Antioxidantes y/o fotoprotectores de los líquenes del páramo de Sumapaz Thamnolia vermicularis y Cladonia cf. didyma y estudio de su posible producción biotecnológica

dc.contributor.advisorValencia-Islas, Norma Angélicaspa
dc.contributor.advisorRojas Araque, José Leopoldospa
dc.contributor.authorNuñez Arango , Lissy Marcellaspa
dc.contributor.researchgroupGrupo de Investigación en Estudios Biológicos y Fisicoquímicos de Líquenes Colombianosspa
dc.contributor.researchgroupGrupo de Investigación en Química Medicinalspa
dc.date.accessioned2024-01-15T18:50:49Z
dc.date.available2024-01-15T18:50:49Z
dc.date.issued2022
dc.descriptionilustraciones, diagramas, fotografíasspa
dc.description.abstractLa exposición prolongada a la radiación ultravioleta (RUV) afecta principalmente a la piel, generando efectos negativos agudos y crónicos, que implican lesiones mutagénicas mediadas por el estrés oxidativo (EO), conllevando a cáncer de piel, enfermedad con un alto nivel de incidencia y mortalidad. Por lo anterior, es importante el uso de sustancias que tengan propiedades fotoprotectoras y/o antioxidantes, que por un lado sean capaces de interactuar con la RUV, evitando que llegue a la piel y, por otro, que impidan o contrarresten la formación de radicales libres. Dada las limitaciones que presenta la actual oferta de agentes protectores solares y/o antioxidantes respecto a su estabilidad, eficacia y seguridad, existe la necesidad de encontrar alternativas que cumplan con dichos requisitos, y los compuestos de origen natural son de interés para este propósito. Los líquenes del páramo de Sumapaz (ecosistema sometido a condiciones ambientales extremas de alta radiación solar), son una fuente atractiva para el desarrollo de estos agentes, ya que presentan una química única, responsable en gran medida de la supervivencia que poseen estos organismos en dicho ecosistema. Es así como en la presente investigación se sometieron a estudio dos líquenes del páramo del Sumapaz, Thamnolia vermicularis y Cladonia cf. didyma, de donde se aislaron y caracterizaron al ácido descarboxythamnólico (1) y arabitol (2) del primero, y el 5α,8α-peroxiergosteril divaricatinato (3), el ácido barbático (4), el ácido condidymico (5), y el ácido isodidymico (6) del segundo. Así mismo se realizó el estudio del potencial antioxidante in vitro de los compuestos y extractos liquénicos, evaluando su capacidad captadora de radicales libres DPPH•, poder reductor férrico, poder inhibidor de la peroxidación lipídica, protección del ADN, y de queratinocitos frente al radical hidroxilo generado in situ. Se evalúo además la capacidad fotoprotectora in vitro, tanto en el UVA como en el UVB, y se determinaron parámetros fisicoquímicos: lipofilicidad (cLogP), energía libre de Gibbs de transferencia (ΔtG), área de superficie polar topológica (TPSA), peso molecular (PM) y número de anillos aromáticos que presentan en la estructura (Ar), indicativos de la penetración dérmica de los compuestos. Finalmente, se propuso una alternativa biotecnológica de inmovilización celular en caolinita como soporte de inmovilización y acetato de sodio (0.1, 1.0 y 10 mM) como precursor biosintético para la obtención de 1 a partir de T. vermicularis. El compuesto 1 resultó ser el mejor agente dual con propiedades antioxidantes y fotoprotectoras capaz de captar radicales libres (CE50 = 0.3077 mol de compuesto / mol DPPH•), reducir iones férricos (PRF 0.782 ± 0.011 a 500 ppm), proteger a las células (% viabilidad celular (%VC) 85.34 ± 2.60 a 15 μM), y a su vez posee capacidad fotoprotectora alta tanto en el UVB (FPS 39.77 ± 0.21) como en el UVA (crit 358.0 nm ± 2.1, y UVA-r* 0.546 ± 0.051 a 200 ppm) y propiedades fisicoquímicas favorables para ser entregado al estrato córneo de la piel (cLogP, ΔtG, PM y Ar#). El compuesto 3, no fue un agente antioxidante sobresaliente en los modelos empleados, sin embargo, presentó alta capacidad fotoprotectora UVA (crit 352.5 ± 1.3 y UVA-r* 0.464 ± 0.001 a 200 ppm) y propiedades protectoras de queratinocitos (%VC 82.17 ± 1.64 a 15 μM) y del ADN (% Integridad del ADN (% I-ADN) 73.82 ± 5.44 a 100 μM) frente a daño oxidativo, además de cumplir algunas propiedades fisicoquímicas para ejercer su efecto tópico (ΔtG, TPSA y Ar#). Los compuestos 5 y 6 presentaron actividad antioxidante prometedora, captando radicales libres DPPH• (CE50 = 0.6694 y 1.700 mol de compuesto / mol DPPH•, respectivamente), reducen iones férricos (PRF 0.392 ± 0.009 y 0.546 ± 0.011, respectivamente a 500 ppm), protegen a las células (% VC 76.03 ± 2.45, y 75.92 ± 0.14, respectivamente a 15 μM) y al ADN de daño oxidativo (% I-ADN 56.59 ± 4.50, y 57.44 ± 3.48, respectivamente a 100 μM) y presentan propiedades fotoprotectoras UVB altas (FPS 39.78 ± 0.20, y 38.64 ± 0.60, respectivamente a 200 ppm), además de cumplir algunas propiedades fisicoquímicas para ejercer su efecto tópico (ΔtG, TPSA y PM). Por su parte, 4 careció de propiedades antioxidantes y fotoprotectoras sobresalientes. La inmovilización celular de T. vermicularis con flujo continuo de acetato de sodio 10 mM como precursor biosintético permitió la bioproducción de 1 con el mayor rendimiento (ca. 42 %) en comparación a las otras concentraciones evaluadas del precursor. El ácido descarboxythamnólico (1) es un agente dual antioxidante y fotoprotector prometedor para su posible desarrollo como protector solar, mientras que 3, 5 y 6 son de interés para combinarlos con otros agentes en el desarrollo de protectores solares de amplio espectro. La presente investigación representa un aporte al conocimiento químico y de actividad biológica de los líquenes del páramo de Sumapaz y contribuye a la explotación sostenible de este recurso natural. (Texto tomado de la fuente).spa
dc.description.abstractProlonged exposure to ultraviolet radiation (UVR) mainly affects the skin, generating acute and chronic negative effects, involving mutagenic lesions mediated by oxidative stress (OS), leading to skin cancer, a disease with a high incidence and mortality rate. Therefore, it is important to use substances with photoprotective and/or antioxidant properties, which on the one hand can interact with UVR, preventing it from reaching the skin, and on the other hand, preventing or counteracting the formation of free radicals. Given the limitations of the current supply of sunscreen and/or antioxidant agents with respect to their stability, efficacy and safety, there is a need to find alternatives that meet these requirements, and compounds of natural origin are of interest for this purpose. The lichens of the Sumapaz paramo (an ecosystem subjected to extreme environmental conditions of high solar radiation), are an attractive source for the development of these agents, since they present a unique chemistry, which is largely responsible for the survival of these organisms in this ecosystem. Thus, in the present investigation, two lichens from the Sumapaz paramo, Thamnolia vermicularis and Cladonia cf. didyma, were studied, from which decarboxythamnolic acid (1) and arabitol (2) were isolated and characterized from the first one, and 5α,8α-peroxyergosteryl divaricatinate (3), barbatic acid (4), condidymic acid (5), and isodidymic acid (6) from the second one. The in vitro antioxidant potential of the compounds and lichen extracts was also studied, evaluating their DPPH• free radical scavenging capacity, ferric reducing power, lipid peroxidation inhibiting power, DNA protection, and protection of keratinocytes against the hydroxyl radical generated in situ. The in vitro photoprotective capacity was also evaluated, both in UVA and UVB, and physicochemical parameters were determined: lipophilicity (cLogP), Gibbs free energy of transfer (ΔtG), topological polar surface area (TPSA), molecular weight (MW) and number of aromatic rings present in the structure (Ar), indicative of the dermal penetration of the compounds. Finally, a biotechnological alternative of cell immobilization on kaolinite as immobilization support and sodium acetate (0.1, 1.0 and 10 mM) as biosynthetic precursor was proposed to obtain 1 from T. vermicularis. Compound 1 proved to be the best dual agent with antioxidant and photoprotective properties capable of scavenging free radicals (EC50 = 0.3077 mol compound / mol DPPH•), reducing ferric ions (PRF 0.782 ± 0.011 at 500 ppm), protecting cells (% cell viability (%VC) 85. 34 ± 2.60 at 15 μM), while possessing high photoprotective capacity in both UVB (SPF 39.77 ± 0.21) and UVA (crit 358.0 nm ± 2.1, and UVA-r* 0.546 ± 0.051 at 200 ppm) and favorable physicochemical properties for delivery to the stratum corneum of the skin (cLogP, ΔtG, PM and Ar#). Compound 3, was not an outstanding antioxidant agent in the models employed, however, it presented high UVA photoprotective capacity (crit 352.5 ± 1.3 and UVA-r* 0.464 ± 0.001 at 200 ppm) and keratinocyte protective properties (%VC 82. 17 ± 1.64 at 15 μM) and DNA (% DNA Integrity (% I-DNA) 73.82 ± 5.44 at 100 μM) against oxidative damage, in addition to fulfilling some physicochemical properties to exert their topical effect (ΔtG, TPSA and Ar#). Compounds 5 and 6 showed promising antioxidant activity, scavenging DPPH• free radicals (EC50 = 0.6694 and 1.700 mol compound / mol DPPH•, respectively), reduce ferric ions (PRF 0.392 ± 0.009 and 0.546 ± 0.011, respectively at 500 ppm), protect cells (% VC 76.03 ± 2.45, and 75.92 ± 0. 14, respectively at 15 μM) and DNA from oxidative damage (% I-DNA 56.59 ± 4.50, and 57.44 ± 3.48, respectively at 100 μM) and exhibit high UVB photoprotective properties (SPF 39.78 ± 0.20, and 38.64 ± 0.60, respectively at 200 ppm), in addition to fulfilling some physicochemical properties to exert their topical effect (ΔtG, TPSA and PM). For its part, 4 lacked outstanding antioxidant and photoprotective properties. Cell immobilization of T. vermicularis with continuous flow of 10 mM sodium acetate as biosynthetic precursor allowed the bioproduction of 1 with the highest yield (ca. 42 %) compared to the other evaluated concentrations of the precursor. Decarboxythamnolic acid (1) is a promising dual antioxidant and photoprotective agent for possible development as a sunscreen, while 3, 5 and 6 are of interest for combination with other agents in the development of broad spectrum sunscreens. The present research represents a contribution to the chemical knowledge and biological activity of the lichens of the Sumapaz paramo and contributes to the sustainable exploitation of this natural resource.eng
dc.description.degreelevelDoctoradospa
dc.description.degreenameDoctor en Ciencias Farmacéuticasspa
dc.description.sponsorshipMinisterio de Ciencia Tecnología e Innovación (MinCiencias) la financiación de esta tesis a través de los siguientes mecanismos: a) Programa de Créditos Condonables a Doctores Nacionales a través de la convocatoria 757, código HERMES: 43541. b) Proyecto: “Caracterización y evaluación de dispositivos médicos a base de colágeno asociados a extractos naturales y metabolitos con aplicación farmacéutica. Código: 110180864505”. CT80740-198-2019. Ministerio de Ciencia Tecnología e Innovación (MinCiencias). Código HERMES: 42660.spa
dc.description.sponsorshipUniversidad Nacional de Colombia el financiamiento otorgado a través del proyecto: “Bioprospección de líquenes del Páramo de Sumapaz, Colombia como fuente original de sustancias duales con actividad antioxidante y fotoprotectora para la prevención de problemas dérmicos asociados a la radiación solar”, código HERMES: 35978. Convocatoria Nacional de Proyectos para el Fortalecimiento de la Investigación, Creación e Innovación de la Universidad Nacional de Colombia 2016-2018. Modalidad Única.spa
dc.format.extent197 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.identifier.instnameUniversidad Nacional de Colombiaspa
dc.identifier.reponameRepositorio Institucional Universidad Nacional de Colombiaspa
dc.identifier.repourlhttps://repositorio.unal.edu.co/spa
dc.identifier.urihttps://repositorio.unal.edu.co/handle/unal/85287
dc.language.isospaspa
dc.publisherUniversidad Nacional de Colombiaspa
dc.publisher.branchUniversidad Nacional de Colombia - Sede Bogotáspa
dc.publisher.facultyFacultad de Cienciasspa
dc.publisher.placeBogotá, Colombiaspa
dc.publisher.programBogotá - Ciencias - Doctorado en Ciencias Farmacéuticasspa
dc.relation.indexedBiremespa
dc.relation.referencesAddor, F. (2017). Antioxidants in dermatology. Anais brasileiros de dermatologia, 92, 356-362.spa
dc.relation.referencesAfonso, S., Horita, K., Silva, J., Almeida, I., Amaral, M., Lobão, P., & Lobo, J. (2014). Photodegradation of avobenzone: Stabilization effect of antioxidants. Journal of Photochemistry and Photobiology B: Biology, 140, 36-40.spa
dc.relation.referencesAguirre, J. (2006). Diversidad de los musgos (Briophita) y líquenes de Colombia-Una evaluación con propósitos de conservación (Doctoral dissertation, Tesis doctoral. Universidad Nacional de Colombia. Facultad de Ciencias. Instituto de Ciencias Naturales, Bogotá).spa
dc.relation.referencesAguirre, J. (2008). Diversidad y riqueza de musgos y líquenes en Colombia-Generalidades y metodología. Colombia diversidad biótica VI: Riqueza y diversidad de los musgos y líquenes en Colombia, 1-17.spa
dc.relation.referencesAllegra, A., Pioggia, G., Tonacci, A., Musolino, C., & Gangemi, S. (2020). Oxidative stress and photodynamic therapy of skin cancers: Mechanisms, challenges, and promising developments. Antioxidants, 9(5), 448.spa
dc.relation.referencesAraújo, R., Silva, F., Melo-Junior, M., & Porto, A. (2011). Metaloproteinases: aspectos fisiopatológicos sistêmicos e sua importância na cicatrizaçãospa
dc.relation.referencesAsturnatura, líquenes y micorrizas. (2021). Líquenes y micorrizas. https://www.asturnatura.com/articulos/hongos/liquenes-micorrizas.php.spa
dc.relation.referencesBaek, J., & Lee, M. (2016). Oxidative stress and antioxidant strategies in dermatology. Redox Report.spa
dc.relation.referencesBenzie, I., & Strain, J. (1996). The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Analytical biochemistry, 239(1), 70-76.spa
dc.relation.referencesBernal, R., Gradstein, S., & Celis, M. (2015). Catálogo de plantas y líquenes de Colombia. Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá.spa
dc.relation.referencesBernat, R., (2021). «Recomendaciones Sobre Fotoprotección En Una Oficina De Farmacia». Begoña.spa
dc.relation.referencesBharate, S., Kumar, V., & A Vishwakarma, R. (2016). Determining partition coefficient (Log P), distribution coefficient (Log D) and ionization constant (pKa) in early drug discovery. Combinatorial Chemistry & High Throughput Screening, 19(6), 461-469.spa
dc.relation.referencesBhattacharyya, S., Deep, P., Singh, S., & Nayak, B. (2016). Lichen secondary metabolites and its biological activity. Am. J. PharmTech Res, 6(6), 1-7.spa
dc.relation.referencesBei, J., Qin-Shi, Z., Li-Yan, P., Zhong-Wen, L., & Han-Dong, S. (2002). Constituents from Thamnolia vermicularis. Plant Diversity, 24(04), 1.spa
dc.relation.referencesBi, W., He, C., Ma, Y., Shen, J., Zhang, L. H., Peng, Y., & Xiao, P. (2016). Investigation of free amino acid, total phenolics, antioxidant activity and purine alkaloids to assess the health properties of non-Camellia tea. Acta Pharmaceutica Sinica B, 6(2), 170-181.spa
dc.relation.referencesBirben, E., Sahiner, U., Sackesen, C., Erzurum, S., & Kalayci, O. (2012). Oxidative stress and antioxidant defense. World Allergy Organization 5: 9-19.spa
dc.relation.referencesBlanch, M., Blanco, Y., Fontaniella, B., Legaz, M., & Vicente, C. (2001). Production of phenolics by immobilized cells of the lichen Pseudevernia furfuracea: the role of epiphytic bacteria. International Microbiology, 4, 89-92.spa
dc.relation.referencesBrand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food science and Technology, 28(1), 25-30.spa
dc.relation.referencesBucke, C. (1983). Immobilized cells. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 300(1100), 369-389.spa
dc.relation.referencesBuso, P., Radice, M., Baldisserotto, A., Manfredini, S., & Vertuani, S. (2017). Guidelines for the development of herbal-based sunscreen. In Herbal medicine. IntechOpen.spa
dc.relation.referencesCalcott, M., Ackerley, D., Knight, A., Keyzers, R., & Owen, J. (2018). Secondary metabolism in the lichen symbiosis. Chemical Society Reviews, 47(5), 1730-1760spa
dc.relation.referencesCarmichael, J., DeGraff, W., Gazdar, A., Minna, J., & Mitchell, J. (1987). Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer research, 47(4), 936-942.spa
dc.relation.referencesCastro Mandujano, O. (2010). Contribución al estudio fitoquímico del liquen Thamnolia vermicularis subsp. Vermicularis S. STR. Revista de la Sociedad Química del Perú, 76(4), 322-329.spa
dc.relation.referencesChester, D., Elix, J., & Kennedy, J. (1986). Isodidymic Acid, a new dibenzofuran from the lichen. Cladonia didyma. Australian journal of chemistry, 39(11), 1759-1764.spa
dc.relation.referencesChibata, I., & Wingard, L. (Eds.). (2014). Immobilized Microbial Cells: Applied Biochemistry and Bioengineering, Vol. 4. Elsevier.spa
dc.relation.referencesChoi, R., Ham, J., Yeo, J., Hur, J., Park, S., Kim, M., & Lee, M. (2017). Anti-obesity property of lichen Thamnolia vermicularis extract in 3T3-L1 cells and diet-induced obese mice. Preventive Nutrition and Food Science, 22(4), 285.spa
dc.relation.referencesConsortium of North American Lichen Herbaria – CNALH. (2023). Thamnolia vermicularis. https://lichenportal.org/portal/taxa/index.php?taxon=Thamnolia+vermicularis&formsubmit=Search+Terms.spa
dc.relation.referencesConsortium of North American Lichen Herbaria – CNALH. (2023). Cladonia didyma. https://lichenportal.org/portal/taxa/index.php?taxon=Cladonia+didyma&formsubmit=Search+Terms.spa
dc.relation.referencesCoskun, Z., Ersoz, M., Acikgoz, B., Karalti, I., Cobanoglu, G., & Sesal, C. (2015). Anti-proliferative and apoptotic effects of methanolic extracts from different Cladonia species on human breast cancer cells. Folia biologica, 61(3), 97.spa
dc.relation.referencesCuenta de alto costo. (2019). Situación del Cáncer en la población adultos atendida en el SGSSS de Colombia - 2019. https://cuentadealtocosto.org/site/publicaciones/situacion-del-cancer-en-la-poblacion-adultos-atendida-en-el-sgsss-de-colombia-2019/.spa
dc.relation.referencesDaina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific reports, 7(1), 42717.spa
dc.relation.referencesDe Fabo, E., Noonan, F., Fears, T., & Merlino, G. (2004). Ultraviolet B but not ultraviolet A radiation initiates melanoma. Cancer research, 64(18), 6372-6376.spa
dc.relation.referencesDe Valencia, M. (2002). Hongos liquenizados (Vol. 8). Univ. Nacional de Colombia.spa
dc.relation.referencesDevkota, S., Chaudhary, R., Werth, S., & Scheidegger, C. (2017). Indigenous knowledge and use of lichens by the lichenophilic communities of the Nepal Himalaya. Journal of Ethnobiology and Ethnomedicine, 13(1), 1-10.spa
dc.relation.referencesDiaz, M. Estudio del Potencial Antioxidante de una especie selecta de Liquen Colombiano del género Usnea. Bogotá, Colombia. 2008 (Tesis Maestria. Universidad Nacional de Colombia).spa
dc.relation.referencesDiffey, B. (1984). Whatever happened to the erythemal unit. Photodermatol Photoimmunol Photomed, 1, 103-105.spa
dc.relation.referencesDominiczak, M. (2007). Lipídios e lipoproteínas. Bioquímica médica. 2ª Ed. Rio de Janeiro: Elsevier, 233-252spa
dc.relation.referencesDonglikar, M., & Deore, S. (2016). Sunscreens: A review. Pharmacognosy Journals, 8(3).spa
dc.relation.referencesDutra, E., Oliveira, D., Kedor-Hackmann, E., & Santoro, M. (2004). Determination of sun protection factor (SPF) of sunscreens by ultraviolet spectrophotometry. Revista Brasileira de Ciências Farmacêuticas, 40, 381-385.spa
dc.relation.referencesErtl, P., Rohde, B., & Selzer, P. (2000). Fast calculation of molecular polar surface area as a sum of fragment-based contributions and its application to the prediction of drug transport properties. Journal of medicinal chemistry, 43(20), 3714-3717.spa
dc.relation.referencesEspín de Gea, J., Soler-Rivas, C., Wichers, H., & García-Viguera, C. (2000). Anthocyanin-based natural colorants: A new source of antiradical activity for foodstuff.spa
dc.relation.referencesFernández-Moriano, C., Gómez-Serranillos, M., & Crespo, A. (2016). Antioxidant potential of lichen species and their secondary metabolites. A systematic review. Pharmaceutical Biology, 54(1), 1-17.spa
dc.relation.referencesFinter, N. (1969). Dye uptake methods for assessing viral cytopathogenicity and their application to interferon assays. Journal of General Virology, 5(3), 419-427.spa
dc.relation.referencesFondo Colombiano de Enfermedades de Alto Costo. (2018). «23 de Mayo: Día Mundial de la Lucha Contra el Melanoma». Cuenta de Alto Costo (blog). https://cuentadealtocosto.org/site/investigaciones/dia-mundial-de-la-lucha-contra-el-melanoma-2/.spa
dc.relation.referencesFraga Junior, C., Gumboski, E., & Eliasaro, S. (2020). The genus Cladonia (Lichenized Ascomycota) from Restinga Vegetation of Espírito Santo state, Brazil: Supergroups Crustaceae and Perviae. Rodriguésia, 71.spa
dc.relation.referencesGaroli, D., Pelizzo, M., Bernardini, B., Nicolosi, P., & Alaibac, M. (2008). Sunscreen tests: Correspondence between in vitro data and values reported by the manufacturers. Journal of Dermatological Science, 52(3), 193-204.spa
dc.relation.referencesGBIF. 2021a. «Distribición Mundial de Thamnolia Vermicularis». 2021. https://www.gbif.org/occurrence/map?q=thamnolia%20vermicularis.spa
dc.relation.referencesGBIF. 2021b. «Distribución Mundial de Cladonia didyma». 2021. https://www.gbif.org/occurrence/map?q=cladonia%20didyma.spa
dc.relation.referencesGhose, A., & Crippen, G. (1987). Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. Journal of chemical information and computer sciences, 27(1), 21-35.spa
dc.relation.referencesGoga, M., Elečko, J., Marcinčinová, M., Ručová, D., Bačkorová, M., & Bačkor, M. (2020). Lichen metabolites: an overview of some secondary metabolites and their biological potential. Co-evolution of secondary metabolites, 175-209.spa
dc.relation.referencesGrimm, M., Grube, M., Schiefelbein, U., Zühlke, D., Bernhardt, J., & Riedel, K. (2021). The lichens’ microbiota, still a mystery?. Frontiers in Microbiology, 714.spa
dc.relation.referencesGuo, J., Li, Z., Wang, A., Liu, X., Wang, J., Guo, X., ... & Hua, H. M. (2011). Three new phenolic compounds from the lichen Thamnolia vermicularis and their antiproliferative effects in prostate cancer cells. Planta medica, 77(18), 2042-2046.spa
dc.relation.referencesHaiyuan, Y., Shen, X., Liu, D., Hong, M., & Lu, Y. (2019). The protective effects of β-sitosterol and vermicularin from Thamnolia vermicularis (Sw.) Ach. against skin aging in vitro. Anais da Academia Brasileira de Ciências, 91.spa
dc.relation.referencesHalliwell, B. (2012). Free radicals and antioxidants: updating a personal view. Nutrition reviews, 70(5), 257-265.spa
dc.relation.referencesHalliwell, B. (2000). Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward?. Cardiovascular research, 47(3), 410-418.spa
dc.relation.referencesHojerová, J., Medovcíková, A., & Mikula, M. (2011). Photoprotective efficacy and photostability of fifteen sunscreen products having the same label SPF subjected to natural sunlight. International journal of pharmaceutics, 408(1-2), 27-38.spa
dc.relation.referencesHuneck, S. (1999). The significance of lichens and their metabolites. Die Naturwissenschaften, 86(12), 559-570.spa
dc.relation.referencesHuneck, S., Yoshimura, I., Huneck, S., & Yoshimura, I. (1996). Identification of lichen substances (pp. 11-123). Springer Berlin Heidelberg.spa
dc.relation.referencesInternational Agency for Research on Cancer (1992) - National Cancer Control Policy. s. f. Accedido 28 de septiembre de 2022. https://wiki.cancer.org.au/policy/Citation:International_Agency_for_Research_on_Cancer_1992.spa
dc.relation.referencesInstituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia (2004). Colecciones en Línea. Publicado en Internet http://www.biovirtual.unal.edu.co [accesado el 28 09 2022].spa
dc.relation.referencesKhare, R., Upmanyu, N., & Jha, M. (2021). Exploring the potential effect of methanolic extract of Salvia officinalis against UV exposed skin aging: in vivo and in vitro model. Current Aging Science, 14(1), 46-55.spa
dc.relation.referencesKohlhardt-Floehr, C., Boehm, F., Troppens, S., Lademann, J., & Truscott, T. (2010). Prooxidant and antioxidant behaviour of usnic acid from lichens under UVB-light irradiation–Studies on human cells. Journal of Photochemistry and Photobiology B: Biology, 101(1), 97-102.spa
dc.relation.referencesKono, M., Kon, Y., Ohmura, Y., Satta, Y., & Terai, Y. (2020). In vitro resynthesis of lichenization reveals the genetic background of symbiosis-specific fungal-algal interaction in Usnea hakonensis. BMC genomics, 21(1), 1-16.spa
dc.relation.referencesKuskoski, E., Asuero, A., Troncoso, A., Mancini-Filho, J., & Fett, R. (2005). Aplicación de diversos métodos químicos para determinar actividad antioxidante en pulpa de frutos. Food Science and Technology, 25, 726-732.spa
dc.relation.referencesLeal, A., Rojas, J., Valencia-Islas, N., & Castellanos, L. (2018). New β-orcinol depsides from Hypotrachyna caraccensis, a lichen from the páramo ecosystem and their free radical scavenging activity. Natural product research, 32(12), 1375-1382.spa
dc.relation.referencesLegaz, M., de Armas, R., & Vicente, C. (2011). Bioproduction of depsidones for pharmaceutical purposes. In Drug development-A case study based insight into modern strategies. IntechOpen.spa
dc.relation.referencesLi, C., Guo, X., Lei, M., Wu, J., Jin, J., Shi, X., ... & Shen, X. (2017). Thamnolia vermicularis extract improves learning ability in APP/PS1 transgenic mice by ameliorating both Aβ and Tau pathologies. Acta Pharmacologica Sinica, 38(1), 9-28.spa
dc.relation.referencesLichtenberg, D., & Pinchuk, I. (2015). Oxidative stress, the term and the concept. Biochemical and Biophysical Research Communications, 461(3), 441-444.spa
dc.relation.referencesLiga Colombiana contra el Cáncer. (2020). Cancer de piel. https://www.ligacancercolombia.org/cancer-de-piel/.spa
dc.relation.referencesLópez Ladino, J. A. (2021). Determinación de la actividad in vivo sobre la biosíntesis y acción de andrógenos endógenos de sustancias liquénicas seleccionadas. Tesis Maestría Universidad Nacional de Colombia.spa
dc.relation.referencesLopez D., Cadena I., & Victoria, C (2019). Anatomía y Fisiología del Melanocito: revisión de tema.spa
dc.relation.referencesLorencini, M., Brohem, C., Dieamant, G., Zanchin, N., & Maibach, H. (2014). Active ingredients against human epidermal aging. Ageing Research Reviews, 15, 100-115.spa
dc.relation.referencesLuo, H., Ren, M., Lim, K., Jin Koh, Y., Wang, L., & Hur, J. (2006). Antioxidative Activity of Lichen Thamnolia vermicularis in vitro. Mycobiology, 34(3), 124-127.spa
dc.relation.referencesLuze, H., Nischwitz, S., Zalaudek, I., Müllegger, R., & Kamolz, L. (2020). DNA repair enzymes in sunscreens and their impact on photoageing—A systematic review. Photodermatology, Photoimmunology & Photomedicine, 36(6), 424-432.spa
dc.relation.referencesLücking, R., de Torres, L., Plaza, C., Medina, G., & Vizcaya, M. (2014). Antioxidant activity, total phenols and flavonoids of lichens from Venezuelan Andes. Journal of Pharmacy & Pharmacognosy Research, 2(5), 138-147.spa
dc.relation.referencesMacFaul, P., Ingold, K., & Lusztyk, J. (1996). Kinetic solvent effects on hydrogen atom abstraction from phenol, aniline, and diphenylamine. the importance of hydrogen bonding on their radical-trapping (antioxidant) activities1. The Journal of Organic Chemistry, 61(4), 1316-1321.spa
dc.relation.referencesManojlović, N., Vasiljević, P., Nikolić, D., Bogdanović-Dušanović, G., Marković, Z., & Najman, S. (2011). The isolation, analytical characterization by HPLC-UV and NMR spectroscopy, cytotoxic and antioxidant activities of baeomycesic acid from Thamnolia vermicularis var. subuliformis. Hemijska industrija, 65(5), 591-59spa
dc.relation.referencesMansur, J., Breder, M., Mansur, M., & Azulay, R. (1986). Determinaçäo do fator de proteçäo solar por espectrofotometria. An. Bras. Dermatol, 121-4.spa
dc.relation.referencesMansuri, R., Diwan, A., Kumar, H., Dangwal, K., & Yadav, D. (2021). Potential of natural compounds as sunscreen agents. Pharmacognosy Reviews, 15(29), 47-56.spa
dc.relation.referencesMartins, M., Lima, M., Santiago, R., Buril, M., Pereira, E., Legaz, M., ... & Silva, N. (2017). New biotechnological methods for producing therapeutic compounds (usnic, stictic and norstictic acids) by cell immobilization of the lichen Cladonia substellata Vainio. Biotechnol. Ind. J, 13, 1-13.spa
dc.relation.referencesMesa-Arango, A., Flórez-Muñoz, S., & Sanclemente, G. (2017). Mechanisms of skin aging. Iatreia, 30(2), 160-170.spa
dc.relation.referencesMichalak, M., Pierzak, M., Kręcisz, B., & Suliga, E. (2021). Bioactive compounds for skin health: A review. Nutrients, 13(1), 203.spa
dc.relation.referencesMillot, M., Di Meo, F., Tomasi, S., Boustie, J., & Trouillas, P. (2012). Photoprotective capacities of lichen metabolites: a joint theoretical and experimental study. Journal of Photochemistry and Photobiology B: Biology, 111, 17-26.spa
dc.relation.referencesMinisterio de Salud de Colombia. (2020). «Vicesalud destacó acciones de Colombia frente al cáncer de piel». https://www.minsalud.gov.co/Paginas/Vicesalud-destaco-acciones-de-Colombia-frente-al-cancer-de-piel.aspx.spa
dc.relation.referencesMitsuda, H. (1966). Antioxidative action of indole compounds during the autoxidation of linoleic acid. Eiyo to Syokuryo, 19, 210-214.spa
dc.relation.referencesMoncada, B., Plata, E., & Fazio, A. (2012). GLALIA Revista Electrónica del Grupo LatinoAmericano de Liquenólogos.spa
dc.relation.referencesMosbach, K. (1964). On the biosynthesis of lichen substances. Acta Chemica Scandinavica, 18, 329-334.spa
dc.relation.referencesMosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of immunological methods, 65(1-2), 55-63.spa
dc.relation.referencesNash III, T. (2008). Nitrogen, its metabolism and potential contribution to ecosystems. Lichen biology, 216-233.spa
dc.relation.referencesNational Cancer Institute. (2021). Skin Cancer (Including Melanoma). CgvCancerTypeHome. Nciglobal,ncienterprise. https://www.cancer.gov/types/skin.spa
dc.relation.referencesNguyen, K., Chollet-Krugler, M., Gouault, N., & Tomasi, S. (2013). UV-protectant metabolites from lichens and their symbiotic partners. Natural product reports, 30(12), 1490-1508.spa
dc.relation.referencesNowak, R., Drozd, M., Mendyk, E., Lemieszek, M., Krakowiak, O., Kisiel, W., ... & Szewczyk, K. (2016). A new method for the isolation of ergosterol and peroxyergosterol as active compounds of Hygrophoropsis aurantiaca and in vitro antiproliferative activity of isolated ergosterol peroxide. Molecules, 21(7), 946.spa
dc.relation.referencesOhio Moss and Lichen Association. (2021). «lichen-Cladonia didyma». http://ohiomosslichen.org/lichen-cladonia-didyma/.spa
dc.relation.referencesOlafsdottir, E., Omarsdotti, S., Paulsen, B., & Wagner, H. (2003). Immunologically active O6-branched (1» 3)-β-glucan from the lichen Thamnolia vermicularis var. subuliformis. Phytomedicine, 10(4), 318-324.spa
dc.relation.referencesOnuţ‐Brännström, I., Tibell, L., & Johannesson, H. (2017). A worldwide phylogeography of the whiteworm lichens Thamnolia reveals three lineages with distinct habitats and evolutionary histories. Ecology and Evolution, 7(10), 3602-3615.spa
dc.relation.referencesOrange, A., James, P., & White, F. (2001). Microchemical methods for the identification of lichens. British Lichen Society.spa
dc.relation.referencesOrganización Mundial de la Salud - OMS. (2017). Radiation: Ultraviolet (UV) Radiation and Skin Cancer. https://www.who.int/news-room/q-a-detail/radiation-ultraviolet-(uv)-radiation-and-skin-cancer.spa
dc.relation.referencesOrganización Mundial de la Salud - OMS. (2021). Cáncer. https://www.who.int/es/news-room/fact-sheets/detail/cancer.spa
dc.relation.referencesOyaizu, M. (1986). Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. The Japanese journal of nutrition and dietetics, 44(6), 307-315.spa
dc.relation.referencesPankratov, T., Aleksey K., Evgeny K., y Dobrovol G. (2017). Pankratov T. A., Kachalkin A. V., Korchikov E. S., Dobrovol’skaya T. G. Microbial Communities of Lichens (review) // Microbiology (transl. from Mikrobiologiya). Vol. 86, No. 3, pp. 265–283. Microbiology 86 (junio): 265-83. https://doi.org/10.1134/S0026261717030134.spa
dc.relation.referencesPelizzo, M., Zattra, E., Nicolosi, P., Peserico, A., Garoli, D., & Alaibac, M. (2012). In vitro evaluation of sunscreens: an update for the clinicians. International Scholarly Research Notices, 2012.spa
dc.relation.referencesPereira, E., da Silva, N., Buril, M., Martins, M., Silva, H., Falcão, E., ... & Vicente, C. (2020). Bioactive compounds from Brazilian lichens and their biotechnological applications. Plant-derived Bioactives: Production, Properties and Therapeutic Applications, 209-238.spa
dc.relation.referencesPereira, E., Pereyra, T., Matos, S., Da Silva, N., Andrade, L., & Vicente, C. (1995). Bioproduction of usnic acid from acetate by kaolinite immobilized cells of Cladonia substellata Vain. Acta Societatis Botanicorum Poloniae, 64(2), 171-174.spa
dc.relation.referencesPereira, I., Pereira, E., y Gutiérrez M. (2017). Production of Secondary Metabolites by Immobilized Cells of Stereocaulon ramulosum (Sw) Rausch (Lichen) in Different Design of Bioreactors. Journal of Chemical and Pharmaceutical Research, 9(5):104-109spa
dc.relation.referencesPerico-Franco, L., Rojas, J., Cerbón, M., González-Sánchez, I., & Valencia-Islas, N. (2015). Antioxidant activity and protective effect on cell and DNA oxidative damage of substances isolated from lichens of Colombian Páramo. Pharmaceutical and Biosciences Journal, 09-17.spa
dc.relation.referencesPisoschi, A., & Pop, A. (2015). The role of antioxidants in the chemistry of oxidative stress: A review. European journal of medicinal chemistry, 97, 55-74.spa
dc.relation.referencesPouillot, A., Polla, L., Tacchini, P., Neequaye, A., Polla, A., & Polla, B. (2011). Natural antioxidants and their effects on the skin. Formulating, packaging, and marketing of natural cosmetic products, 239-257.spa
dc.relation.referencesPozzobon, F., Acosta, Á., & Castillo, J. (2018). Cáncer de piel en Colombia: cifras del Instituto Nacional de Cancerología. Revista de la Asociación Colombiana de Dermatología y Cirugía Dermatológica, 26(1), 12-17.spa
dc.relation.referencesRadice, M., Manfredini, S., Ziosi, P., Dissette, V., Buso, P., Fallacara, A., & Vertuani, S. (2016). Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia, 114, 144-162.spa
dc.relation.referencesRähse, W. (2020). Cosmetic Creams: Development, Manufacture and Marketing of Effective Skin Care Products. John Wispa
dc.relation.referencesRajendran, P., Nandakumar, N., Rengarajan, T., Palaniswami, R., Gnanadhas, E., Lakshminarasaiah, U., ... & Nishigaki, I. (2014). Antioxidants and human diseases. Clinica chimica acta, 436, 332-347.spa
dc.relation.referencesRanković, B. (Ed.). (2019). Lichen secondary metabolites: bioactive properties and pharmaceutical potential. Springer.spa
dc.relation.referencesRao, S., & Ravishankar, G. (2002). Plant cell cultures: chemical factories of secondary metabolites. Biotechnology advances, 20(2), 101-153.spa
dc.relation.referencesReal Statistics Resource Pack. (2021). https://www.real-statistics.com/appendix/citation-real-statistics-software-website/.spa
dc.relation.referencesRojas, J., Díaz-Santos, M., & Valencia-Islas, N. (2015). Metabolites with antioxidant and photo-protective properties from Usnea roccellina Motyka, a lichen from Colombian Andes. Pharmaceutical and Biosciences Journal, 18-26.spa
dc.relation.referencesRusso, A., Piovano, M., Lombardo, L., Garbarino, J., & Cardile, V. (2008). Lichen metabolites prevent UV light and nitric oxide-mediated plasmid DNA damage and induce apoptosis in human melanoma cells. Life sciences, 83(13-14), 468-474.spa
dc.relation.referencesSadowsky, A., & Meeßen, J. (2017). The Resistance of Lichen Photobionts to Extreme Abiotic Stressors on Earth, in Space and in Simulations. In Algal and cyanobacteria symbioses (pp. 575-609)spa
dc.relation.referencesSaewan, N., & Jimtaisong, A. (2015). Natural products as photoprotection. Journal of cosmetic dermatology, 14(1), 47-63.spa
dc.relation.referencesSantiago, R., Martins, M., de Barros, L., Vilaça, M., Legaz, E., & Vicente, C. (2020). Lichen metabolites from the immobilized bionts isolated from Cladonia salzmannii. A study of their antioxidant and antimicrobial activities. Journal of Medicinal Plants, 8(4), 43-spa
dc.relation.referencesSantos, L., Wu, E., Grinias, K., Koetting, M., & Jain, P. (2021). Developability profile framework for lead candidate selection in topical dermatology. International Journal of Pharmaceutics, 604, 120750.spa
dc.relation.referencesSayre, R., Agin, P., LeVee, G., & Marlowe, E. (1979). A comparison of in vivo and in vitro testing of sunscreening formulas. Photochemistry and Photobiology, 29(3), 559-566.spa
dc.relation.referencesShukla, V., Kumar, S., & Kumar, N. (Eds.). (2017). Plant adaptation strategies in changing environment. Springer Singapore.spa
dc.relation.referencesSierra, M., Danko, D., Sandoval, T., Pishchany, G., Moncada, B., Kolter, R., ... & Zambrano, M. (2020). The microbiomes of seven lichen genera reveal host specificity, a reduced core community and potential as source of antimicrobials. Frontiers in microbiology, 398.spa
dc.relation.referencesSilverman, R., & Holladay, M. (2014). The organic chemistry of drug design and drug action. Academic press.spa
dc.relation.referencesSipman, H., & Aguirre J. (1982). Contribución al conocimiento de los líquenes de Colombia—i. clave genérica para los líquenes foliosos y fruticosos de los páramos colombianos. Caldasia, 603-34.spa
dc.relation.referencesSoto Medina, E., Diaz, D., & Montaño, J. (2021). Biogeography and richness of lichens in Colombia. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 45(174), 122-135.spa
dc.relation.referencesSpribille, T., Tuovinen, V., Resl, P., Vanderpool, D., Wolinski, H., Aime, M., ... & McCutcheon, J. (2016). Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science, 353(6298), 488-492.spa
dc.relation.referencesSpringsteen, A., Yurek, R., Frazier, M., & Carr, K. (1999). In vitro measurement of sun protection factor of sunscreens by diffuse transmittance. Analytica Chimica Acta, 380(2-3), 155-164.spa
dc.relation.referencesStocker-Wörgötter, E. (2008). Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. Natural product reports, 25(1), 188-200.spa
dc.relation.referencesStrlic, M., Radovičč, T., Kolar, J., & Pihlar, B. (2002). Anti-and prooxidative properties of gallic acid in fenton-type systems. Journal of Agricultural and Food Chemistry, 50(22), 6313-6317.spa
dc.relation.referencesSuja, K., Jayalekshmy, A., & Arumughan, C. (2004). Free radical scavenging behavior of antioxidant compounds of sesame (Sesamum indicum L.) in DPPH• system. Journal of agricultural and food chemistry, 52(4), 912-915.spa
dc.relation.referencesSung, H., Ferlay, J., Siegel, R., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 71(3), 209-249.spa
dc.relation.referencesTang, Y., Laxi, N., & Bao, H. (2015). Chemical constituents and their antioxidant activities from thallus of Ramalina conduplicans. Mycosystema, 34(1), 169-176.spa
dc.relation.referencesTatipamula, V., & Vedula, G. (2019). Antimicrobial and anti-tubercular activities of isolates and semi synthetic derivatives of lichen Ramalina leiodea (Nyl.) Nyl. Journal of the Serbian Chemical Society, 84(6), 555-562.spa
dc.relation.referencesTeuvo, A., Raquel, P., Flakus, A., & Stenroos, S. (2016). Additions to the global diversity of Cladonia. The Lichenologist, 48(5), 517-526.spa
dc.relation.referencesThadani, V., Khan, S., Choudhary, M., & Karunaratne, V. (2009). Novel α- Glucosidase Inhibitors from Lichen Cladonia sp.spa
dc.relation.referencesTouitou, E., & Godin, B. (2008). Skin nonpenetrating sunscreens for cosmetic and pharmaceutical formulations. Clinics in dermatology, 26(4), 375-379.spa
dc.relation.referencesU.S. Food and Drug Administration. (2020). Part 352—Sunscreen Drug Products for over-the-Counter Human Use. In CFR-Code of Federal Regulations Title 21. https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=352.spa
dc.relation.referencesValencia-Islas, N., Arguello, J., & Rojas, J. (2020). Antioxidant and photoprotective metabolites of Bunodophoron melanocarpum, a lichen from the Andean páramo. Pharmaceutical Sciences, 27(2), 281-290.spa
dc.relation.referencesVerma, N., & Behera, B. (2015). In vitro culture of lichen partners: need and implications. Recent Advances in Lichenology: Modern Methods and Approaches in Lichen Systematics and Culture Techniques, Volume 2, 147-159.spa
dc.relation.referencesVicente, C., Fontaniella, B., Millanes, A., Sebastián, B., & Legaz, M. (2003). Enzymatic production of atranorin: a component of the oak moss absolute by immobilized lichen cells. International journal of cosmetic science, 25(1‐2), 25-29.spa
dc.relation.referencesWang, H., Liu, J., Pang, D., Li, T., & Liu, R. (2019). Mechanisms underlying the protective effects of blueberry extract against ultraviolet radiation in a skin cell co-culture system. Journal of Functional Foods, 52, 603-610.spa
dc.relation.referencesWhite, P., Oliveira, R., Oliveira, A., Serafini, M. R., Araújo, A., Gelain, D., ... & Santos, M. (2014). Antioxidant activity and mechanisms of action of natural compounds isolated from lichens: a systematic review. Molecules, 19(9), 14496-14527.spa
dc.relation.referencesWirth, V. (2004). Guía de campo de los líquenes, musgos y hepáticas: con 288 especies de líquenes y 226 de briófitos (musgos y hepáticas). Omega.spa
dc.relation.referencesWondrak, G., & Wondrak. (2016). Skin Stress Response Pathways. Switzerland: Springer.spa
dc.relation.referencesWong, B., Leeson, S., Grindle, S., Magee, B., Brooks, E., & Magee, P. (1995). D-arabitol metabolism in Candida albicans: construction and analysis of mutants lacking D-arabitol dehydrogenase. Journal of bacteriology, 177(11), 2971-2976.spa
dc.relation.referencesXiang, W., Wang, Q., Ma, L., & Hu, L. (2013). β-Orcinol-type depsides from the lichen Thamnolia vermicularis. Natural Product Research, 27(9), 804-808.spa
dc.relation.referencesYañez, O., Osorio, M., Osorio, E., Tiznado, W., Ruíz, L., García, C., ... & García-Beltrán, O. (2023). Antioxidant activity and enzymatic of lichen substances: A study based on cyclic voltammetry and theoretical. Chemico-Biological Interactions, 110357spa
dc.relation.referencesYoshimura, I., Yamamoto, Y., Nakano, T., & Finnie, J. (2002). Isolation and culture of lichen photobionts and mycobionts. Protocols in Lichenology: culturing, biochemistry, ecophysiology and use in biomonitoring, 3-33.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.licenseAtribución-NoComercial-CompartirIgual 4.0 Internacionalspa
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/spa
dc.subject.ddc540 - Química y ciencias afines::542 - Técnicas, procedimientos, aparatos, equipos, materialesspa
dc.subject.decslíquenesspa
dc.subject.decsLichenseng
dc.subject.decstecnología farmacéuticaspa
dc.subject.decsTechnology, Pharmaceuticaleng
dc.subject.decsantioxidantesspa
dc.subject.decsAntioxidantseng
dc.subject.proposalHongos liquenizadosspa
dc.subject.proposalFotoprotecciónspa
dc.subject.proposalAntioxidantesspa
dc.subject.proposalProtección ADNspa
dc.subject.proposalCitoprotecciónspa
dc.subject.proposalInmovilización celularspa
dc.subject.proposalLichenized fungieng
dc.subject.proposalPhotoprotectioneng
dc.subject.proposalAntioxidantseng
dc.subject.proposalDNA protectioneng
dc.subject.proposalCytoprotectioneng
dc.subject.proposalCell immobilizationeng
dc.titleAntioxidantes y/o fotoprotectores de los líquenes del páramo de Sumapaz Thamnolia vermicularis y Cladonia cf. didyma y estudio de su posible producción biotecnológicaspa
dc.title.translatedAntioxidants and/or photoprotectors from the Sumapaz páramo lichens Thamnolia vermicularis and Cladonia cf. didyma and study of their possible biotechnological productioneng
dc.typeTrabajo de grado - Doctoradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_db06spa
dc.type.coarversionhttp://purl.org/coar/version/c_ab4af688f83e57aaspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/doctoralThesisspa
dc.type.redcolhttp://purl.org/redcol/resource_type/TDspa
dc.type.versioninfo:eu-repo/semantics/acceptedVersionspa
dcterms.audience.professionaldevelopmentEstudiantesspa
dcterms.audience.professionaldevelopmentInvestigadoresspa
dcterms.audience.professionaldevelopmentMaestrosspa
dcterms.audience.professionaldevelopmentPúblico generalspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.awardtitleBioprospección de líquenes del Páramo de Sumapaz, Colombia como fuente original de sustancias duales con actividad antioxidante y fotoprotectora para la prevención de problemas dérmicos asociados a la radiación solar”spa
oaire.awardtitleCaracterización y evaluación de dispositivos médicos a base de colágeno asociados a extractos naturales y metabolitos con aplicación farmacéutica.spa
oaire.fundernameMinisterio de Ciencia Tecnología e Innovación (MinCiencias).spa
oaire.fundernameUniversidad Nacional de Colombiaspa

Archivos

Bloque original

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
53907201.2022.pdf
Tamaño:
4.56 MB
Formato:
Adobe Portable Document Format
Descripción:
Tesis de Doctorado en Ciencias Farmacéuticas

Bloque de licencias

Mostrando 1 - 1 de 1
Cargando...
Miniatura
Nombre:
license.txt
Tamaño:
5.74 KB
Formato:
Item-specific license agreed upon to submission
Descripción: