Respuesta ecofisiológica de la fresa cultivada en condiciones protegidas y en campo abierto

dc.contributor.advisorFischer, Gerhard
dc.contributor.advisorMelgarejo Muñoz, Luz Marina
dc.contributor.authorPérez Trujillo, María Mercedes
dc.contributor.researchgroupFisiología del Estrés y Biodiversidad en Plantas y Microorganismosspa
dc.contributor.researchgroupHorticulturaspa
dc.date.accessioned2022-08-29T19:57:41Z
dc.date.available2022-08-29T19:57:41Z
dc.date.issued2021
dc.descriptionilustraciones, fotografías, graficas, tablasspa
dc.description.abstractEsta investigación comparó la respuesta ecofisiológica de la fresa (Fragaria × ananassa Duch.) ‘Monterey’ cultivada en condiciones protegidas bajo invernadero no climatizado con cubierta de polietileno (INV) y en campo abierto (CA), y su relación con factores micrometeorológicos, en Cajicá (2.562 msnm; Cundinamarca, Colombia). Se evaluaron el desempeño fotosintético, el intercambio gaseoso, las relaciones hídricas y el crecimiento en diferentes estados del desarrollo vegetativo y reproductivo de las plantas, así como el rendimiento y las características fisicoquímicas relacionadas con los atributos organolépticos y funcionales de los frutos en cuatro momentos de cosecha durante los primeros seis meses de producción. En ambos ambientes de cultivo se obtuvo un alto rendimiento fotoquímico potencial del PSII (Fv/Fm), alrededor de 0,83, sin embargo, bajo INV las plantas se aclimataron a la menor radiación, presentando menor quenching fotoquímico (qP), mayor quenching no fotoquímico (NPQ), mayor área foliar específica(SLA), menor contenido de carotenoides (cx+c), inferior relación entre clorofila a y b (chla/chlb), mientras que la respuesta de fotosíntesis al CO2 (An/Ci) fue similar entre los ambientes. El mejor desempeño fotosintético de las plantas en CA se reflejó en una mayor tasa de transporte de electrones (J), mayor quenching fotoquímico (qP) y tasa más alta de fotosíntesis neta tanto máxima (Amax) como promedio diurna (An). El aumento en la radiación PAR, la temperatura del aire (Ta) y el descenso en el déficit de presión de vapor (DPV) favorecieron mayor An. Consecuentemente, en CA se encontraron mayores tasas de crecimiento relativo (RGR) y de asimilación neta (NAR), con superior acumulación de biomasa seca total por planta. El índice de cosecha (HI) y el número de frutos fueron similares para ambos ambientes, pero en CA se encontró mayor partición de asimilados hacia éstos, cuyo peso seco individual fue 13,5 % superior al del INV, contribuyendo a que el rendimiento (g/planta) fuera 20 % mayor en CA. El gradiente hídrico entre el sustrato, la planta y la atmósfera fue más favorable en CA, donde mayor humedad volumétrica del sustrato (Өvol), Ta más baja y menor DPV, junto con mayor PAR, permitieron mayor conductancia estomática (gs) y An, con un 15 % menos de agua evapotranspirada desde el trasplante hasta finalizar la primera cosecha (EVTacum). La menor gs que presentaron las plantas bajo INV durante la etapa vegetativa y la floración, les permitió conservar un Ψwfol hacia el mediodía y una turgencia de los tejidos de la hoja (CRA) que fueron similares a los registrados en las plantas de campo abierto; sin embargo, la disminución en la PAR limitó An y la acumulación de biomasa y el rendimiento. El uso eficiente del agua, evaluado desde el intercambio gaseoso (WUEint y WUEext) y a través de la producción de biomasa (WUEp) y del rendimiento del cultivo (WUEc) con relación a EVTacum., fue superior en CA. Las condiciones de cultivo en CA permitieron ofrecer frutos con mayor calidad organoléptica, siendo 38,5 % más firmes, con el color de la piel más brillante (L*) e intenso (C*), aunque con similar tonalidad roja (h) y contenido de agua (CH) que en INV. Los sólidos solubles totales (SST) de los frutos fueron similares, mientras que la acidez total titulable (ATT) resultó superior en INV y especialmente el ácido ascórbico con 58 % más de contenido, sin embargo, el índice de dulzor de las fresas (SST/ATT) fue más bajo en este ambiente. La cantidad de compuestos fenólicos totales de los frutos resultó 31 % superior en CA y correlacionó con su mayor capacidad antioxidante (menor IC50fenol), mientras que las antocianinas fueron 32 % más abundantes en los frutos bajo INV. El aumento de la PAR, desde 50 días antes de la cosecha, incrementó la biomasa, STT y C* de los frutos. Baja Ta y humedad relativa del aire (HRa) y alta PAR aumentaron la firmeza. La ATT y el contenido de ácido ascórbico incrementaron ante mayor Ta, baja HRa y alta PAR. Los compuestos fenólicos totales aumentaron en baja Ta y alta PAR, mientras que las antocianinas incrementaron con Ta. En conclusión, el ambiente de cultivo en CA fue más favorable para el desempeño fotosintético, el intercambio gaseoso, las relaciones hídricas y el crecimiento de las plantas de fresa ‘Monterey’, así como para el rendimiento y la calidad organoléptica de los frutos, presentando mayor contenido de compuestos fenólicos totales y capacidad antioxidante, aunque los frutos producidos bajo INV tuvieron mayor contenido de antocianinas y de ácido ascórbico. (Texto tomado de la fuente)spa
dc.description.abstractThis research compared the ecophysiological response of the 'Monterey' strawberry (Fragaria × ananassa Duch.) grown in a protected crop under a non-heated greenhouse with a polyethylene cover (GR) and in open field (OF), and its relationship with micrometeorological factors, in Cajica (2,562 m a.s.l.; Cundinamarca, Colombia). Photosynthetic performance, gas exchange, water relations and growth were evaluated in different plant stages of vegetative and reproductive development, as well as the yield and physicochemical characteristics related to the organoleptic and functional fruits attributes in four moments of harvest during the first six months of production. In both environments, a high potential quantum efficiency of PSII (Fv/Fm) was obtained, about 0.83, however, under GR the plants acclimatized to the lower radiation, presenting less photochemical quenching (qP), greater non-photochemical quenching (NPQ), greater specific leaf area (SLA), lower content of carotenoids (cx+c), lower chlorophyll a and b ratio (chla/chlb), while the photosynthetic CO2 response Pn/Ci was similar. The photosynthetic performance of the plants in OF was better, reflected in a higher electron transport rate (J), higher photochemical quenching (qP) and a higher net photosynthetic rate, both maximum (Pmax) and diurnal average (Pn). The increase in PAR radiation, air temperature (Ta) and the decrease in the vapor pressure deficit (VPD) favored higher Pn. Consequently, in OF higher relative growth rate (RGR) and net assimilation rate were found (NAR), with higher total biomass per plant. The harvest index (HI) and the number of fruits were similar in both crop environments, but in OF a greater assimilates partition towards these was found, whose individual dry weight was 13.5 % higher than in GR, causing the yield (g/plant) to be 20 % higher in OF. The water gradient between the substrate, the plant and the atmosphere was more favorable in OF, where higher volumetric humidity of the substrate (Өvol), moderate Ta and lower VPD, together with higher PAR, allowed greater stomatal conductance (gs) and Pn with 15% less evapotranspiration from planting to finish first harvest (EVTaccum). The lower gs in GR during vegetative and flowering stages allowed to conserve a noon Ψwfol as well as maintaining a leaf relative water content (RWC) similar to OF; however, the decrease in PAR limited Pn and the biomass accumulation and crop yield. The water use efficiency was higher in OF, evaluated from gas exchange (WUEint and WUEext) and through biomass production (WUEp) and crop yield (WUEc) related to EVTacum. The OF crop conditions allowed to offer fruits with higher organoleptic quality, being 38.5% firmer, with brighter (L *) and more intense (C *) color skin, although with a similar red hue (h) and water content (CH) than in GR. Total soluble solids of fruits (TSS) were similar, while total titratable acidity (TTA) and mainly ascorbic acid content with 58 % more, were higher in GR, with a lower sweetness index (TSS/TTA). Total phenolic compounds content in fruits was 31% higher in OF and correlated with higher antioxidant capacity (lower IC50phenol), while anthocyanins were 32% more abundant in fruits grown in GR. The increase in PAR, from 50 days before harvest, increased the dry weight, TSS and C* of the fruits. Low Ta and relative humidity of the air (RHa) and high PAR increased the firmness. TTA and ascorbic acid increased with higher Ta, low RHa and high PAR. Total phenolic compounds increased at low Ta and high PAR, while anthocyanins increased with higher Ta. In conclusion, the growing environment in OF was more favorable for the photosynthetic performance, gas exchange, water relations and growth of the 'Monterey' strawberry plants, as well as for the yield and organoleptic fruits quality, having higher content of total phenolic compounds and antioxidant capacity, although the fruits produced in GR had higher content of anthocyanins and ascorbic acid.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Agrariasspa
dc.description.researchareaFisiología de Cultivosspa
dc.format.extentxxiv, 176 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/82177
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.departmentDepartamento de Agronomíaspa
dc.publisher.facultyFacultad de Ciencias Agrariasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias Agrarias - Doctorado en Ciencias Agrariasspa
dc.relation.indexedRedColspa
dc.relation.indexedLaReferenciaspa
dc.relation.referencesAgronet, 2018. Producción nacional por producto, Fresa 2007-2018. Evaluaciones agropecuarias del Ministerio de Agricultura y Desarrollo Rural, Colombia. https://www.agronet.gov.co/Paginas/ProduccionNacionalProducto.aspx# (consultada 10 febrero 2020).spa
dc.relation.referencesAkhatou, I., Fernández, A., 2014. Influence of cultivar and culture on nutritional and organoleptic quality of strawberry. J Sci Food Agric 94, 866–875. https://doi.org/10.1002/jsfa.6313.spa
dc.relation.referencesAsohofrucol, 2012. Plan Nacional de Fomento Hortofrutícola 2012-2022. http://www.asohofrucol.com.co/pnfh/ (consultado 15 marzo 2017).spa
dc.relation.referencesAwang, Y.B., Atherton, J.G., 1995. Growth and fruiting responses of strawberry plants grown on rockwool to shading and salinity. Scientia Horticulturae 62(1-2), 25–31. https://doi.org/10.1016/0304-4238(95)00770-T.spa
dc.relation.referencesAzzini, E., Intorre,F., Vitaglione, P., Napolitano, A., Foddai, M.S., Durazzo, A., Fumagalli, A., Catasta, G., Rossi, L., Venneria, E., Testa, M.F., Raguzzini, A., Palomba, L., Fogliano, V., Maiani, G., 2010. Absorption of strawberry phytochemicals and antioxidant status changes in humans. Journal of Berry Research 1, 81–89. https://doi.org/10.3233/BR-2010-009.spa
dc.relation.referencesBlanke, M.M., Cooke, D.T., 2004. Effects of flooding and drought on stomatal activity, transpiration, photosynthesis, water potential and water channel activity in strawberry stolons and leaves. Plant Growth Regulation 42, 153–160spa
dc.relation.referencesBorkowska, B., 2005. The photosynthetic activity of plants growing under different environmental conditions. International Journal of Fruit Science 5 (2), 3-16. https://doi.org/10.1300/J492v05n02_02.spa
dc.relation.referencesBruce, A.B., Maynard, E.T., Farmer, J.R., 2019. Farmers’ perspectives on challenges and opportunities associated with using high tunnels for specialty crops. HortTecnology, 04258- 18. https://doi.org/10.21273/HORTTECH04258-18.spa
dc.relation.referencesCasierra-Posada, F., Vargas, Y.A., 2007. Crecimiento y producción de fruta en cultivares de fresa (Fragaria sp.) afectados por encharcamiento. Revista Colombiana de Ciencias Hortícolas 1 (1), 21 – 32.spa
dc.relation.referencesCasal, C., Vílchez, C., Forján, E., De La Morena, B.A., 2009. The absence of UV-radiation delays the strawberry ripening but increases the final productivity, not altering the main fruit nutritional properties. Acta Horticulturae 842, 159–162.spa
dc.relation.referencesCasierra-Posada, F., Peña-Olmos, J.E., Ulrichs, C., 2011. Crecimiento y eficiencia fotoquímica del fotosistema II en plantas de fresa (Fragaria sp.) afectadas por la calidad de la luz: implicaciones agronómicas. Rev. U.D.C.A. Act. & Div. Cient. 14(2), 43 – 53.spa
dc.relation.referencesCasierra-Posada, F., J. E. Peña-Olmos y C. Ulrichs. 2012. Basic growth analysis in strawberry plants (Fragaria sp.) exposed to different radiation environments. Agronomía Colombiana 30 (1), 25 - 33.spa
dc.relation.referencesCorrêa, L.E., Peres, N.A., 2013. Strawberry production in Brazil and South America. International Journal of Fruit Science 13 (1-2), 156-161. https://doi.org/10.1080/15538362.2012.698147.spa
dc.relation.referencesDarnell, R.L., Cantliffe, D.J., Kirschbaum, D.S., Chandler, C.K., 2003. The physiology of flowering in strawberry. Horticultural Reviews 28, 325-349spa
dc.relation.referencesDavies, K.M., Schwinn, K.E., Gould, K.M., 2017. Anthocyanins, in: Encyclopedia of Applied Plant Sciences. Elsevier, 2nd edition, Volume 2, pp. 355-363. http://dx.doi.org/10.1016/B978-0-12-394807-6.00229-X.spa
dc.relation.referencesDávalos-González, P.A., Narro-Sánchez, J., Jofre-Garfias, A.E., Razo, A.R.H., Vázquez Sánchez, M.N., 2009. Influence of the genotype, type of plant and population density on strawberry productivity and fruit quality under macrotunnel. Acta Horticulturae 842, 91–94. https://doi.org/10.17660/ActaHortic.2009.842.3spa
dc.relation.referencesDemchak, K., 2009. Small fruit production in high tunnels. HortTechnology 19(1), 44-49.spa
dc.relation.referencesFAOSTAT, 2018. Producción de fresa. http://www.fao.org/faostat/es/#data/QC (consultada 14 septiembre 2020).spa
dc.relation.referencesFelgines, C., Texier, O., Besson, C., Lyan, B., Lamaison, J.L., Scalbert, A., 2007. Strawberry pelargonidin glycosides are excreted in urine as intact and glucuronidated pelargonidin derivatives in rats. British Journal of Nutrition 98, 1126–1131. https://doi.org/10.1017/S0007114507764772.spa
dc.relation.referencesFlórez, R., Mora, R., 2010. Fresa (Fragaria x ananassa Duch.) producción y manejo poscosecha. Corredor Tecnológico Agroindustrial, Cámara de Comercio de Bogotá, Editorial Produmedios, Bogotáspa
dc.relation.referencesFrancisco-Francisco, N., Benavides-Mendoza, A., 2014. Impacto de la salinidad y la temperatura diurna sobre la fluorescencia de la clorofila en fresa. Revista Mexicana de Ciencias Agrícolas 5 (1), 157-162.spa
dc.relation.referencesFoust-Meyer, N., O’Rourke, M.E., 2015. High tunnels for local food systems: Subsidies, equity, and profitability. Journal of Agriculture, Food Systems, and Community Development 5(2), 27–38. https://doi.org/10.5304/jafscd.2015.052.015.spa
dc.relation.referencesGavilán, P., Ruiz, N., Lozano, D., 2015. Daily forecasting of reference and strawberry crop evapotranspiration in greenhouses in a Mediterranean climate based on solar radiation estimates. Agricultural Water Management 159, 307–317. https://doi.org/10.1016/j.agwat.2015.06.012.spa
dc.relation.referencesGiampieri, F., Alvarez-Suarez, J.M., Battino, M., 2014. Strawberry and human health: effects beyond antioxidant activity. J. Agric. Food Chem. 62 (18), 3867-3876. https://doi.org/10.1021/jf405455n.spa
dc.relation.referencesGrant, O.M., Johnson, A.W., Davies, M.J., James, C.M., Simpson, D.W., 2010. Physiological and morphological diversity of cultivated strawberry (Fragaria × ananassa) in response to water deficit. Environmental and Experimental Botany 68, 264–272. https://doi.org/10.1016/j.envexpbot.2010.01.008.spa
dc.relation.referencesGrijalba, C.M., Pérez-Trujillo, M.M., Ruíz, D., Ferrucho, A.M., 2015. Strawberry yields with high-tunnel and open-field cultivations and the relationship with vegetative and reproductive plant characteristics. Agronomía Colombiana 33(2), 147-154. https://doi.org/10.15446/agron.colomb.v33n2.52000spa
dc.relation.referencesGündüz, K., Özdemir, E., 2014. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chemistry 155, 298–303. https://doi.org/10.1016/j.foodchem.2014.01.064.spa
dc.relation.referencesHancock, J.F., 2020. Strawberries. Crop Production Science in Horticulture 11, second ed. CABI Publishing, Wallingford, UK.spa
dc.relation.referencesHytönen, T., Elomaa, P., Moritz, T., Junttila, O., 2009. Gibberellin mediates daylength controlled differentiation of vegetative meristems in strawberry (Fragaria × ananassa Duch). BMC Plant Biology 9, 18. https://doi.org/10.1186/1471-2229-9-18spa
dc.relation.referencesJosuttis, M., Dietrich, H., Treutter, D., Will, F., Linnemannstöns, L., Krüger, E., 2010. Solar UVB response of bioactives in strawberry (Fragaria × ananassa Duch. L.): a comparison of protected and open-field cultivation. J Agric Food Chem. 58(24), 12692-702. https://doi.org/10.1021/jf102937e.spa
dc.relation.referencesKadir, S., Carey, E., Ennahli, S., 2006a. Influence of high tunnel and field conditions on strawberry growth and development. HortScience 41(2), 329–335.spa
dc.relation.referencesKadir, S., Sidhu, G., Al-Khatib, K., 2006b. Strawberry (Fragaria x ananassa Duch.) growth and productivity as affected by temperature. HortScience 41 (6), 1423-1430.spa
dc.relation.referencesKeutgen, N., Chen, K., Lenz, F. 1997. Responses of strawberry leaf photosynthesis, chlorophyll fluorescence and macronutrient contents to elevated CO2. J. Plant Physiol. 150, 395-400.spa
dc.relation.referencesKirschbaum, D.S., Hancock, J.F., 2000. The strawberry industry in South America. HortScience 35(5), 807–811. https://doi.org/10.21273/HORTSCI.35.5.807.spa
dc.relation.referencesKirschbaum, D.S., Vicente, C.E., Cano-Torres, M.A., Gambardella, M., Veizaga-Pinto, F.K., Antunes, L.C.E., 2017. Strawberry in South America: from the Caribbean to Patagonia. Acta Hortic. 1156, 947-956. https://doi.org/10.17660/ActaHortic.2017.1156.140.spa
dc.relation.referencesKumar, A., Avasthe, R.K., Rameash, K., Pandey, B., Borah, T.R., Denzongpa, R., Rahman, H., 2011. Influence of growth conditions on yield, quality and diseases of strawberry (Fragaria x ananassa Duch.) var Ofra and Chandler under mid hills of Sikkim Himalaya. Scientia Horticulturae 130 (1), 43–48. https://doi.org/10.1016/j.scienta.2011.05.034.spa
dc.relation.referencesLambers, H., Chapin III, F.S., Pons, T. L., 2008. Plant physiological ecology. 2nd ed., Springer, Nueva York.spa
dc.relation.referencesLamont Jr., W.J., 2009. Overview of the use of high tunnels worldwide. HortTechnology 19 (1), 25–29.spa
dc.relation.referencesLarcher, W., 2003. Physiological plant ecology: ecophysiology and stress physiology of functional groups. 4th ed., Springer, USA.spa
dc.relation.referencesLedesma, N.A., Kawabata, S., 2016. Responses of two strawberry cultivars to severe high temperature stress at different flower development stages. ScientiaHorticulturae 211, 319–327. http://dx.doi.org/10.1016/j.scienta.2016.09.007.spa
dc.relation.referencesLi, T., Yang, Q., 2015. Advantages of diffuse light for horticultural production and perspectives for further research. Frontiers in Plant Science 6, 704. https://doi.org/10.3389/fpls.2015.00704.spa
dc.relation.referencesLozano, D., Ruiz, N., Gavilán, P., 2016. Consumptive water use and irrigation performance of strawberries. Agricultural Water Management 169, 44–51. https://doi.org/10.1016/j.agwat.2016.02.011.spa
dc.relation.referencesMartínez-Ferri, E., Soria, C., Ariza, M.T., Medina, J.J., Miranda, L., Domínguez, P., Muriel, J.L., 2016. Water relations, growth and physiological response of seven strawberry cultivars (Fragaria x ananassa Duch.) to different water availability. Agricultural Water Management 164, 73–82. https://doi.org/10.1016/j.agwat.2015.08.014.spa
dc.relation.referencesMaughan, T.L., Black, B.L., Drost, D., 2015. Critical temperature for sub-lethal cold injury of strawberry leaves. Scientia Horticulturae 183, 8–12. http://dx.doi.org/10.1016/j.scientia.2014.12.001.spa
dc.relation.referencesMaxwell, K., Johnson, G.N., 2000. Chlorophyll fluorescence – a practical guide. Journal of Experimental Botany 51 (345), 659-668.spa
dc.relation.referencesMezzetti, B., Giampieri, F., Zhang, Y., Zhong, C., 2018. Status of strawberry breeding programs and cultivation systems in Europe and the rest of the world. Journal of Berry Research 8 (3), 205-221. https://doi.org/10.3233/jbr-180314.spa
dc.relation.referencesMiao, L., Zhang, Y., Yang, X., Xiao, J., Zhang, H., Zhang, Z., Wang, Y., Jiang, G., 2016. Colored light-quality selective plastic films affect anthocyanin content, enzyme activities, and the expression of flavonoid genes in strawberry (Fragaria x ananassa) fruit. Food Chemistry 207, 93–100. https://doi.org/10.1016/j.foodchem.2016.02.077.spa
dc.relation.referencesMillán, J.C., 2017. Corredor Tecnológico Agroindustrial hace renacer el agro. Universidad Nacional de Colombia. UN Periódico 212, 10–11. https://unperiodico.unal.edu.co/fileadmin/user_upload/UNPeriodico212-1.pdf (consultado 15 agosto 2019).spa
dc.relation.referencesNeri, D., Baruzzi, G., Massetani, F., Faedi, W., 2012. Strawberry production in forced and protected culture in Europe as a response to climate change. Can. J. Plant Sci. 92, 1021-1036. https://doi.org/10.4141/cjps2011-276.spa
dc.relation.referencesNile, S.H., Park, S.W., 2014. Edible berries: Bioactive components and their effect on human health. Review. Nutrition 30, 134–144. http://dx.doi.org/10.1016/j.nut.2013.04.007.spa
dc.relation.referencesPalencia, P., Martínez, F., Medina, J.J., Medina, J.L., 2013. Strawberry yield efficiency and its correlation with temperature and solar radiation. Horticultura Brasileira 31, 93-99.spa
dc.relation.referencesPaliyath, G., Murr, D. P., Handa, A. K., & Lurie, S. (2008). Postharvest biology and technology of fruits, vegetables, and flowers. Nueva York, EE. UU.: Wiley-Blackwell.spa
dc.relation.referencesRetamal-Salgado, J., Bastías, R.M., Wilckens, R., Paulino, L., 2015. Influence of microclimatic conditions under high tunnels on the physiological and productive responses in blueberry ‘O’Neal’. Chilean Journal of Agricultural Research 75 (3), 291–297. http://dx.doi.org/10.4067/S0718-58392015000400004.spa
dc.relation.referencesRosa, H.T., Walter, L. C., Streck, N. A., Andriolo, J. L., da Silva, M. R., Langner, J. A., 2011. Base temperature for leaf appearance and phyllochron of selected strawberry cultivars in a subtropical environment. Bragantia 70 (4), 939–945.spa
dc.relation.referencesRubio, S., Alfonso, A., Grijalba, C.M., Pérez, M.M., 2014. Determinación de los costos de producción de la fresa cultivada a campo abierto y bajo macrotúnel. Rev. Colomb. Cienc. Hortic. 8(1), 67–79. https://doi.org/10.17584/rcch.2014v8i1.2801.spa
dc.relation.referencesSimpson, D., 2018. The economic importance of strawberry crops, en: Hytönen, T., Graham, J., Harrison, R. (Eds.), The Genomes of Rosaceous Berries and Their Wild Relatives. Compendium of Plant Genomes. Springer, Cham, pp.1-7. https://doi.org/10.1007/978-3-319-76020-9_1 .spa
dc.relation.referencesSingh, A., Syndor, A., Deka, B.C., Singh, R.K., Patel, R.K., 2012. The effect of microclimate inside low tunnels on off-season production of strawberry (Fragaria x ananassa Duch.). Scientia Horticulturae 144, 36–41. http://dx.doi.org/10.1016/j.scienta.2012.06.025.spa
dc.relation.referencesSønsteby, A., Heide, O. M., 2006. Dormancy relations and flowering of the strawberry cultivars Korona and Elsanta as influenced by photoperiod and temperature. Scientia Horticulturae 110, 57–67. https://doi.org/10.1016/j.scienta.2006.06.012.spa
dc.relation.referencesSun, P., Mantri, N., Lou, H., Hu, Y., Sun, D., Zhu, Y., Dong, T., Lu, H., 2012. Effects of elevated CO2 and temperature on yield and fruit quality of strawberry (Fragaria × ananassa Duch.) at two levels of nitrogen application. PLoS ONE 7 (7), e41000. https://doi.org/10.1371/journal.pone.0041000.spa
dc.relation.referencesTabatabaei, S.J., Yusefi, M., Hajiloo, J., 2008. Effects of shading and NO3:NH4 ratio on the yield, quality and N metabolism in strawberry. Scientia Horticulturae 116 (3), 264–272. https://doi.org/10.1016/j.scienta.2007.12.008.spa
dc.relation.referencesTewari, S., David, J., Bipasha, D., 2020. A critical review on immune-boosting therapeutic diet against coronavirus (Covid-19). Journal of Science and Technology 5(5), 43-49. https://doi.org/10.46243/jst.2020.v5.i5.pp43-49.spa
dc.relation.referencesTongtraibhop, P., Thongthieng, T., Nuengchaknin, C., Pitakpittaya, C. 2009. Yield and quality of strawberry under a low-cost plastic house in tropical climate. Acta Horticulturae 842, 103–106. https://doi.org/10.17660/ActaHortic.2009.842.6spa
dc.relation.referencesTsormpatsidis, E., Ordidge, M., Henbest, R.G.C., Wagstaffe, A., Battey, N.H., Hadley, P., 2011. Harvesting fruit of equivalent chronological age and fruit position shows individual effects of UV radiation on aspects of the strawberry ripening process. Environmental and Experimental Botany 74(1), 178–185. https://doi.org/10.1016/j.envexpbot.2011.05.017.spa
dc.relation.referencesVoća, S., Dobričević, N., Skendrović Babojelić, M., Družić, J., Duralija, B., Levačić, J., 2007. Differences in fruit quality of strawberry cv. Elsanta depending on cultivation system and harvest time. Agriculturae Conspectus Scientificus 72 (4), 285-288.spa
dc.relation.referencesWang, J., Yue, C., Gallardo, K., McCracken, V., Luby, J., McFerson, J., 2017. What consumers are looking for in strawberries: Implications from market segmentation analysis. Agribusiness 33 (1), 56–69. https://doi.org/10.1002/agr.21473.spa
dc.relation.referencesWang, S.Y., Camp, M.I., 2000. Temperatures after bloom affect plant growth and fruit quality of strawberry. Scientia Horticulturae 85 (3), 183–199. https://doi.org/10.1016/S0304- 4238(99)00143-0.spa
dc.relation.referencesWang, S.Y., Zheng, W., 2001. Effect of plant growth temperature on antioxidant capacity in strawberry. Journal of Agricultural and Food Chemistry 49 (10), 4977–4982. https://doi.org/10.1021/jf0106244.spa
dc.relation.referencesWatson, R., Wright, C.J., McBurney, T., Taylor, A.J., Linforth, R.S.T., 2002. Influence of harvest date and light integral on the development of strawberry flavour compounds. Journal of Experimental Botany 53 (377), 2121-2129. https://doi.org/10.1093/jxb/erf088.spa
dc.relation.referencesZhao, X., Carey, E., 2009. Summer production of lettuce, and microclimate in high tunnel and open field plots in Kansas. HortTechnology 19 (1), 113–119.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseReconocimiento 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/spa
dc.subject.agrovocFresaspa
dc.subject.agrovocstrawberrieseng
dc.subject.agrovocFactores ambientalesspa
dc.subject.agrovocenvironmental factorseng
dc.subject.ddc630 - Agricultura y tecnologías relacionadas::634 - Huertos, frutas, silviculturaspa
dc.subject.proposalTasa de fotosíntesis netaspa
dc.subject.proposalNet photosynthetic rateeng
dc.subject.proposalFluorescencia de la clorofila aspa
dc.subject.proposalChlorophyll a fluorescenceeng
dc.subject.proposalStomatal conductanceeng
dc.subject.proposalConductancia estomáticaspa
dc.subject.proposalPotencial hídrico foliarspa
dc.subject.proposalLeaf water potentialeng
dc.subject.proposalEvapotranspiraciónspa
dc.subject.proposalUso eficiente del aguaspa
dc.subject.proposalRendimientospa
dc.subject.proposalBiomasaspa
dc.subject.proposalSST/ATTspa
dc.subject.proposalCompuestos fenólicosspa
dc.subject.proposalAntocianinasspa
dc.subject.proposalCapacidad antioxidantespa
dc.subject.proposalEvapotranspirationeng
dc.subject.proposalWater use efficiencyeng
dc.subject.proposalCrop yieldeng
dc.subject.proposalDry weighteng
dc.subject.proposalTSS/TTAeng
dc.subject.proposalPhenolic compoundseng
dc.subject.proposalAnthocyaninseng
dc.subject.proposalAntioxidant capacityeng
dc.titleRespuesta ecofisiológica de la fresa cultivada en condiciones protegidas y en campo abiertospa
dc.title.translatedEcophysiological response of strawberry grown in protected conditions and in open fieldeng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdccspa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/masterThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TMspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentGrupos comunitariosspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
52416191.2021.pdf
Tamaño:
2.85 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Agrarias - Línea Fisiología Vegetal

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
1.71 KB
Formato:
Item-specific license agreed upon to submission
Descripción: