Variación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presión

dc.contributor.advisorRey González, Rafael Ramón
dc.contributor.authorOspina Domínguez, Nestar Santiago
dc.contributor.datamanagerDel Valle, Carlos Andrés
dc.contributor.researchgroupGrupo de Óptica e Información Cuánticaspa
dc.contributor.researchgroupGrupo de Materiales Nanoestructurados y sus Aplicacionesspa
dc.date.accessioned2023-01-11T20:31:29Z
dc.date.available2023-01-11T20:31:29Z
dc.date.issued2022-12-12
dc.descriptionilustraciones, graficasspa
dc.description.abstractEsta investigación se realiza con el fin de caracterizar el fosforeno multicapa con efectos externos por medio de la teoría del funcional de la densidad (DFT). Esto se hace para encontrar la brecha de energía electrónica de manera teórica. Para obtener estos valores de brecha electrónica se hace uso del paquete SIESTA ("Spanish Initiative for Simulations with Thousands of Atoms"). Se calculan valores de la brecha de energía para los sistemas de múltiple lámina apilada de fosforeno, el sistema 3D del fósforo negro, el sistema de múltiples capas con campo eléctrico, y el fosforeno con presión tangencial. Se implementaron los funcionales GGA-PBE y VDW-DRSLL para obtener el valor de la brecha en las multiláminas. Nuestros principales resultados muestran una disminución de la brecha al aumentar el número de láminas, así como una disminución aplicando campo eléctrico externo, siendo la disminución simétrica respecto al signo de este campo. Involucrando dos o más láminas de fosforeno el material presenta una transición de semiconductor a metal y de nuevo a semiconductor. Aplicando presión tangencial uniaxial o biaxial se presenta la disminución y aumento de la brecha según se estire o comprima la lámina (Texto tomado de la fuente).spa
dc.description.abstractThis work searches to caracterize multilayer phosphorene with external effects using Density Functional Theory (DFT). By doing so, we search to obtain the electronic breach theoretically. We shall obtain this values of electronic breach using the package SIESTA ("Spanish Initiative for Simulations with Thousands of Atoms"). We do this for the system of multiple layers of phosphorene, the 3D bulk system of black phosphorus, and the multilayer system with external electric field and tangent pressure. The implemented functionals are GGA-PBE, VDW-DRSLL and VDW-LMKLL. Our main results show the disminution of the breach when adding more layers. The breach also diminishes with external electric field, being the response symmetrical with respect to the sign of the electric field. Adding more layers combined with electric field makes the multilayered system reach a transition from semiconductor to metal to semiconductor. With the presence of external tangent pressure the response of the breach is to decrease when the layers are stretched and to increase when they are compressed. This is true when applying uniaxial or biaxial pressure.eng
dc.description.degreelevelMaestríaspa
dc.description.degreenameMagíster en Ciencias - Físicaspa
dc.format.extent55 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82881
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Maestría en Ciencias - Físicaspa
dc.relation.referencesH. Liu, A. T. Neal, Z. Zhu, Z. Luo, X. Xu, D. Tomanek, and P. D. Ye. Phosphorene: An unexplored 2d semiconductor with a high hole mobility. ACS Nano, Vol 8:pgs. 4033–4041, 2014. doi: 10.1021/nn501226z.spa
dc.relation.referencesK. S.Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov. Two dimentional gas of massless dirac fermions in graphene. Nature, 438, 2005. doi: 10.1038/nature04233.spa
dc.relation.referencesB. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis. Single-layer mos2 transistors. Nature Nanotechnology, 6, 2011. doi: 10.1038/nnano.2010.279. [spa
dc.relation.referencesAngela Marcela Rojas Cuervo. Propiedades estructurales y electrónicas de monocapas hexagonales de Si, Ge, GaN, y GaAs. Un estudio ab initio. Master’s thesis, Universidad Nacional de Colombia, 2012. URLhttp://www.bdigital.unal.edu.co/8943/ 1/835221.2012.pdf.spa
dc.relation.referencesA. M. Rojas-Cuervo, K. M. Fonseca-Romero, and R. R. Rey-González. Anisotropic Dirac cones in monatomic hexagonal lattices. A DFT study. 87:67, 2014. doi: 10.1140/ epjb/e2014-40894-9.spa
dc.relation.referencesXiao-Qin Feng, Hong-Xia Lu, Da-Ning Shi, Jian-Ming Jia, and Chang-Shun Wang. Semiconductor-metal transition induced by combined electric field and external strain in bilayer phosphorene. Solid State Communications, 337, 2021. doi: https: //doi.org/10.1016/j.ssc.2021.114434.spa
dc.relation.referencesP. Majumder, S. Rani, S. Nair, A. K. Kumari, K. Kamalakar, M. Venkata, and S. J. Ray. High efficiency spin filtering in magnetic phosphorene. Phys. Chem., Vol 22(issue 10): pgs. 5893–5901, 2020. doi: 10.1039/C9CP05390E.spa
dc.relation.referencesP. D. Taylor, S. A.Tawfik, and M. J. S. Spencer. Interplay of mechanical and chemical tunability of phosphorene for flexible nanoelectronic applications. J. Phys. Chem. C, Vol 124(44):pgs. 24391–24399, 2020. doi: https://doi.org/10.1021/acsspa
dc.relation.referencesExpanding our 2d vision. Nat. Rev. Mater., Vol 1(44):pg. 16089, 2016. doi: https://doi. org/10.1038/natrevmats.2016.89.spa
dc.relation.referencesA.M. Rojas-Cuervo and R.R. Rey-Gonzĺez. Electronic band gap on graphene induced by interaction with hydrogen cyanide. an dft analysis. Chemical Physics, page 111744, 2022. ISSN 0301-0104. doi: https://doi.org/10.1016/j.chemphys.2022. 111744. URL https://www.sciencedirect.com/science/article/pii/ S030101042200297X.spa
dc.relation.referencesMeng Zhang, Gill M. Biesold, and Zhiqun Lin. A multifunctional 2d black phosphorene-based platform for improved photovoltaics. Chem. Soc. Rev., 50:13346– 13371, 2021. doi: 10.1039/D1CS00847A. URL http://dx.doi.org/10.1039/ D1CS00847A.spa
dc.relation.referencesJ. Qiao, X. Kong, Z. X. Hu, F. Yang, andW. Ji. High mobility transport anisotropy and linear dichroism in few layer black phosphorus. Nature Communications, Vol 5(X): pgs. 4475, 2014. doi: https://doi.org/10.1038/ncomms5475.spa
dc.relation.referencesWenzhe Zhou, Hui Zou, Xiang Xiong, Yu Zhou, Rutie Liu, and Fangping Ouyang. Doping effects on the electronic properties of armchair phosphorene nanoribbons: A first principles study. Physica E: Low-dimensional Systems and Nanostructures, 94:53–58, 2017. doi: https://doi.org/10.1016/j.physe.2017.07.015.spa
dc.relation.referencesVy Tran, Ryan Soklaski, Yufeng Liang, and Li Yang. Layer-controlled band gap and anisotropic excitons in few-layer black phosphorus. Phys. Rev. B, 89, 2014. doi: 10.1103/PhysRevB.89.235319. URL https://link.aps.org/doi/10.1103/ PhysRevB.89.235319.spa
dc.relation.referencesDeniz Çak ır, Hasan Sahin, and François M. Peeters. Tuning of the electronic and optical properties of single-layer black phosphorus by strain. Phys. Rev. B, 90, 2014. doi: 10.1103/PhysRevB.90.205421. URL https://link.aps.org/doi/10.1103/ PhysRevB.90.205421.spa
dc.relation.referencesHuynh V. Phuc, Nguyen N. Hieu, Victor V. Ilyasov, Le T.T. Phuong, and Chuong V. Nguyen. First principles study of the electronic properties and band gap modulation of two-dimensional phosphorene monolayer: Effect of strain engineering. Superlattices and Microstructures, 118:289–297, 2018. doi: https://doi.org/10.1016/j.spmi.2018.04. 018.spa
dc.relation.referencesYonghong Zeng and Zhinan Guo. Synthesis and stabilization of black phosphorus and phosphorene: Recent progress and perspectives. iScience, 24, 2021. doi: https: //doi.org/10.1016/j.isci.2021.103116.spa
dc.relation.referencesYanwen Zhang, Xiayue Liu Hongxia Yan, Xingwu Zhai, Xianjun Sui, Guixian Ge, and Jueming Yang. Highly anisotropic and tunable charge carrier of monolayer phosphorus allotropes by bi-axial strain. Physics Letter A, 384, 2020. doi: https: //doi.org/10.1016/j.physleta.2020.126896.spa
dc.relation.referencesCheng Liu, Xinpeng Han, Yu Cao, Shiyu Zhang, Yiming Zhang, and Jie Sun. Topological construction of phosphorus and carbon composite and its applications in energy storage. Energy Storage Materials, 20, 2019. doi: https://doi.org/10.1016/j.ensm. 2018.10.021.spa
dc.relation.referencesP. W. Bridgman. Two new modifications of phosphorus. J. Am. Chem. Soc., Vol 36 (Issue 7):pgs. 1344–1363, 1914. doi: https://doi.org/10.1021/ja02184a002spa
dc.relation.referencesHan Liu, Yuchen Du, Yexin Deng, and Peide D. Ye. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chemical Society Reviews, Vol 44(Issue 9):pgs. 2732–2743, 2015. doi: 10.1039/C4CS00257A. 52spa
dc.relation.referencesR. Keyes. The electrical properties of black phosphorus. Phys. Rev, Vol 92:pg. 580, 1953. doi: https://doi.org/10.1103/PhysRev.92.580.spa
dc.relation.referencesD.Warschauer. Electrical and optical properties of crystalline black phosphorus. Journal of Applied Physics, Vol 34(Issue 1853):pg. 580, 1963. doi: https://doi.org/10.1063/1. 1729699.spa
dc.relation.referencesY. Akahama, S. Endo, and S. Narita. Electrical properties of single-crystal black phosphorus under pressure. Physica B, Vol 139-140:pgs. 397–400., 1986. doi: https: //doi.org/10.1016/0378-4363(86)90606-6.spa
dc.relation.referencesM. Baba, F. Izumida, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Two-dimensional anderson localization in black phosphorus crystals prepared by bismuth-flux method. Phys. Soc. Jpn., Vol 60(Issue 9):pgs. 3777–3783, 1991. doi: https://doi.org/10.1143/JPSJ.60.3777.spa
dc.relation.referencesS. Takeyama, N. Miura, Y. Akahama, and S. Endo. Far-infrared magneto-optical investigation of p-black phosphorus in pulsed high magnetic fields. J. Phys. Soc. Jpn., Vol 59(Issue 9):pgs. 2400–2408, 1990. doi: https://doi.org/10.1143/JPSJ.59.2400.spa
dc.relation.referencesM. Baba, F. Izumida, A. Morita, Y. Koike, and T. Fukase. Electrical properties of black phosphorus single crystals prepared by the bismuth-flux method. Jpn. J. Appl. Phys., Vol 30(Issue 9):pgs. 1753–1758, 1991. doi: 10.1143/JJAP.30.1753spa
dc.relation.referencesM. Baba, Y. Nakamura, Y. Takeda, K. Shibata, A. Morita, Y. Koike, and T. Fukase. Hall effect and two-dimensional electron gas in black phosphorus. J. Phys.: Condens. Matter, Vol 4(Issue 9):pgs. 1535–1544, 1992. doi: 10.1088/0953-8984/4/6/018.spa
dc.relation.referencesJ. Wittig and B. T. Matthias. Superconducting phosphorus. Science, Vol 160(Issue 3831):pgs. 994–995, 1968. doi: 10.1126/science.160.3831.994. 53spa
dc.relation.referencesH. Kawamura, I. Shirotani, and K. Tachikawa. Anomalous superconductivity in black phosphorus under high pressures. Solid State Commun., Vol 49(X):pgs. 879–881, 1984. doi: https://doi.org/10.1016/0038-1098(84)90444-7.spa
dc.relation.referencesF. Xia, H.Wang, and Y. Jia. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nature Communications, Vol 5:pg. 4458, 2014. doi: DOI:10.1038/ncomms5458.spa
dc.relation.referencesA.Kokalj. Xcrysden–a newprogram for displaying crystalline structures and electron densities. J. Mol. Graphics Modelling, Vol 17(21):pgs. 176–179, 1999. doi: 10.1016/ s1093-3263(99)00028-5. URL http://www.xcrysden.org/.spa
dc.relation.referencesA. Chaves, W. Ji, Jesse Maassen, Traian Dumitrica, and Tony Low. Theoretical overview of black phosphorus. Cambridge University Press, Vol 3(21):pgs. 381–412, 2017. doi: https://doi.org/10.1017/9781316681619.022.spa
dc.relation.referencesMeng Zhang, Gill M. Biesold, and Zhiqun Lin. Ab initio studies on atomic and electronic structures of black phosphorus. Journal of applied physics, 107, 2010. doi: 10.1063/1.3386509.spa
dc.relation.referencesM. Born and R. Oppenheimer. On the quantum theory of molecules. Annalen der physik, Vol 389(20):pgs. 457–484, 1927. doi: https://doi.org/10.1002/andp.19273892002.spa
dc.relation.referencesP. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864– B871, 1964. doi: 10.1103/PhysRev.136.B864.spa
dc.relation.referencesA. M. Rojas Cuervo. Interacción de átomos o moléculas con sistemas bidimensionales hexagonales. Un estudio DFT. PhD thesis,UniversidadNacional de Colombia, Sede Bogotá, 2019.spa
dc.relation.referencesW. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140(4A):A1133–A1138, 1965. doi: 10.1103/PhysRev.140.A1133.spa
dc.relation.referencesM. Dion, H. Rydberg, E. Schröder, D. C. Langreth, and B. I. Lundqvist. Van der waals density functional for general geometries. Phys. Rev., Vol 92-24(X):pgs. 246401, 2004. doi: https://doi.org/10.1103/PhysRevLett.92.246401.spa
dc.relation.referencesL. Liang, w. Lin, B.G. Sumpter, V. Meunier, and M. Pan. Electronic bandgap and edge reconstruction in phosphorene materials. Nano Lett., 14(11):6400–6, 2014. doi: 10.1021/nl502892t.spa
dc.relation.referencesA. Castellanos-Gomez. Black phosphorus: Narrow gap, wide applications. J. Phys. Chem. Lett., Vol 6(21):pgs.4280–4291, 2015. doi: https://doi.org/10.1021/acs.jpclett. 5b01686.spa
dc.relation.referencesJiong Yang, Renjing Xu, Jiajie Pei, Ye Win Myint, Fan Wang, Zhu Wang, Shuang Zhang, Zongfu Yu, and Yueriu Lu. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light: Science and Applications, 4(7):2047–7538, 2015. doi: 10.1038/lsa.2015.85.spa
dc.relation.referencesJosé M Soler, Emilio Artacho, Julian D Gale, Alberto García, Javier Junquera, Pablo Ordejón, and Daniel Sánchez-Portal. The siesta method for ab initio order-n materials simulation. Journal of Physics: Condensed Matter, Vol 14(11):2745–2779, 2002. doi: 10.1088/0953-8984/14/11/302.spa
dc.relation.referencesK. Lee, E. Murray, L. Kong, B. I. Lundqvist, and D. C. Langreth. Higher-accuracy van der waals density functional. Phys. Rev. B, 82:081101, 2010. doi: 10.1103/PhysRevB.82. 081101.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.ddc500 - Ciencias naturales y matemáticasspa
dc.subject.ddc530 - Físicaspa
dc.subject.lembFOSFORO
dc.subject.lembPhosphorus
dc.subject.lembNO METALES
dc.subject.proposalFosforenospa
dc.subject.proposalCapasspa
dc.subject.proposalCampo Eléctricospa
dc.subject.proposalPresiónspa
dc.subject.proposalFósforo negrospa
dc.subject.proposalMulti-capasspa
dc.subject.proposalBrecha electrónicaspa
dc.subject.proposalPhosphoreneeng
dc.subject.proposalBlack-phosphoruseng
dc.subject.proposalMultilayerseng
dc.subject.proposalElectronic gapeng
dc.subject.proposalElectric fieldeng
dc.titleVariación de la brecha de energía electrónica del fosforeno con el número de capas, campo eléctrico externo y presiónspa
dc.title.translated磷烯的电子能隙随层数、外电场和压力的变化zho
dc.title.translatedVariation de la bande interdite d'énergie électronique du phosphorène avec le nombre de couches, le champ électrique externe et la pressionfra
dc.title.translatedVariation of the electronic breach of phosphorene with layer number, external electric field and pressureeng
dc.typeTrabajo de grado - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
1016078617.2022.pdf
Tamaño:
4.51 MB
Formato:
Adobe Portable Document Format
Descripción:
Se encuentra la variación de la brecha de energía electrónica del fosforeno con número de capas, campo eléctrico externo y presión

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: