Evaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.

dc.contributor.advisorDíaz Arévalo, Diana
dc.contributor.authorRodríguez Obediente, Kewin Jair
dc.contributor.orcidhttps://orcid.org/0000-0002-6181-9154spa
dc.contributor.projectleaderManuel Alfonso Patarroyo Gutierrez
dc.contributor.researchgroupBiología Molecular e Inmunologíaspa
dc.date.accessioned2023-06-23T18:28:00Z
dc.date.available2023-06-23T18:28:00Z
dc.date.issued2023
dc.description...spa
dc.description.abstractLa complejidad biológica de Plasmodium vivax ha restringido el desarrollo del cultivo in vitro para la caracterización de antígenos involucrados en la invasión a eritrocitos y su relevancia inmunológica. El modelo murino se propone como una alternativa en la búsqueda de candidatos terapéuticos, ya que, Plasmodium yoelii utiliza proteínas homólogas para los mecanismos de invasión. La proteína AMA-1 es vital para el proceso de invasión del parásito al eritrocito, considerándose una importante diana para el control de la infección. El presente estudio, como prueba de concepto, se centró en la caracterización de la respuesta inmune estimulada por constructos peptídicos compuestos por epítopos B de la proteína PyAMA-1 y epítopos T optimizados in silico para el anclaje a moléculas H2-IEd, probados en ratones BALB/c. Para la selección de epítopos B antimaláricos, se realizó un análisis de restricción funcional por fuerzas evolutivas in silico. Encontramos que pyama1 presenta dos regiones altamente conservadas entre las especies (>70%) bajo selección negativa. Se evaluaron catorce péptidos sintéticos que cubrían el total de ambas regiones conservadas, identificando 5 péptidos de PyAMA-1 con alta unión específica (HABP, del inglés High Activity Binding Peptide) a eritrocitos murinos. Mediante ensayos in vitro se evaluó el perfil funcional de los HABPs, sugiriendo que los péptidos 42681 y 42904 fueron capaces de inhibir la invasión y restringir el desarrollo intraeritrocítico de P. yoelii y, además, mostraron capacidad antigénica frente a sueros obtenidos de ratones infectados experimentalmente. Mediante un análisis bioinformático robusto, se realizó el diseño y optimización de los epítopos B seleccionados, a través de la articulación de un epítopo T completamente artificial y se evaluó su unión in vitro a moléculas H2-IEd. Los epítopos quiméricos B-T 43643 y 43644 presentaron perfiles de unión superiores a 50% a moléculas de MHC murino. Además, nuestros constructos potenciaron la respuesta humoral en ratones BALB/c, comparados con los péptidos nativos, y a su vez, mostraron anticuerpos IgG1 e IgG2 en sueros. Estas quimeras peptídicas fueron capaces de inducir una respuesta proliferativa y la diferenciación de células T de memoria CD4+ CD44+ CD62L+, generando una producción coordinada de TNFα, como mediador de la eliminación del parásito durante la infección temprana de P. yoelii. Este trabajo propone la quimerización de epítopos B y epítopos T como una estrategia para el diseño de candidatos peptídicos inmunogénicos para el desarrollo de una vacuna sintética multiepítopo – multiestadio contra la malaria. (Texto tomado de la fuente)spa
dc.description.abstractThe biological complexity of Plasmodium vivax has limited developing an in vitro culture for the characterization of antigens involved in erythrocyte invasion and their immunological relevance. The murine model is proposed as an alternative in the search for therapeutic candidates since Plasmodium yoelii uses homologous proteins for invasion. The AMA-1 protein is vital for the parasite invasion of the erythrocyte and is considered an important target for malaria control. The present study, as a proof of concept, focused on the characterization of the immune response stimulated by peptide constructs made of B epitopes of the PyAMA-1 protein and T epitopes optimized in silico for anchoring to H2-IEd molecules, tested in BALB/c mice. For the selection of antimalarial B epitopes, an in silico evolutionary force functional constraint analysis was performed. We found that pyama1 exhibits two highly conserved regions among species (>70%) under negative selection. Fourteen synthetic peptides covering both conserved regions were evaluated, identifying 5 PyAMA-1 peptides displaying high specific binding (High Activity Binding Peptides or HABPs) to murine erythrocytes. In vitro assays evaluated the functional profile of the HABPs, suggesting that peptides 42681 and 42904 were able to inhibit invasion and restrict intraerythrocytic development of P. yoelii and, in addition, showed antigenic capacity when tested with sera obtained from experimentally infected mice. By means of a robust bioinformatics analysis, the design and optimization of the selected B epitopes was achieved by linking them to a completely artificial T epitope and assessing their in vitro binding to H2-IEd molecules. The chimeric B-T epitopes 43643 and 43644 showed binding profiles higher than 50% to murine MHC molecules. Furthermore, our constructs enhanced the humoral response in BALB/c mice compared to native peptides, and increased IgG1 and IgG2a antibodies in sera. These peptide chimeras were able to induce a proliferative response and differentiation of CD4+ CD44+ CD62L+ memory T cells, generating a coordinated production of TNFα, as a mediator of parasite clearance during early P. yoelii infection. This work proposes the chimerization of B epitopes and T epitopes as a strategy for designing immunogenic peptide candidates for the development of a synthetic multi-epitope - multi-stage malaria vaccine.eng
dc.description.abstractilustraciones, fotografías a colorspa
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Microbiologíaspa
dc.description.researchareaInmunología celular y molecularspa
dc.format.extent87 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/84062
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá,Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Microbiologíaspa
dc.relation.referencesWHO. World malaria report 2021. World Health Organization; 2021.spa
dc.relation.referencesDutta S, Tewari A, Balaji C, Verma R, Moitra A, Yadav M, et al. Strain-transcending neutralization of malaria parasite by antibodies against Plasmodium falciparum enolase. J Malaria journal. 2018;17(1):304.spa
dc.relation.referencesWHO. World malaria report 2018. World Health Organization; 2018.spa
dc.relation.referencesDe Groot AS. Immunomics: discovering new targets for vaccines and therapeutics. J Drug discovery today. 2006;11(5-6):203-9.spa
dc.relation.referencesHill AV. Vaccines against malaria. J Philosophical Transactions of the Royal Society B: Biological Sciences. 2011;366(1579):2806-14.spa
dc.relation.referencesMahmoudi S, Keshavarz H. Malaria Vaccine Development: The Need for Novel Approaches: A Review Article. J Iranian journal of parasitology. 2018;13(1):1.spa
dc.relation.referencesCasares S, Brumeanu T-D, Richie TL. The RTS, S malaria vaccine. J The Lancet. 2010;28(31):4880-94.spa
dc.relation.referencesBejon P, Lusingu J, Olotu A, Leach A, Lievens M, Vekemans J, et al. Efficacy of RTS, S/AS01E vaccine against malaria in children 5 to 17 months of age. J New England Journal of Medicine. 2008;359(24):2521-32.spa
dc.relation.referencesOlotu A, Fegan G, Wambua J, Nyangweso G, Awuondo KO, Leach A, et al. Four-year efficacy of RTS, S/AS01E and its interaction with malaria exposure. J New England Journal of Medicine. 2013;368(12):1111-20.spa
dc.relation.referencesDatoo MS, Natama MH, Somé A, Traoré O, Rouamba T, Bellamy D, et al. Efficacy of a low-dose candidate malaria vaccine, R21 in adjuvant Matrix-M, with seasonal administration to children in Burkina Faso: a randomised controlled trial. The Lancet. 2021;397(10287):1809-18.spa
dc.relation.referencesMueller I, Shakri AR, Chitnis CE. Development of vaccines for Plasmodium vivax malaria. J Vaccine. 2015;33(52):7489-95.spa
dc.relation.referencesPosteraro B, Pastorino R, Di Giannantonio P, Ianuale C, Amore R, Ricciardi W, et al. The link between genetic variation and variability in vaccine responses: systematic review and meta-analyses. J Vaccine. 2014;32(15):1661-9.spa
dc.relation.referencesLi Z-K, Nie J-J, Li J, Zhuang H. The effect of HLA on immunological response to hepatitis B vaccine in healthy people: a meta-analysis. J Vaccine. 2013;31(40):4355-61.spa
dc.relation.referencesOvsyannikova IG, Pankratz VS, Vierkant RA, Pajewski NM, Quinn CP, Kaslow RA, et al. Human leukocyte antigens and cellular immune responses to anthrax vaccine adsorbed. J Infection immunity. 2013;81(7):2584-91.spa
dc.relation.referencesMoss AJ, Gaughran FP, Karasu A, Gilbert AS, Mann AJ, Gelder CM, et al. Correlation between human leukocyte antigen class II alleles and HAI titers detected post-influenza vaccination. J PLoS One. 2013;8(8):e71376.spa
dc.relation.referencesNielsen C, Vekemans J, Lievens M, Kester K, Regules J, Ockenhouse C. RTS, S malaria vaccine efficacy and immunogenicity during Plasmodium falciparum challenge is associated with HLA genotype. J Vaccine. 2018;36(12):1637-42.spa
dc.relation.referencesTubo NJ, Pagán AJ, Taylor JJ, Nelson RW, Linehan JL, Ertelt JM, et al. Single naive CD4+ T cells from a diverse repertoire produce different effector cell types during infection. Cell. 2013;153(4):785-96.spa
dc.relation.referencesPatarroyo ME, Patarroyo MA. Emerging rules for subunit-based, multiantigenic, multistage chemically synthesized vaccines. J Accounts of chemical research. 2008;41(3):377-86.spa
dc.relation.referencesPatarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: the immune protection-inducing protein structure concept in the search for steric-electron and topochemical principles for complete fully-protective chemically synthesised vaccine development. J PLoS One. 2015;10(4):e0123249.spa
dc.relation.referencesCéspedes N, Arévalo-Herrera M, Felger I, Reed S, Kajava AV, Corradin G, et al. Antigenicity and immunogenicity of a novel chimeric peptide antigen based on the P. vivax circumsporozoite protein. J Vaccine. 2013;31(42):4923-30.spa
dc.relation.referencesSilva-Flannery LM, Cabrera-Mora M, Jiang J, Moreno A. Recombinant peptide replicates immunogenicity of synthetic linear peptide chimera for use as pre-erythrocytic stage malaria vaccine. J Microbes infection. 2009;11(1):83-91.spa
dc.relation.referencesNardin EH, Oliveira GA, Calvo-Calle JM, Nussenzweig RS. The use of multiple antigen peptides in the analysis and induction of protective immune responses against infectious diseases. Advances in immunology. 60: Elsevier; 1995. p. 105-49.spa
dc.relation.referencesNardelli B, Tam JP. The MAP system. Vaccine Design: Springer; 1995. p. 803-19.spa
dc.relation.referencesMarussig M, Rénia L, Motard A, Miltgen F, Pétour P, Chauhan V, et al. Linear and multiple antigen peptides containing defined T and B epitopes of the Plasmodium yoelii circumsporozoite protein: antibody-mediated protection and boosting by sporozoite infection. J International immunology. 1997;9(12):1817-24.spa
dc.relation.referencesHerrington DA, Clyde DF, Losonsky G, Cortesia M, Murphy JR, Davis J, et al. Safety and immunogenicity in man of a synthetic peptide malaria vaccine against Plasmodium falciparum sporozoites. J Nature. 1987;328(6127):257.spa
dc.relation.referencesTetteh KK, Polley SD. Progress and challenges towards the development of malaria vaccines. J BioDrugs. 2007;21(6):357-73.spa
dc.relation.referencesMalkin E, Dubovsky F, Moree M. Progress towards the development of malaria vaccines. J Trends in parasitology. 2006;22(7):292-5.spa
dc.relation.referencesGilbert SC, Plebanski M, Gupta S, Morris J, Cox M, Aidoo M, et al. Association of malaria parasite population structure, HLA, and immunological antagonism. J Philosophical Transactions of the Royal Society B: Biological Sciences. 1998;279(5354):1173-7.spa
dc.relation.referencesSabet LP, Taheri T, Memarnejadian A, Azad TM, Asgari F, Rahimnia R, et al. Immunogenicity of multi-epitope DNA and peptide vaccine candidates based on core, E2, NS3 and NS5B HCV epitopes in BALB/c mice. 2014;14(10).spa
dc.relation.referencesJackson D, Purcell A, Fitzmaurice C, Zeng W, Hart DJCdt. The central role played by peptides in the immune response and the design of peptide-based vaccines against infectious diseases and cancer. 2002;3(2):175-96.spa
dc.relation.referencesRodrigues-da-Silva RN, Correa-Moreira D, Soares IF, de-Luca PM, Totino PRR, Morgado FN, et al. Immunogenicity of synthetic peptide constructs based on PvMSP9E795-A808, a linear B-cell epitope of the P. vivax Merozoite Surface Protein-9. 2019;37(2):306-13.spa
dc.relation.referencesCease KB, Berkower I, York-Jolley J, Berzofsky JJjoEM. T cell clones specific for an amphipathic alpha-helical region of sperm whale myoglobin show differing fine specificities for synthetic peptides. A multiview/single structure interpretation of immunodominance. 1986;164(5):1779-84.spa
dc.relation.referencesAvendaño C, Jenkins M, Méndez-Callejas G, Oviedo J, Guzmán F, Patarroyo MA, et al. Cryptosporidium spp. CP15 and CSL protein-derived synthetic peptides’ immunogenicity and in vitro seroneutralisation capability. 2018;36(45):6703-10.spa
dc.relation.referencesDeans JA, Alderson T, Thomas A, Mitchell G, Lennox E, Cohen S. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. J Clinical experimental immunology. 1982;49(2):297.spa
dc.relation.referencesThomas AW, Deans JA, Mitchell GH, Alderson T, Cohen S. The Fab fragments of monoclonal IgG to a merozoite surface antigen inhibit Plasmodium knowlesi invasion of erythrocytes. J Molecular biochemical parasitology. 1984;13(2):187-99.spa
dc.relation.referencesMitchell G, Thomas A, Margos G, Dluzewski A, Bannister L. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. J Infection immunity. 2004;72(1):154-8.spa
dc.relation.referencesSilvie O, Franetich J-F, Charrin S, Mueller MS, Siau A, Bodescot M, et al. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J Journal of Biological Chemistry. 2004;279(10):9490-6.spa
dc.relation.referencesFraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. J Molecular biochemical parasitology. 2001;117(1):49-59.spa
dc.relation.referencesRappuoli R, Aderem A. A 2020 vision for vaccines against HIV, tuberculosis and malaria. J Nature. 2011;473(7348):463.spa
dc.relation.referencesSIVIGILA. Boletín Epidemiológico Semanal (SEMANA 40). INSTITUTO NACIONAL DE SALUD - COLOMBIA 2022.spa
dc.relation.referencesKillick-Kendrick R. Parasitic protozoa of the blood of rodents: I: The life-cycle and zoogeography of Plasmodium berghei nigeriensis subsp. nov. J Annals of Tropical Medicine Parasitology 1973;67(3):261-77.spa
dc.relation.referencesLandau I, Michel J, Adam J-P, Boulard Y. The life cycle of Plasmodium vinckei lentum subsp. nov. in the laboratory; comments on the nomenclature of the murine malaria parasites. J Annals of Tropical Medicine Parasitology. 1970;64(3):315-23.spa
dc.relation.referencesKlein E. Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread. J International journal of antimicrobial agents. 2013;41(4):311-7.spa
dc.relation.referencesKillick-Kendrick R. Parasitic protozoa of the blood of rodents: a revision of Plasmodium berghei. J Parasitology. 1974;69(2):225-37.spa
dc.relation.referencesBeale G, Carter R, Walliker D, Killick-Kendrick R, Peters W. Rodent malaria. Genetics: Academic Press London; 1978. p. 213-45.spa
dc.relation.referencesOtto TD, Böhme U, Jackson AP, Hunt M, Franke-Fayard B, Hoeijmakers WA, et al. A comprehensive evaluation of rodent malaria parasite genomes and gene expression. J BMC biology. 2014;12(1):86.spa
dc.relation.referencesVyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. J Nature Reviews Immunology. 2008;8(8):607.spa
dc.relation.referencesKurts C, Robinson BW, Knolle PA. Cross-priming in health and disease. J Nature Reviews Immunology. 2010;10(6):403spa
dc.relation.referencesCrotzer VL, Blum JS. Autophagy and adaptive immunity. J Immunology. 2010;131(1):9-17.spa
dc.relation.referencesDenzin LK, Fallas JL, Prendes M, Yi W. Right place, right time, right peptide: DO keeps DM focused. J Immunological reviews. 2005;207(1):279-92.spa
dc.relation.referencesNeefjes J, Jongsma ML, Paul P, Bakke O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. J Nature Reviews Immunology. 2011;11(12):823.spa
dc.relation.referencesNardin E, Zavala F, Nussenzweig V, Nussenzweig R. Pre-erythrocytic malaria vaccine: mechanisms of protective immunity and human vaccine trials. Parassitologia. 1999;41(1-3):397-402.spa
dc.relation.referencesChia WN, Goh YS, Rénia L. Novel approaches to identify protective malaria vaccine candidates. Frontiers in microbiology. 2014;5:586.spa
dc.relation.referencesConsortium MS. Complete sequence and gene map of a human major histocompatibility complex. Nature. 1999;401:921-3.spa
dc.relation.referencesMueller I, Galinski MR, Tsuboi T, Arevalo-Herrera M, Collins WE, King CL. Natural acquisition of immunity to Plasmodium vivax: epidemiological observations and potential targets. Advances in parasitology. 81: Elsevier; 2013. p. 77-131.spa
dc.relation.referencesLanghorne J, Ndungu FM, Sponaas A-M, Marsh K. Immunity to malaria: more questions than answers. J Nature immunology. 2008;9(7):725.spa
dc.relation.referencesSingh SP, Mishra BN. Major histocompatibility complex linked databases and prediction tools for designing vaccines. Human immunology. 2016;77(3):295-306.spa
dc.relation.referencesAbascal F, Zardoya R, Telford MJ. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic acids research. 2010;38(suppl_2):W7-W13.spa
dc.relation.referencesEdgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. J Nucleic acids research. 2004;32(5):1792-7.spa
dc.relation.referencesRozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, et al. DnaSP 6: DNA sequence polymorphism analysis of large data sets. J Molecular biology evolution 2017;34(12):3299-302.spa
dc.relation.referencesZhang J, Rosenberg HF, Nei M. Positive Darwinian selection after gene duplication in primate ribonuclease genes. J Proceedings of the National Academy of Sciences. 1998;95(7):3708-13.spa
dc.relation.referencesJukes TH, Cantor CR. Evolution of protein molecules. J Mammalian protein metabolism. 1969;3(21):132.spa
dc.relation.referencesKosakovsky Pond SL, Posada D, Gravenor MB, Woelk CH, Frost SD. Automated phylogenetic detection of recombination using a genetic algorithm. J Molecular biology evolution. 2006;23(10):1891-901.spa
dc.relation.referencesDelport W, Poon AF, Frost SD, Kosakovsky Pond SL. Datamonkey 2010: a suite of phylogenetic analysis tools for evolutionary biology. J Bioinformatics. 2010;26(19):2455-7.spa
dc.relation.referencesKosakovsky Pond SL, Frost SD. Not so different after all: a comparison of methods for detecting amino acid sites under selection. J Molecular biology evolution. 2005;22(5):1208-22.spa
dc.relation.referencesMurrell B, Wertheim JO, Moola S, Weighill T, Scheffler K, Pond SLK. Detecting individual sites subject to episodic diversifying selection. J PLoS genetics. 2012;8(7):e1002764.spa
dc.relation.referencesMurrell B, Moola S, Mabona A, Weighill T, Sheward D, Kosakovsky Pond SL, et al. FUBAR: a fast, unconstrained bayesian approximation for inferring selection. J Molecular biology evolution. 2013;30(5):1196-205.spa
dc.relation.referencesGarzón-Ospina D, Forero-Rodríguez J, Patarroyo MA. Inferring natural selection signals in Plasmodium vivax-encoded proteins having a potential role in merozoite invasion. J Infection, Genetics Evolution 2015;33:182-8.spa
dc.relation.referencesJespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic acids research. 2017;45(W1):W24-W9.spa
dc.relation.referencesMerrifield RB. Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. Journal of American Chemical Society. 1963;85:2149 - 54.spa
dc.relation.referencesRabelo L, Monteiro N, Serquiz R, Santos P, Oliveira R, Oliveira A, et al. A lactose-binding lectin from the marine sponge Cinachyrella apion (Cal) induces cell death in human cervical adenocarcinoma cells. Marine drugs. 2012;10(4):727-43.spa
dc.relation.referencesNillni EA, Londner MV, Spira DT. A simple method for separation of uninfected erythrocytes from those infected with Plasmodium berghei and for isolation of artificially released parasites. Zeitschrift für Parasitenkunde. 1981;64(3):279-84.spa
dc.relation.referencesWaterhouse A, Bertoni M, Bienert S, Studer G, Tauriello G, Gumienny R, et al. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic acids research. 2018;46(W1):W296-W303.spa
dc.relation.referencesVulliez-Le Normand B, Saul FA, Hoos S, Faber BW, Bentley GA. Cross-reactivity between apical membrane antgen 1 and rhoptry neck protein 2 in P. vivax and P. falciparum: A structural and binding study. PLoS One. 2017;12(8):e0183198.spa
dc.relation.referencesSalomon‐Ferrer R, Case DA, Walker RC. An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science. 2013;3(2):198-210.spa
dc.relation.referencesCase DA, Cheatham III TE, Darden T, Gohlke H, Luo R, Merz Jr KM, et al. The Amber biomolecular simulation programs. Journal of computational chemistry. 2005;26(16):1668-88.spa
dc.relation.referencesJensen KK, Andreatta M, Marcatili P, Buus S, Greenbaum JA, Yan Z, et al. Improved methods for predicting peptide binding affinity to MHC class II molecules. Immunology. 2018;154(3):394-406.spa
dc.relation.referencesReynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research Immunology. 2020;19(6):2304-15.spa
dc.relation.referencesGiguère S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F. MHC-NP: predicting peptides naturally processed by the MHC. Journal of immunological methods. 2013;400:30-6.spa
dc.relation.referencesShen Y, Maupetit J, Derreumaux P, Tufféry P. Improved PEP-FOLD approach for peptide and miniprotein structure prediction. Journal of chemical theory computation. 2014;10(10):4745-58.spa
dc.relation.referencesYepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv 12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PloS one. 2018;13(9):e0203715.spa
dc.relation.referencesRodriguez LE, Curtidor H, Urquiza M, Cifuentes G, Reyes C, Patarroyo ME. Intimate molecular interactions of P. falciparum merozoite proteins involved in invasion of red blood cells and their implications for vaccine design. Chem Rev. 2008;108(9):3656-705.spa
dc.relation.referencesCuy-Chaparro L, Bohorquez MD, Arevalo-Pinzon G, Castaneda-Ramirez JJ, Suarez CF, Pabon L, et al. Babesia Bovis Ligand-Receptor Interaction: AMA-1 Contains Small Regions Governing Bovine Erythrocyte Binding. Int J Mol Sci. 2021;22(2).spa
dc.relation.referencesArevalo-Pinzon G, Bermudez M, Hernandez D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Sci Rep. 2017;7(1):9616.spa
dc.relation.referencesCurtidor H, Patiño LC, Arévalo-Pinzón G, Vanegas M, Patarroyo ME, Patarroyo MA. Plasmodium falciparum rhoptry neck protein 5 peptides bind to human red blood cells and inhibit parasite invasion. Peptides. 2014;53:210-7.spa
dc.relation.referencesGonzales SJ, Reyes RA, Braddom AE, Batugedara G, Bol S, Bunnik EM. Naturally acquired humoral immunity against Plasmodium falciparum malaria. Frontiers in immunology. 2020;11:594653.spa
dc.relation.referencesRogers KJ, Vijay R, Butler NS. Anti-malarial humoral immunity: the long and short of it. Microbes Infection immunity. 2021;23(4-5):104807.spa
dc.relation.referencesSrinivasan P, Ekanem E, Diouf A, Tonkin ML, Miura K, Boulanger MJ, et al. Immunization with a functional protein complex required for erythrocyte invasion protects against lethal malaria. Proceedings of the National Academy of Sciences. 2014;111(28):10311-6.spa
dc.relation.referencesReynisson B, Barra C, Kaabinejadian S, Hildebrand WH, Peters B, Nielsen M. Improved prediction of MHC II antigen presentation through integration and motif deconvolution of mass spectrometry MHC eluted ligand data. Journal of proteome research. 2020;19(6):2304-15.spa
dc.relation.referencesPatarroyo ME, Bermúdez A, Alba MP, Vanegas M, Moreno-Vranich A, Poloche LA, et al. IMPIPS: The Im mune P rotection-I nducing P rotein S tructure Concept in the Search for Steric-Electron and Topochemical Principles for Complete Fully-Protective Chemically Synthesised Vaccine Development. PloS one. 2015;10(4):e0123249.spa
dc.relation.referencesStephens R, Langhorne J. Effector memory Th1 CD4 T cells are maintained in a mouse model of chronic malaria. PLoS pathogens. 2010;6(11):e1001208.spa
dc.relation.referencesGardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, et al. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature. 2002;419(6906).spa
dc.relation.referencesPatarroyo ME, Alba MP, Reyes C, Rojas-Luna R, Patarroyo MA. The Malaria Parasite’s Achilles’ Heel: Functionally-relevant Invasion Structures. Curr Issues Mol Biol. 2015;18:11-20.spa
dc.relation.referencesBaquero LA, Moreno-Pérez DA, Garzón-Ospina D, Forero-Rodríguez J, Ortiz-Suárez HD, Patarroyo MA. PvGAMA reticulocyte binding activity: predicting conserved functional regions by natural selection analysis. Parasites & vectors. 2017;10(1):1-11.spa
dc.relation.referencesCamargo-Ayala PA, Garzón-Ospina D, Moreno-Pérez DA, Ricaurte-Contreras LA, Noya O, Patarroyo MA. On the evolution and function of Plasmodium vivax reticulocyte binding surface antigen (pvrbsa). Frontiers in genetics. 2018;9:372.spa
dc.relation.referencesRicaurte-Contreras LA, Lovera A, Moreno-Pérez DA, Bohórquez MD, Suárez CF, Gutiérrez-Vásquez E, et al. Two 20-Residue-Long Peptides Derived from Plasmodium vivax Merozoite Surface Protein 10 EGF-Like Domains Are Involved in Binding to Human Reticulocytes. International journal of molecular sciences. 2021;22(4):1609.spa
dc.relation.referencesChua CY, Lee PC, Lau TY. Analysis of polymorphisms and selective pressures on ama1 gene in Plasmodium knowlesi isolates from Sabah, Malaysia. Journal of genetics. 2017;96(4):653-63.spa
dc.relation.referencesDias S, Somarathna M, Manamperi A, Escalante AA, Gunasekera AM, Udagama PV. Evaluation of the genetic diversity of domain II of Plasmodium vivax Apical Membrane Antigen 1 (PvAMA-1) and the ensuing strain-specific immune responses in patients from Sri Lanka. Vaccine. 2011;29(43):7491-504.spa
dc.relation.referencesFraser TS, Kappe SH, Narum DL, VanBuskirk KM, Adams JH. Erythrocyte-binding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol Biochem Parasitol. 2001;117(1):49-59.spa
dc.relation.referencesDutta S, Haynes JD, Barbosa A, Ware LA, Snavely JD, Moch JK, et al. Mode of action of invasion-inhibitory antibodies directed against apical membrane antigen 1 of Plasmodium falciparum. J Infection immunity. 2005;73(4):2116-22.spa
dc.relation.referencesArévalo-Pinzón G, Bermúdez M, Hernández D, Curtidor H, Patarroyo MA. Plasmodium vivax ligand-receptor interaction: PvAMA-1 domain I contains the minimal regions for specific interaction with CD71+ reticulocytes. Scientific reports. 2017;7(1):1-13.spa
dc.relation.referencesUrquiza M, Suarez JE, Cardenas C, Lopez R, Puentes A, Chavez F, et al. Plasmodium falciparum AMA-1 erythrocyte binding peptides implicate AMA-1 as erythrocyte binding protein. Vaccine. 2000;19(4-5):508-13.spa
dc.relation.referencesChaianantakul N, Sungkapong T, Supatip J, Kingsang P, Kamlaithong S, Suwanakitti N. Antimalarial effect of cell penetrating peptides derived from the junctional region of Plasmodium falciparum dihydrofolate reductase-thymidylate synthase. Peptides. 2020;131:170372.spa
dc.relation.referencesRodríguez J, Bernal P, Prieto S, Correa C. Teoría de péptidos de alta unión de malaria al glóbulo rojo: predicciones teóricas de nuevos péptidos de unión y mutaciones teóricas predictivas de aminoácidos críticos. Inmunología. 2010;29(1):7-19.spa
dc.relation.referencesWillimsky G, Beier C, Immisch L, Papafotiou G, Scheuplein V, Goede A, et al. In vitro proteasome processing of neo-splicetopes does not predict their presentation in vivo. Elife. 2021;10:e62019.spa
dc.relation.referencesCaro-Aguilar I, Lapp S, Pohl J, Galinski MR, Moreno A. Chimeric epitopes delivered by polymeric synthetic linear peptides induce protective immunity to malaria. Microbes infection. 2005;7(13):1324-37.spa
dc.relation.referencesCaro-Aguilar I, Rodríguez A, Calvo-Calle JM, Guzmán F, De la Vega P, Patarroyo ME, et al. Plasmodium vivax promiscuous T-helper epitopes defined and evaluated as linear peptide chimera immunogens. Infection immunity. 2002;70(7):3479-92.spa
dc.relation.referencesLin S-I, Huang M-H, Chang Y-W, Chen I-H, Roffler S, Chen B-M, et al. Chimeric peptide containing both B and T cells epitope of tumor-associated antigen L6 enhances anti-tumor effects in HLA-A2 transgenic mice. Cancer Letters. 2016;377(2):126-33spa
dc.relation.referencesVigneron N, Ferrari V, Stroobant V, Abi Habib J, Van den Eynde BJ. Peptide splicing by the proteasome. Journal of Biological Chemistry. 2017;292(51):21170-9.spa
dc.relation.referencesDi Pasquale A, Preiss S, Tavares Da Silva F, Garçon N. Vaccine adjuvants: from 1920 to 2015 and beyond. Vaccines. 2015;3(2):320-43.spa
dc.relation.referencesWhite W, Evans C, Taylor D. Antimalarial antibodies of the immunoglobulin G2a isotype modulate parasitemias in mice infected with Plasmodium yoelii. Infection immunity. 1991;59(10):3547-54.spa
dc.relation.referencesGrey HM, Hirst JW, Cohn M. A new mouse immunoglobulin: IgG3. The Journal of experimental medicine. 1971;133(2):289-304.spa
dc.relation.referencesBerenzon D, Schwenk RJ, Letellier L, Guebre-Xabier M, Williams J, Krzych U. Protracted protection to Plasmodium berghei malaria is linked to functionally and phenotypically heterogeneous liver memory CD8+ T cells. The Journal of Immunology. 2003;171(4):2024-34.spa
dc.relation.referencesRoestenberg M, McCall M, Hopman J, Wiersma J, Luty AJ, van Gemert GJ, et al. Protection against a malaria challenge by sporozoite inoculation. New England Journal of Medicine. 2009;361(5):468-77.spa
dc.relation.referencesAngulo I, Fresno M. Cytokines in the pathogenesis of and protection against malaria. Clinical Vaccine Immunology. 2002;9(6):1145-52.spa
dc.relation.referencesJacobs P, Radzioch D, Stevenson MM. In vivo regulation of nitric oxide production by tumor necrosis factor alpha and gamma interferon, but not by interleukin-4, during blood stage malaria in mice. Infection Immunity 1996;64(1):44-9.spa
dc.relation.referencesLacerda-Queiroz N, Riteau N, Eastman RT, Bock KW, Orandle MS, Moore IN, et al. Mechanism of splenic cell death and host mortality in a Plasmodium yoelii malaria model. Scientific reports. 2017;7(1):1-12.spa
dc.relation.referencesWu J, Tian L, Yu X, Pattaradilokrat S, Li J, Wang M, et al. Strain-specific innate immune signaling pathways determine malaria parasitemia dynamics and host mortality. Proceedings of the National Academy of Sciences. 2014;111(4):E511-E20.spa
dc.relation.referencesKaumaya PT, Foy KC. Peptide vaccines and peptidomimetics targeting HER and VEGF proteins may offer a potentially new paradigm in cancer immunotherapy. Future oncology. 2012;8(8):961-87.spa
dc.relation.referencesKaumaya PT, Kobs‐Conrad S, Seo YH, Lee H, Vanbuskirk AM, Feng N, et al. Peptide vaccines incorporating a ‘promiscuous’ T‐cell epitope bypass certain haplotype restricted immune responses and provide broad spectrum immunogenicity. Journal of Molecular Recognition. 1993;6(2):81-94.spa
dc.relation.referencesLu Y, Li Z, Teng H, Xu H, Qi S, He Ja, et al. Chimeric peptide constructs comprising linear B-cell epitopes: application to the serodiagnosis of infectious diseases. Scientific reports. 2015;5(1):1-11.spa
dc.relation.referencesKhan MT, Islam MJ, Parihar A, Islam R, Jerin TJ, Dhote R, et al. Immunoinformatics and molecular modeling approach to design universal multi-epitope vaccine for SARS-CoV-2. Informatics in medicine unlocked. 2021;24:100578.spa
dc.relation.referencesGhaffari-Nazari H, Tavakkol-Afshari J, Jaafari MR, Tahaghoghi-Hajghorbani S, Masoumi E, Jalali SA. Improving multi-epitope long peptide vaccine potency by using a strategy that enhances CD4+ T help in BALB/c mice. PloS one. 2015;10(11):e0142563.spa
dc.relation.referencesAlexander J, Fikes J, Hoffman S, Franke E, Sacci J, Appella E, et al. The optimization of helper T lymphocyte (HTL) function in vaccine development. Immunologic research. 1998;18(2):79-92.spa
dc.relation.referencesAhlborg N, Ling IT, Holder AA, Riley EMJI. Linkage of exogenous T-cell epitopes to the 19-kilodalton region of Plasmodium yoelii merozoite surface protein 1 (MSP119) can enhance protective immunity against malaria and modulate the immunoglobulin subclass response to MSP119. Infection immunity. 2000;68(4):2102-9.spa
dc.relation.referencesGraham CM, Barnett BC, Hartlmayr I, Burt DS, Faulkes R, Skehel JJ, et al. The structural requirements for class II (I‐Ad)‐restricted T cell recognition of influenza hemagglutinin: B cell epitopes define T cell epitopes. European journal of immunology. 1989;19(3):523-8.spa
dc.relation.referencesJang Y-S, Mikszta JA, Kim BS. T cell epitope recognition involved in the low-responsiveness to a region of hen egg lysozyme (46–61) in C57BL/6 mice. Molecular immunology. 1994;31(11):803-12.spa
dc.relation.referencesBuus S, Colon S, Smith C, Freed JH, Miles C, Grey HM. Interaction between a" processed" ovalbumin peptide and Ia molecules. Proceedings of the National Academy of Sciences. 1986;83(11):3968-71.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-SinDerivadas 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.subject.lembCultivo in vitrospa
dc.subject.lembIn vitro cultureeng
dc.subject.lembInmunologíaspa
dc.subject.lembImmunologyeng
dc.subject.lembAntígenosspa
dc.subject.lembAntigenseng
dc.subject.proposalSelección purificantespa
dc.subject.proposalEpítopos Bspa
dc.subject.proposalEpítopos Tspa
dc.subject.proposalPéptidos quiméricosspa
dc.subject.proposalInmunogenicidadspa
dc.subject.proposalPlasmodium yoeliispa
dc.titleEvaluación de la respuesta inmune estimulada por péptidos de alta capacidad de unión a moléculas H2-IEd, en modelo murino.spa
dc.title.translatedEvaluation of the immune response stimulated by peptides with high binding capacity to H2-IEd molecules in a murine model.eng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.fundernameFundación Instituto de Inmunología de Colombia - FIDICspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1124036814.2023.pdf
Tamaño:
3.23 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Maestría en Ciencias - Microbiología

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: