular en Producción Agraria Sosteniblespa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagister en Ciencias Agrariasspa
dc.description.researchareaFísica y química de suelosspa
dc.format.extentxvi, 73 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82599
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Medellínspa
dc.publisher.departmentDepartamento de Agronómicasspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeMedellín, Colombiaspa
dc.publisher.programMedellín - Ciencias Agrarias - Maestría en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAlvarado-Hernández, A., Bertsch-Hernández, F., Bornemisza-Steiner, E., Cabalceta-Aguilar, G., Forsythe-Hudson, W., Henríquez-Henríquez, C., Mata-Chinchilla, R., Molina-Rojas, E., & Salas-Camacho, R. (2001). Suelos derivados de cenizas volcánicas (Andisoles) de Costa Rica. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=oet.xis&method=post&formato=2&cantidad=1&expresion=mfn=022226spa
dc.relation.referencesAndriulo, A., & Irizar, A. (2017). La materia orgánica como indicador base de calidad del suelo. In M. Wilson (Ed.), Manual de indicadores de calidad del suelo para las ecorregiones de Argentina. https://inta.gob.ar/documentos/manual-de-indicadores-de-calidad-del-suelo-para-las-ecorregiones-de-argentinaspa
dc.relation.referencesArmas-Espinel, S., Hernández-Moreno, J. M., Muñoz-Carpena, R., & Regalado, C. M. (2003). Physical properties of “sorriba”-cultivated volcanic soils from Tenerife in relation to andic diagnostic parameters. Geoderma, 117(3–4). https://doi.org/10.1016/S0016-7061(03)00130-7spa
dc.relation.referencesArnalds, O., & Stahr, K. (2004). Volcanic soil resources: Occurrence, development, and properties. Catena, 56(1–3). https://doi.org/10.1016/j.catena.2003.10.001spa
dc.relation.referencesArshad, M. A., & Martin, S. (2002). Identifying critical limits for soil quality indicators in agro-ecosystems. Agriculture, Ecosystems and Environment, 88, 153–160. https://doi.org/10.1016/S0167-8809(01)00252-3spa
dc.relation.referencesAstier-Calderón, M., Maass-Moreno, M., & Etchevers-Barra, J. (2002). Derivación de indicadores de calidad de suelos en el contexto de la agricultura sustentable. Agrociencia.spa
dc.relation.referencesÁvila-Pedraza, E. (2005). Los suelos de Colombia y sus estadísticas más recientes.spa
dc.relation.referencesBarbecho, J., & Calle, J. (2012). Caracterización de la conductividad hidráulica de los suelos de la subcuenca del Río Tarqui.spa
dc.relation.referencesBarrios, E., Delve, R. J., Bekunda, M., Mowo, J., Agunda, J., Ramisch, J., Trejo, M. T., & Thomas, R. J. (2006). Indicators of soil quality: A South-South development of a methodological guide for linking local and technical knowledge. Geoderma, 135, 248–259. https://doi.org/10.1016/j.geoderma.2005.12.007spa
dc.relation.referencesBarrios, E., Delve, R. J., Bekunda, M., Mowo, J., Agunda, J., Ramisch, J., Trejo, M. T., & Thomas, R. J. (2006). Indicators of soil quality: A South-South development of a methodological guide for linking local and technical knowledge. Geoderma, 135, 248–259. https://doi.org/10.1016/j.geoderma.2005.12.007spa
dc.relation.referencesBarry, A. N. (1999). Soil biological, chemical, and physical dynamics during transition to non-thermal residue grass-seed management systems. https://ir.library.oregonstate.edu/concern/honors_college_theses/8s45qf76mspa
dc.relation.referencesBastida, F., Zsolnay, A., Hernández, T., & García, C. (2008). Past, present and future of soil quality indices: A biological perspective. In Geoderma (Vol. 147, Issues 3–4, pp. 159–171). https://doi.org/10.1016/j.geoderma.2008.08.007spa
dc.relation.referencesBaver, L. D., Gardner, W. H., & Gardner, W. R. (1973). Física de Suelos.spa
dc.relation.referencesBerlin/Heidelberg/New York, 1980. 159 pp. (cloth.), DM 39.50/US$21.80, ISBN 3-540-09457-1. Agricultural Water Management, 5(3), 272–273. https://doi.org/10.1016/0378-3774(82)90050-6spa
dc.relation.referencesBengough. (1991). The penetrometer in relation to mechanical resistance to root growth. Soil Analysis. Physical Methods, 431–445.spa
dc.relation.referencesBernal, J. (2008). Pastos y Forrajes Tropicales (5th ed.).spa
dc.relation.referencesBernoux, M., Arrouays, D., Cerri, C., Volkoff, B., & Jolivet, C. (1998). Bulk densities of crazilian amazon soils related to other soil properties. Soil Science Society of America Journal, 62(3), 743. https://doi.org/10.2136/sssaj1998.03615995006200030029xspa
dc.relation.referencesBertol, Ciprandi, Gomes, & Batistela. (2000). Propriedades físicas e químicas e produtividade de milho afetadas pelo manejo do solo com tração animal, numa terra bruna estruturada. Ciência Rural, 6, 971–976. https://doi.org/10.1590/s0103-84782000000600008spa
dc.relation.referencesBesoain, E. (1985). Mineralogía de arcillas de suelos.spa
dc.relation.referencesBienes, R. (2006). Procesos degradativos del suelo. In R. Bienes & M. Marqués (Eds.), Conservación del medio ambiente: revegetación, recuperación del suelo y empleo de residuos en el control de la erosión. https://www.researchgate.net/profile/Ramon-Bienes/publication/236023005_Conservacion_del_medio_ambiente_revegetacion_recuperacion_del_suelo_y_empleo_de_residuos_en_el_control_de_la_erosion/links/02e7e516b375b335d8000000/Conservacion-del-medio-ambiente-revegetacion-recuperacion-del-suelo-y-empleo-de-residuos-en-el-control-de-la-erosion.pdfspa
dc.relation.referencesBlum, W. E. H. (2005). Functions of soil for society and the environment. In Reviews in Environmental Science and Biotechnology (Vol. 4, Issue 3, pp. 75–79). https://doi.org/10.1007/s11157-005-2236-xspa
dc.relation.referencesBogdan, A. (1977). Tropical pasture and fodder plants. https://www.cabi.org/isc/abstract/19771339526spa
dc.relation.referencesBoucneau, G. (1998). Geographical information science applied to soils of West-Flanders.spa
dc.relation.referencesBowman, M., Wallander, S., & Lynch, L. (2016). An economic perspective on soil health. https://scholar.google.com/scholar?hl=es&as_sdt=0%2C5&q=An+economic+perspective+on+soil+health&btnG=spa
dc.relation.referencesBrady, N. C., & Weil, R. R. (2004). Elements of the Nature and Properties of Soils. Journal of Chemical Information and Modeling, 53(9).spa
dc.relation.referencesBünemann, E. K., Bongiorno, G., Bai, Z., Creamer, R. E., de Deyn, G., de Goede, R., Fleskens, L., Geissen, V., Kuyper, T. W., Mäder, P., Pulleman, M., Sukkel, W., van Groenigen, J. W., & Brussaard, L. (2018). Soil quality – A critical review. In Soil Biology and Biochemistry (Vol. 120, pp. 105–125). https://doi.org/10.1016/j.soilbio.2018.01.030spa
dc.relation.referencesBusscher, & Sojka. (1987). Enhancement of Subsoiling Effect on Soil Strength by Conservation Tillage. Transactions of the ASAE, 30(4). https://doi.org/10.13031/2013.30493spa
dc.relation.referencesCandan, F., & Broquen, P. (2009). Aggregate stability and related properties in NW Patagonian Andisols. Geoderma, 154(1–2). https://doi.org/10.1016/j.geoderma.2009.09.010spa
dc.relation.referencesCantú, M., Becker, A. R., Bedano, J. C., & Schiavo, H. (2007). Soil quality evaluation using indicators and indices Land-use effects on groundwater invertebrates View project Evaluación del impacto del cambio de uso y manejo de tierras" View project. In Ciencia del Suelo. https://www.researchgate.net/publication/288381285spa
dc.relation.referencesCHEN, Y.-D., WANG, H.-Y., ZHOU, J.-M., XING, L., ZHU, B.-S., ZHAO, Y.-C., & CHEN, X.-Q. (2013). Minimum Data Set for Assessing Soil Quality in Farmland of Northeast China. Pedosphere, 23(5), 564–576. https://doi.org/10.1016/s1002-0160(13)60050-8spa
dc.relation.referencesChristensen, B. T. (1996). Matching measurable soil organic matter fractions with conceptual pools in simulation models of carbon turnover: Revision of model structure. In Evaluation of Soil Organic Matter Models. https://doi.org/10.1007/978-3-642-61094-3_11spa
dc.relation.referencesCornelis, W. M., Ronsyn, J., Meirvenne, M. van, & Hartmann, R. (2001). Evaluation of pedotransfer functions for predicting the soil moisture retention curve. Soil Science Society of America Journal, 65(3), 638. https://doi.org/10.2136/sssaj2001.653638xspa
dc.relation.referencesDahlgren, R., Shoji, S., & Nanzyo, M. (1993). Chapter 5 Mineralogical Characteristics of Volcanic Ash Soils. Developments in Soil Science, 21(C), 101–143. https://doi.org/10.1016/S0166-2481(08)70266-6spa
dc.relation.referencesDevillers, J., Pandard, P., & Charissou, A.-M. (2009). Sélection multicritère de bioindicateurs de la qualité des sols. Étude et Gestion Des Sols, 16, 242.spa
dc.relation.referencesDexter, A. R. (2004). Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 120(3–4). https://doi.org/10.1016/j.geoderma.2003.09.004spa
dc.relation.referencesDi, H. J., Cameron, K. C., Milne, J., Drewry, J. J., Smith, N. P., Hendry, T., Moore, S., & Reijnen, B. (2001). A mechanical hoof for simulating animal treading under controlled conditions. New Zealand Journal of Agricultural Research, 44(1). https://doi.org/10.1080/00288233.2001.9513465spa
dc.relation.referencesDoran, J. W., & Parkin, T. B. (1994). Defining and assessing soil quality. In Defining soil quality for a sustainable environment. Proc. symposium, Minneapolis, MN, 1992. https://doi.org/10.2136/sssaspecpub35.c1spa
dc.relation.referencesDoran, J. W., Sarrantonio, M., & Liebig, M. A. (1996). Soil Health and sustainability. Advances in Agronomy, 1(54). https://doi.org/10.1016/S0065-2113(08)60178-9spa
dc.relation.referencesDoran, J. W., & Zeiss, M. R. (2000). Soil health and sustainability: managing the biotic component of soil quality. Applied Soil Ecology, 15(1), 3–11. https://doi.org/10.1016/S0929-1393(00)00067-6spa
dc.relation.referencesDörner, J., Dec, D., Zúñiga, F., Sandoval, P., & Horn, R. (2011). Effect of land use change on Andosol’s pore functions and their functional resilience after mechanical and hydraulic stresses. Soil and Tillage Research, 115–116. https://doi.org/10.1016/j.still.2011.07.002spa
dc.relation.referencesDrewry, J. J. (2006). Natural recovery of soil physical properties from treading damage of pastoral soils in New Zealand and Australia: A review. In Agriculture, Ecosystems and Environment (Vol. 114, Issues 2–4). https://doi.org/10.1016/j.agee.2005.11.028spa
dc.relation.referencesDrewry, J. J., Cameron, K. C., & Buchan, G. D. (2008). Pasture yield and soil physical property responses to soil compaction from treading and grazing - A review. In Australian Journal of Soil Research (Vol. 46, Issue 3). https://doi.org/10.1071/SR07125spa
dc.relation.referencesDrobnik, T., Greiner, L., Keller, A., & Grêt-Regamey, A. (2018). Soil quality indicators – From soil functions to ecosystem services. Ecological Indicators, 94, 151–169. https://doi.org/10.1016/j.ecolind.2018.06.052spa
dc.relation.referencesDuchaufour, P. (1984). Edafología, edafogénesis y clasificación.spa
dc.relation.referencesDudal, R., & Deckers, J. (1993). Soil organic matter in relation to soil productivity.spa
dc.relation.referencesEksteen, L. (1969). The determination of the lime requirement of soils for various crops in the Winter Rainfall Region. Fertilizer Society of South Africa, 2, 13–14.spa
dc.relation.referencesEllies Sch., A., Grez, R., & Ramírez, C. (1997). La conductividad hidraúlica en fase saturada como herramienta para el diagnóstico de la estructura del suelo. Agro Sur, 25(1). https://doi.org/10.4206/agrosur.1997.v25n1-06spa
dc.relation.referencesEswaran, H., Lal, R., & Reich, P. (2001). Land degradation: An overview. In Response to land degradation. https://www.taylorfrancis.com/chapters/edit/10.1201/9780429187957-4/land-degradation-overview-eswaran-lal-reichspa
dc.relation.referencesFAO. (2016). Propiedades Físicas del Suelo. https://www.fao.org/soils-portal/soil-survey/propiedades-del-suelo/propiedades-fisicas/es/spa
dc.relation.referencesFAO. (2021). Soil Degradation. https://www.fao.org/soils-portal/soil-degradation-restoration/en/spa
dc.relation.referencesFAO, BM, PNUMA, & PNUD. (2001). Indicadores de la calidadde la tierra y su uso para laagricultura sostenibley el desarrollo rural (Vol. 5). Boletín de tierras y aguas de la FAO.spa
dc.relation.referencesFerrero, A., & Lipiec, J. (2000). Determining the effect of trampling on soils in hillslope-woodlands. International Agrophysics, 14(1).spa
dc.relation.referencesGallopín, G., Hammond, A., Raskin, P., & Swart, R. (1997). Branch Points: Global Scenarios and Human Choice A Resource Paper of the Global Scenario Group.spa
dc.relation.referencesGarcía-Ruiz, R., Ochoa, V., Hinojosa, M. B., & Carreira, J. A. (2008). Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biology and Biochemistry, 40(9), 2137–2145. https://doi.org/10.1016/j.soilbio.2008.03.023spa
dc.relation.referencesGlab, T. (2013). Impact of soil compaction on root development and yield of meadow-grass. International Agrophysics, 27(1). https://doi.org/10.2478/v10247-012-0062-2spa
dc.relation.referencesGómez, A., Silva, A., Salazar, J., & Andrade, J. (2011). Producción de materia seca y calidad del pasto Kikuyo P. clandestinum en diferentes niveles de fertilización nitrogenada y en asocio con aliso Alnus acuminata en el trópico alto colombiano. In Anais do 1o Simpósio Internacional de Arborização de Pastagens em Regiões Subtropicais. https://ainfo.cnptia.embrapa.br/digital/bitstream/item/123660/1/p32-41-Doc.-268-Anais.pdfspa
dc.relation.referencesGreacen, E. (1987). Root response to soil mechanical properties. Transactions of the 13th Congress of International Society of Soil Science. http://hdl.handle.net/102.100.100/269910?index=1spa
dc.relation.referencesGreenwood, K. L., & McKenzie, B. M. (2001). Grazing effects on soil physical properties and the consequences for pastures: A review. In Australian Journal of Experimental Agriculture (Vol. 41, Issue 8). https://doi.org/10.1071/EA00102spa
dc.relation.referencesGutiérrez, J. S., Cardona, W. A., & Monsalve C., O. I. (2017). Potencial en el uso de las propiedades químicas como indicadores de calidad de suelo. Una revisión. Revista Colombiana de Ciencias Hortícolas, 11(2), 450–458. https://doi.org/10.17584/rcch.2017v11i2.5719spa
dc.relation.referencesHaddad, N. (2004). Using GLOBE Data to Study the Earth System. https://serc.carleton.edu/eet/globe/index.htmlspa
dc.relation.referencesHarrison, A. F., & Bocock, K. L. (1981). Estimation of Soil Bulk-Density from Loss-on-Ignition Values. The Journal of Applied Ecology, 18(3). https://doi.org/10.2307/2402382spa
dc.relation.referencesHaynes, R. J. (2005). Labile organic matter fractions as central components of the quality of agricultural soils: An overview. Advances in Agronomy, 85, 221–268. https://doi.org/10.1016/S0065-2113(04)85005-3spa
dc.relation.referencesHernández. (1992). Renovación de praderas improductivas. Suplemento Ganadero (Colombia)., 1(4), 47–52. http://www.sidalc.net/cgi-bin/wxis.exe/?IsisScript=catalco.xis&method=post&formato=2&cantidad=1&expresion=mfn=035331spa
dc.relation.referencesHernández, E. A., Mejía De T., M. S., & Durán C., C. v. (2012). Respuesta fotosintética del pasto Kikuyo (Pennisetum clandestinum) en pisos térmicos contrastantes. Acta Agronomica, 61(SPL.ISS.).spa
dc.relation.referencesHillel, D. (1980). Introduction to Soil Physics.spa
dc.relation.referencesHoyos, N., & Comerford, N. B. (2005). Land use and landscape effects on aggregate stability and total carbon of Andisols from the Colombian Andes. Geoderma, 129(3–4). https://doi.org/10.1016/j.geoderma.2005.01.002spa
dc.relation.referencesHünnemeyer, de Camino, & Müller. (1997). Análisis del desarrollo sostenible en Centroamérica. Indicadores para la agricultura y los recursos naturales. IICA, BMZ, GTZ.spa
dc.relation.referencesHurni, H., Giger, M., Liniger, H., Mekdaschi Studer, R., Messerli, P., Portner, B., Schwilch, G., Wolfgramm, B., & Breu, T. (2015). Soils, agriculture and food security: The interplay between ecosystem functioning and human well-being. In Current Opinion in Environmental Sustainability (Vol. 15, pp. 25–34). Elsevier. https://doi.org/10.1016/j.cosust.2015.07.009spa
dc.relation.referencesICA. (1992). Fertilización en diversos cultivos: quinta aproximación. https://repository.agrosavia.co/handle/20.500.12324/14124spa
dc.relation.referencesIGAC. (1995). Conceptos básicos sobre sistemas de información geográfica y aplicaciones en Latinoamérica. https://www.igac.gov.co/es/catalogo/conceptos-basicos-sobre-sig-y-aplicaciones-en-latinoamericaspa
dc.relation.referencesIGAC. (2007). Estudio general de suelos y zonificación de tierras. Departamento de Antioquia. http://documentacion.ideam.gov.co/cgi-bin/koha/opac-detail.pl?biblionumber=6777&shelfbrowse_itemnumber=7087spa
dc.relation.referencesIshiguro, M., & Nakajima, T. (2000). Hydraulic conductivity of an allophanic Andisol leached with dilute acid solutions. Soil Science Society of America Journal, 64(3). https://doi.org/10.2136/sssaj2000.643813xspa
dc.relation.referencesIslam, K. R., & Weil, R. R. (2000). Land use effects on soil quality in a tropical forest ecosystem of Bangladesh. Ecosystems and Environment, 79(1), 9–16. https://doi.org/10.1016/S0167-8809(99)00145-0spa
dc.relation.referencesJaramillo, D. (2002). Introducción a la ciencia del suelo.spa
dc.relation.referencesJaramillo, D. (2009). Variabilidad espacial de las propiedades ándicas de un Andisol hidromórfico del oriente antioqueño (Colombia). Nacional de Agronomía-Medellín, 62(1), 4907–4921. http://www.redalyc.org/articulo.oa?id=179915377017spa
dc.relation.referencesJohnson, & Wichern. (2014). Applied multivariate statistical analysis.spa
dc.relation.referencesKarlen, D. L., Ditzler, C. A., & Andrews, S. S. (2003). Soil quality: Why and how? Geoderma, 114(3–4). https://doi.org/10.1016/S0016-7061(03)00039-9spa
dc.relation.referencesKarlen, D. L., Mausbach, M. J., Doran, J. W., Cline, R. G., Harris, R. F., & Schuman, G. E. (1997). Soil quality: a concept, definition, and framework for evaluation (a guest editorial). Soil Science Society of America Journal , 61(1), 4. https://doi.org/10.2136/sssaj1997.03615995006100010001xspa
dc.relation.referencesKaurichev. (1984). Prácticas de edafología. http://181.176.223.4/opac_css/index.php?lvl=notice_display&id=9575spa
dc.relation.referencesL., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016a). The significance of soils and soil science towards realization of the United Nations sustainable development goals. SOIL, 2(2). https://doi.org/10.5194/soil-2-111-2016spa
dc.relation.referencesKeesstra, S. D., Bouma, J., Wallinga, J., Tittonell, P., Smith, P., Cerdà, A., Montanarella, L., Quinton, J. N., Pachepsky, Y., van der Putten, W. H., Bardgett, R. D., Moolenaar, S., Mol, G., Jansen, B., & Fresco, L. O. (2016b). The significance of soils and soil science towards realization of the United Nations sustainable development goals. SOIL, 2(2), 111–128. https://doi.org/10.5194/soil-2-111-2016spa
dc.relation.referencesKemper, W. D., & Rosenau, R. C. (1986). Aggregate Stability and Size Dlstributlon’. Methods of Soil Analysis: Part 1 Physical and Mineralogical Methods, 9(9).spa
dc.relation.referencesKibblewhite, M. G., Ritz, K., & Swift, M. J. (2008). Soil health in agricultural systems. In Philosophical Transactions of the Royal Society B: Biological Sciences (Vol. 363, Issue 1492, pp. 685–701). Royal Society. https://doi.org/10.1098/rstb.2007.2178spa
dc.relation.referencesKumutha, Vijai, Naga, Rajapriya, & Sindhusri. (2016). Effect of Textile Effluent on Geotechnical Properties of Expansive Soil for Flexible Pavements. World Journal of Research and Review, 3(2), 38–42.spa
dc.relation.referencesLacasta. (2005). Evolución de las producciones y de los parámetros químicos y bioquímicos del suelo, en agrosistemas de cereales, sometidos a diferentes manejos de suelo durante 21 años. https://core.ac.uk/download/pdf/36029988.pdfspa
dc.relation.referencesLal, R., & Stewart, B. (1990). Soil degradation: A global threat. In Soil degradation. https://books.google.com.co/books?hl=es&lr=&id=KL7kBwAAQBAJ&oi=fnd&pg=PR13&dq=Soil+degradation:+A+global+threat&ots=H8HNDIAM_P&sig=-Bxf5ZCsH--5A1_LBVbd4xfzMYQ&redir_esc=y#v=onepage&q=Soil%20degradation%3A%20A%20global%20threat&f=falsespa
dc.relation.referencesLarson, W., & Pierce, F. (1991). Conservation and enhancement of soil quality. International Board Soil Research Management.spa
dc.relation.referencesLarson, W., & Pierce, F. (1994). The dynamics of soil quality as a measure of sustainable management. In Doran, Coleman, Bezdicek, Stewart, Larson, & Pierce (Eds.), Defining Soil Quality for a Sustainable Environment. https://doi.org/10.2136/sssaspecpub35.c3spa
dc.relation.referencesLaycock, & Conrad. (1967). Laycock DENSIDAD APARENTE.spa
dc.relation.referencesLeamy. (1984). International Committee on the Classification of Andisols.spa
dc.relation.referencesLewandowski, A. (2000). Organic matter management 4. The Soil Management Series. https://conservancy.umn.edu/bitstream/handle/11299/51896/1/BU-7402-S.pdfspa
dc.relation.referencesMacewan, R., & Carter, M. (1996). Soil quality is in the hands of the land manager. Advances in Soil Quality for Land Management: Science, Practice and Policy, 151.spa
dc.relation.referencesMalagón, D., Pulido, R., & Llinas, R. (1992). Génesis y taxonomía de los andisoles colombianos. Suelos Ecuatoriales, 22(1), 50–68.spa
dc.relation.referencesManrique, L. A., & Jones, C. A. (1991). Bulk density of soils in relation to soil physical and chemical properties. Soil Science Society of America Journal, 55(2), 476. https://doi.org/10.2136/sssaj1991.03615995005500020030xspa
dc.relation.referencesMesquita, M. da G. B. de F., & Moraes, S. O. (2004). A dependência entre a condutividade hidráulica saturada e atributos físicos do solo. Ciência Rural, 34(3). https://doi.org/10.1590/s0103-84782004000300052spa
dc.relation.referencesMickey, R. M., & Sharma, S. (1997). Applied Multivariate Techniques. Journal of the American Statistical Association, 92(437). https://doi.org/10.2307/2291485spa
dc.relation.referencesMiralles-Mellado, I. (2007). Calidad de suelos en ambientes calizos mediterráneos Parque Natural de Sierra María - Los Vélez.spa
dc.relation.referencesMoebius-Clune, B. N. (2016). Comprehensive assessment of soil health : the Cornell framework manual.spa
dc.relation.referencesMontenegro, H., & Malagón, D. (1990). Propiedades Físicas de los suelos.spa
dc.relation.referencesNanzyo, M. (2002). Unique properties of volcanic ash soils. Global Journal of Environmental Research.spa
dc.relation.referencesNanzyo, M., Dahlgren, R., & Shoji, S. (1993). Chapter 6 Chemical Characteristics of Volcanic Ash Soils. Developments in Soil Science, 21(C). https://doi.org/10.1016/S0166-2481(08)70267-8spa
dc.relation.referencesNawaz, M. F., Bourrié, G., & Trolard, F. (2013). Soil compaction impact and modelling. A review. Agronomy for Sustainable Development, 33(2). https://doi.org/10.1007/s13593-011-0071-8spa
dc.relation.referencesNogueira, E., Figueiredo, Bini, Horta, Alcantara, Lopes, Monteiro, Shigueyoshi, de Moraes, & Nogueira, M. (2013). Soil health: looking for suitable indicators Scientia Agricola. Scientia Agricola .spa
dc.relation.referencesNoreña, J., Osorio, N., & Gómez, J. (2016). Manual de uso de la porcinaza en la agricultura. De la granja al cultivo. (p. 135).spa
dc.relation.referencesOchoa, R. (1941). Anotaciones sobre pastos. Revista Facultad Nacional de Agronomía Medellín, 4(11), 1144–1149.spa
dc.relation.referencesOldeman. (1994). The global extent of land degradation. In Land Resilience and Sustainable Land Use : ISRIC Bi-Annual Report 1991-1992.spa
dc.relation.referencesOldeman, L., Hakkeling, R., & Sombroek, W. (1990). World map of the status of human-induced soil degradation: an explanatory note. https://www.cabdirect.org/cabdirect/abstract/19911957800spa
dc.relation.referencesOsorio, N. W. (2012). pH del suelo y disponibilidad de nutrientes. In Manejo Integral del Suelo y Nutrición Vegetal (Vol. 1, Issue 4). https://www.bioedafologia.com/sites/default/files/documentos/pdf/pH-del-suelo-y-nutrientes.pdfspa
dc.relation.referencesPankhurst, Doube, & Goupta. (1997). Biological indicators of soil health. In Biological Indicators of Soil Health. https://doi.org/10.2134/jeq1998.00472425002700050038xspa
dc.relation.referencesParkin, T. B. (1993). Spatial variability of microbial processes in soil - A review. Journal of Environmental Quality , 22(3), 409. https://doi.org/10.2134/jeq1993.00472425002200030004xspa
dc.relation.referencesPatzel, N., Sticher, H., & Karlen, D. L. (2000). Soil fertility - Phenomenon and concept. Journal of Plant Nutrition and Soil Science, 163(2), 129–142. https://doi.org/10.1002/(SICI)1522-2624(200004)163:2<129::AID-JPLN129>3.0.CO;2-Dspa
dc.relation.referencesPereira, G. G., Detoni, C. B., da Silva, T. L., Colomé, L. M., Pohlmann, A. R., & Guterres, S. S. (2015). α-Tocopherol acetate-loaded chitosan microparticles: Stability during spray drying process, photostability and swelling evaluation. Journal of Drug Delivery Science and Technology, 30. https://doi.org/10.1016/j.jddst.2015.10.018spa
dc.relation.referencesPerevochtchikova, M., de la Mora-De la Mora, G., Hernández Flores, J. Á., Marín, W., Langle Flores, A., Ramos Bueno, A., & Rojo Negrete, I. A. (2019). Systematic review of integrated studies on functional and thematic ecosystem services in Latin America, 1992–2017. Ecosystem Services, 36. https://doi.org/10.1016/j.ecoser.2019.100900spa
dc.relation.referencesPulido. (2014). Indicadores de calidad del suelo en áreas de pastoreo.spa
dc.relation.referencesPulido, M., Schnabel, S., Contador, J. F. L., Lozano-Parra, J., & Gómez-Gutiérrez, Á. (2017). Selecting indicators for assessing soil quality and degradation in rangelands of Extremadura (SW Spain). Ecological Indicators, 74, 49–61. https://doi.org/10.1016/j.ecolind.2016.11.016spa
dc.relation.referencesRaiesi, F., & Kabiri, V. (2016). Identification of soil quality indicators for assessing the effect of different tillage practices through a soil quality index in a semi-arid environment. Ecological Indicators, 71, 198–207. https://doi.org/10.1016/j.ecolind.2016.06.061spa
dc.relation.referencesRatcliffe, S., Bosman, B., & Carnol, M. (2018). Spatial and temporal variability of biological indicators of soil quality in two forest catchments in Belgium. Applied Soil Ecology, 126, 148–159. https://doi.org/10.1016/j.apsoil.2018.02.020spa
dc.relation.referencesRawls. (1983). Densidad aparente.spa
dc.relation.referencesReeves, M., Fulkerson, W. J., & Kellaway, R. C. (1996). Forage quality of kikuyu (Pennisetum clandestinum): The effect of time of defoliation and nitrogen fertiliser application and in comparison with perennial ryegrass (Lolium perenne). Australian Journal of Agricultural Research, 47(8). https://doi.org/10.1071/AR9961349spa
dc.relation.referencesRossiter, D. G., & Bouma, J. (2018). A new look at soil phenoforms – Definition, identification, mapping. Geoderma, 314, 113–121. https://doi.org/10.1016/j.geoderma.2017.11.002spa
dc.relation.referencesRutgers, M., van Wijnen, H. J., Schouten, A. J., Mulder, C., Kuiten, A. M. P., Brussaard, L., & Breure, A. M. (2012). A method to assess ecosystem services developed from soil attributes with stakeholders and data of four arable farms. Science of the Total Environment, 415, 39–48. https://doi.org/10.1016/j.scitotenv.2011.04.041spa
dc.relation.referencesSaito, M. (1990). Nitrogen Mineralization Parameters and Its Availability Indices of Soils in Tohoku District, Japan : Their Relationship’. Journal of the Science of Soil and Manure, Japan, 61(3). https://doi.org/10.20710/dojo.61.3_265spa
dc.relation.referencesSánchez, J., & Rubiano, Y. (2015). Procesos específicos de formación en Andisoles, alfisoles y ultisoles en Colombia. Revista EIA, SPE2, 85–97. https://doi.org/10.14508/reia.2015.11.E2.85-97spa
dc.relation.referencesSerrão. (1988). Pasturas mejoradas en areas de bosque húmedo brasileño: Conocimientos actuales. Sexto Encuentro Nacional de Zootecnia y Segunda Conferencia Nacional de Producción y Utilización de Pastos y Forrajes, 43–85.spa
dc.relation.referencesSerrão, & Toledo. (1990). The Search for Sustainability in Amazonian Pastures. In Alternatives to Deforestation: Steps towards sustainable use of the Amazon rain forest.spa
dc.relation.referencesSeybold, C. A., Herrick, J. E., & Brejda, J. J. (1999). Soil resilience: a fundamental component of soil quality. Soil Science, 164, 224–234. https://doi.org/10.1097/00010694-199904000-00002spa
dc.relation.referencesShah, A. N., Tanveer, M., Shahzad, B., Yang, G., Fahad, S., Ali, S., Bukhari, M. A., Tung, S. A., Hafeez, A., & Souliyanonh, B. (2017). Soil compaction effects on soil health and cropproductivity: an overview. Environmental Science and Pollution Research, 24(11). https://doi.org/10.1007/s11356-017-8421-yspa
dc.relation.referencesSimonson, R. W. (1979). Origin of the name “Ando soils.” Geoderma, 22(4). https://doi.org/10.1016/0016-7061(79)90029-6spa
dc.relation.referencesSinger, & Ewing. (2000). Singer.spa
dc.relation.referencesSoane, B. D., & van Ouwerkerk, C. (1994). Soil compaction problems in world agriculture. In Soane & van Ouwerkerk (Eds.), Soil compaction in crop production (pp. 1–21). https://doi.org/10.1016/B978-0-444-88286-8.50009-Xspa
dc.relation.referencesSoil Science Society of America. (2008). Glossary of Soil Science Terms 2008. In Soil Science Society of America Journal (Issue 2001).spa
dc.relation.referencesSoil Survey Staff. (1999). Soil Taxonomy: A basic system of soil classification for making and interpreting soil surveys. Geological Magazine, 114(06). https://doi.org/10.18920/pedologist.43.2_116spa
dc.relation.referencesSoil Survey Staff. (2014). Keys to Soil Taxonomy, 12th ed. Change.spa
dc.relation.referencesSojka, R. E., & Upchurch, D. R. (1999). Reservations regarding the soil quality concept. Soil Science Society of America Journal, 63(5), 1039. https://doi.org/10.2136/sssaj1999.6351039xspa
dc.relation.referencesSpain, J., Gualdrón, R., Franco, L. H., Valencia, C., & Bejarano, L. (1988). Establecimiento de praderas por el método de siembra rala. http://books.google.com.co/books?id=mMofcMFJc9EC&printsec=frontcover&source=gbs_atb#v=onepage&q&f=falsespa
dc.relation.referencesStaff, S. S. (2010). Keys to Soil Taxonomy, 2010. SSS.spa
dc.relation.referencesSteinfeld, Gerber, wassenaar, Castel, Rosales, & Haad. (2006). Livestock’s long shadow: Environmental issues and options.spa
dc.relation.referencesStine, M., & Weil, R. (2009). The relationship between soil quality and crop productivity across three tillage systems in south central Honduras. American Journal of Alternative Agriculture, 17, 2–8. https://doi.org/10.1079/AJAA20011spa
dc.relation.referencesStocking, M., & Murnaghan, N. (2003). Manual para la evaluación de campo de la degradación de la tierra.spa
dc.relation.referencesSwanepoel, P. A., du Preez, C. C., Botha, P. R., Snyman, H. A., & Habig, J. (2014). Soil quality characteristics of kikuyu-ryegrass pastures in South Africa. Geoderma, 232–234. https://doi.org/10.1016/j.geoderma.2014.06.018spa
dc.relation.referencesTakahashi, T. (2020). The diversity of volcanic soils: focusing on the function of aluminum–humus complexes. In Soil Science and Plant Nutrition (Vol. 66, Issue 5, pp. 666–672). Taylor and Francis Ltd. https://doi.org/10.1080/00380768.2020.1769453spa
dc.relation.referencesTakahashi, T., & Dahlgren, R. A. (2016). Nature, properties and function of aluminum–humus complexes in volcanic soils. Geoderma, 263, 110–121. https://doi.org/10.1016/J.GEODERMA.2015.08.032spa
dc.relation.referencesTakahashi, T., & Shoji, S. (2002a). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2).spa
dc.relation.referencesTakahashi, T., & Shoji, S. (2002b). Distribution and classification of volcanic ash soils. Global. Environ. Res., 6(2).spa
dc.relation.referencesTate, P. (1995). Soil microbiology. Soil Use and Management, 11(4). https://doi.org/10.1111/j.1475-2743.1995.tb00958.xspa
dc.relation.referencesTaylor, H. M., Roberson, G. M., & Parker, J. J. (1966). Soil strength-root penetration relations for medium- to coarse-textured soil materials. Soil Science, 102(1). https://doi.org/10.1097/00010694-196607000-00002spa
dc.relation.referencesTuohy, P., Holden, N., Fenton, F., & Humphreys, J. (2013). The effect of cow live-weight and stocking-density on soil quality (Enda Cummins and Tom Curran, Ed.).spa
dc.relation.referencesUgolini, F. C., Dahlgren, R., Shoji, S., & Ito, T. (1988). An example of andosolization and podzolization as revealed by soil solution studies, southern Hakkoda, northeastern Japan. Soil Science, 145(2). https://doi.org/10.1097/00010694-198802000-00005spa
dc.relation.referencesUPRA. (2020). Inventario bovino.spa
dc.relation.referencesUSDA. (1999). Guía para la Evaluación de la Calidad y Salud del Suelo.spa
dc.relation.referencesUSDA. (2011). Soil Quality Indicators Soil.spa
dc.relation.referencesUSDA. (2021). U.S. National Plant Germplasm System. https://npgsweb.ars-grin.gov/gringlobal/taxon/taxonomydetail?id=464260spa
dc.relation.referencesValle, S. R., & Carrasco, J. (2018). Soil quality indicator selection in Chilean volcanic soils formed under temperate and humid conditions. Catena, 162, 386–395. https://doi.org/10.1016/j.catena.2017.10.024spa
dc.relation.referencesVasu, D., Singh, S. K., Ray, S. K., Duraisami, V. P., Tiwary, P., Chandran, P., Nimkar, A. M., & Anantwar, S. G. (2016). Soil quality index (SQI) as a tool to evaluate crop productivity in semi-arid Deccan plateau, India. Geoderma, 282, 70–79. https://doi.org/10.1016/j.geoderma.2016.07.010spa
dc.relation.referencesVeldkamp, E. (1994). Organic Carbon Turnover in Three Tropical Soils under Pasture after Deforestation. In Soil Science Society of America Journal (Vol. 58, Issue 1, p. 175). https://doi.org/10.2136/sssaj1994.03615995005800010025xspa
dc.relation.referencesVillalobos, L., Arce, J., & WingChing, R. (2013). Producción de biomasa y costos de producción de pastos estrella africana (Cynodon nlemfuensis), Kikuyo (Kikuyuocloa clandestina) y ryegrass perenne (Lolium perenne) en lecherías de Costa Rica. Agronomía Costarricense, 37(2).spa
dc.relation.referencesVillaneda, E., & Sánchez, L. (2018). Renovación y manejo de praderas en sistemas de producción de leche especializada en el trópico alto colombiano. https://agris.fao.org/agris-search/search.do?recordID=CO2019001324spa
dc.relation.referencesVoorhees, P. W. (1992). Ostwald ripening of two-phase mixtures. Annual Review of Materials Science, 22(1), 197–215. https://doi.org/10.1146/annurev.ms.22.080192.001213spa
dc.relation.referencesWander, M. (2004). Soil organic matter fractions and their relevance to soil function. In Soil Organic Matter in Sustainable Agriculture. https://doi.org/10.1201/9780203496374.ch3spa
dc.relation.referencesWarkentin, B. P. (1995). The changing concept of soil quality. Journal of Soil and Water Conservation, 50(3).spa
dc.relation.referencesWhalley, W. R., Watts, C. W., Gregory, A. S., Mooney, S. J., Clark, L. J., & Whitmore, A. P. (2008). The effect of soil strength on the yield of wheat. Plant and Soil, 306(1–2). https://doi.org/10.1007/s11104-008-9577-5spa
dc.relation.referencesWhite, R. E. (2006). Principles and practice of soil science: The soil as a natural resource. In Blackwell Publishing.spa
dc.relation.referencesWilen, C. A., & Holt, J. S. (1996). Physiological mechanisms for the rapid growth of Pennisetum clandestinum in Mediterranean climates. Weed Research, 36(3). https://doi.org/10.1111/j.1365-3180.1996.tb01651.xspa
dc.relation.referencesWillatt, S. T., & Pullar, D. M. (1984). Changes in soil physical properties under grazed pastures. Australian Journal of Soil Research, 22(3). https://doi.org/10.1071/SR9840343spa
dc.relation.referencesWilson, G. v, Periketi, R. K., Fox, G. A., Dabney, S. M., Shields, F. D., & Cullum, R. F. (2007). Earth surface processes and landforms earth surf. Earth Surf. Process. Landforms, 32, 447–459. https://doi.org/10.1002/espspa
dc.relation.referencesWolf, & Snyder. (2003). Sustainable soils; the place of organic matter in sustainable soils and their productivity.spa
dc.relation.referencesWorldstat. (2021). Uso de la tierra en el mundo. http://es.worldstat.info/Worldspa
dc.relation.referencesYermiyahu, U., Keren, R., & Chen, Y. (1995). Boron sorption by soil in the presence of composted organic matter. Soil Science Society of America Journal, 59(2), 405. https://doi.org/10.2136/sssaj1995.03615995005900020019xspa
dc.relation.referencesZapata, R. (2006). Química de los procesos pedogenéticos. In 2006.spa
dc.relation.referencesZornoza, R., Acosta, J. A., Bastida, F., Domínguez, S. G., Toledo, D. M., & Faz, A. (2015). Identification of sensitive indicators to assess the interrelationship between soil quality, management practices and human health. SOIL, 1(1), 173–185. https://doi.org/10.5194/soil-1-173-2015spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::633 - Cultivos de campo y de plantaciónspa
dc.subject.lembCalidad de los suelos
dc.subject.lembSoils - Quality
dc.subject.proposalIndicadores físicosspa
dc.subject.proposalIndicadores químicosspa
dc.subject.proposalIndice de calidad del suelospa
dc.subject.proposalPastizales degradadosspa
dc.subject.proposalTrópico alto andinospa
dc.subject.proposalComponentes principalesspa
dc.subject.proposalPhysical indicatorseng
dc.subject.proposalChemical indicatorseng
dc.subject.proposalSoil quality indexeng
dc.subject.proposalDegraded grasslandeng
dc.subject.proposalHigh andean tropicseng
dc.subject.proposalPrincipal componentseng
dc.titleIndicadores de calidad del suelo relacionados con la degradación de la pastura y el rendimiento forrajero del pasto Kikuyo Cenchrus clandestinus (Hochst. ex Chiov.) Morrone
dc.title.translatedSoil quality indicators related to pasture degradation and forage yield of kikuyu grass Cenchrus clandestinus (Hochst. ex Chiov.) Morroneeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
71723384.2022.pdf
Tamaño:
1.12 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias Agrarias

Bloque de licencias

Mostrando 1 - 1 de 1
No hay miniatura disponible
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: